6.1 An Overview (page 234)

CHAPTER 6 EXPONENTIALS AND LOGARITHMS

6.1 An Overview (page 234)

The laws of logarithms which are highlighted on pages 229 and 230 apply just as well to “natural logs.” Thus
Inyz =Iny+Inz and b = e®. Also important :

b°=¢*™% and Inz® =alnz and In1=0.

Problems 1 - 4 review the rules for logarithms. Don’t use your calculator. Find the exponent or power.

1. log; 35 2. logy3 72+ log,,2 3. log,6-loggz 4. logy 8

e To find log, L ,ask yourself “seven to what power is 57" Since ;5 = 772, the power is logy 5 = —2.

@ log,; 72 +log,; 2 = log,,(72 - 2) = log,, 144. Since the bases are the same (everything is base 12), the
log of the product equals the sum of the logs. To find log,, 144, ask 12What Power — 144 The power
is 2, so log;5 144 = 2.

@ Follow the change of base formula log, z = (log, b)(log, z). Here a = 10 and b = 6. The answer is
log, ¢ z.

® To find log, ¢ 8, ask %Wbat power

logy.s 8 = —3.

= 8. Since 3 = 27! and 8 = 23, the power is —3. Therefore

5. Solve log, 10 = 2. (This is Problem 6.1.6c) The unknown is the base z.

e The statement log, 10 = 2 means exactly the same as z%? = 10. Therefore z = v/10. We can’t choose
z = —4/10 since bases must be positive.

6. Draw the graphs for y = 6% and y = 5 - 6 on semilog paper (preferably homemade).

o The z axis is scaled normally. The y axis is scaled so that 60 = 1, 6! = 6, 6% = 36, and 6° = 216 are
one unit apart. The axes cross at (0,1), not at (0,0) as on regular paper. Both graphs are straight
lines. The line y = 10 - 6% crosses the vertical axis when z =0 and y = 10.

7. What are the equations of the functions represented in the right graph?

e This is base 10 semilog paper, so both lines graph functions y = A - 10°1°6® where A is the intercept
on the vertical axis and logb is the slope. One graph has A = 1 and the slope is %, so y = 10%/4, The
intercept on the second graph is 300 and the slope is %, so y = 300 - 10~2=/3,
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6.2 The Exponential e® (page 241)

Read-throughs and selected even-numbered solutions :

In 10* = 10,000, the exponent 4 is the logarithm of 10,000. The base is b = 10. The logarithm of 10™ times
10" is m + n. The logarithm of 10™ /10" is m — n. The logarithm of 10,0007 is 4x. If y = b* then z = logpy.
Here z is any number, and y is always positive.

A base change gives b = al®8aP and 52 = oX108ab_ Then 85 is 215. In other words log, y is logy8 times
logg y. When y = 2 it follows that log, 8 times logg 2 equals 1.

On ordinary paper the graph of y = mx + b is a straight line. Its slope is m. On semilog paper the graph

of y = AbX is a straight line. Its slope is log b. On log-log paper the graph of y = AxK isa straight line. Its
slope is k.

h
The slope of y = b* is dy/dz = cb*, where ¢ depends on b. The number ¢ is the limit as h — 0 of bT"l
Since z = log, y is the inverse, (dz/dy)(dy/dz) = 1. Knowing dy/dz = cb* yields dz/dy = 1/cb*. Substituting
b® for y, the slope of log, y is 1/cy. With a change of letters, the slope of log, z is 1/cx.

6()7 (B)3 @OV @i (VB (5

12 y = log;, z is a straight line on “inverse” semilog paper: y axis normal, z axis scaled logarithmically
{(so z = 1,10,100 are equally spaced). Any equation y = log, z + C will have a straight line graph.

14 y = 10'~= drops from 10 to 1 to .1 with slope —1 on semilog paper; y = %\/1_0== increases with slope %
fromy:%at z=0toy=5atz=2.

16 If 440/second is the frequency of middle A, then the next A is 880/second. The 12 steps from A to A
are approximately multiples of 21/12. So 7 steps multiplies by 27/12 & 1.5 to give (1.5) (440) = 660. The
seventh note from A is E.

22 The slope of y = 10% is gﬁ = ¢10* (later we find that ¢ = In 10). At z = 0 and z = 1 the slope is ¢ and 10c.
So the tangent lines are y — 1 = ¢(z — 0) and y — 10 = 10¢(z — 1).

6.2 The Exponential e* (page 241)

Problems 1 — 8 use the facts that %e" = e“% and Ed;ln u = & . gz—". If the base in the problem is not e,
convert to base e. Use the change of base formulas b* = ¢("®)% and log, u = 12%. (And remember that Inb is
just a constant.) In each problem, find dy/dz:

1. y=In3z e Take u = 3z to get % = ;1‘- . 3::—" = 3—1; -3 = -;— This is the same derivative as for y = In z.
Why? The answer lies in the laws of logarithms: In3z =In3 + In z. Since In 3 is a constant, its derivative

is zero. Because In 3z and In z differ only by a constant, they have the same derivative.

2. y=Incos3z. Assume cos3z is positive so Incos 3z is defined.

® Take u = cos3z. Then ‘;—: = —3sin3z. The answer is % = Eﬁ(_?’ sin 3z) = —3 tan 3z.

When we find a derivative we also find an integral: — f 3tan3z =Incos3z + C.
3. y=In(lnz?).
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6.2 The Exponential e* (page 241)

ied

9.

e Take u = Inz2. Then z—: =-2z= :‘—:. This means

1
dz (lnxz)( )= z ln:c2 T zlnz’

Surprise to the author: This is also the derivative of In(In z). Why does In(In z%) have the same derivative?
= log,, Vz2 + 5 e First change the base from 10 to e, by dividing by In 10. Now you are differentiating In «

instead of logu: y = =i Inv/z2 + 5. For square roots, it is worthwhile to use the law that In u!'/2=1Lllnu
Then In V22 + 5 = LIn(2? + 5). [THIS IS NOT %(lnz? + In5)] This function is now

In(z? + 5) dy 1 =z
T 2In10 and dz (21n10)(:62+5)( z) = In10x2 +5°

y=1In IFL:;—;)SC-L:—S—: o Here again the laws of logarithms allow you to make things easier. Multiplication
of numbers is addition of logs. Division is subtraction. Powers of u become multiples of Inu: y =
5In(z* — 8) — In(z® + 5z) — Incos z. Now dy/dz is long but easy:

dy & (42%) 62°+5 (—sinz) _ 20z° 6z°+5
dz ~ z¢-8 20+ 5z  cosz 48 1645z

+ tanz.
y=e'3"% o dy/dz is e*du/dz = €**"*(sec? z).
y = sin(e?®) o Set u = ¢2%. Then du/dz = 2¢2*. Using the chain rule,

d. . — du — 2z 2z

I (sinu) = (cos u.)(dz) = (cos e%%)(2¢%*).

y = 10 o First change the base from 10 to e: y = (¢810)2" = ¢='1010 et 4 = z2In10. Then
%z-— = 221n10. (Remember In 10 is a constant, you don’t need the product rule.) We have

d d
ﬁ = c"d—z =¥l 19(2z1n 10).
. y=z~1/% (This is Problem 6.2.18)
e First change to base e: y = (¢*)~/, Since the exponent is u = —11Inz, we need the product rule

to get du/dz = —1(2) + 4 Inz. Therefore

d d 1
Y2l gl ;E(In:c-—l).

Problems 9 — 14 use the definition ¢ = lims_.o(1 + h)'/*. By substituting h = L this becomes ¢ =
lim,, o0 (1+ ;1;)" Evaluate these limits as n — oo :

lim(1+ %)% 10. lim(1+ &)% 11 lim(1+2£)*® 12. lim(1+ £)" (r is constant) 13. lim(Z2%8)"

e Rewrite Problem 9 as lim({1+ 1)")°. Since (1+ 1) goes to ¢ the answer is ¢ s 403. The calculator
shows (1 + 1555)%°%° =~ 402.

o Problem 10 is different because 6n is both inside and outside the parentheses. If you let k& = 6n,
and note k£ — oo as n — oo, this becomes limg_ oo (1 + i—)k = e. The idea here is : If we have

lim— oo (1 + é)D and all the boxes are the same, the limit is e.
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6.2 The Exponential e* (page 241)

e Question 11 can be rewritten as lim(1+ 5{;)2"'% = ¢3/2, (The box is [0 = 2n).

e In Question 12 write n = mr. Then £ = L and we have lim(1+ %)™ =¢".

e In 13 write (2£8) = 1+ &, This is Problem 12 with r = 8 : limp—.o(1 + 2)" = €®.

14. (Thisis 6.2.21)  Find the limit of (11)10, (181)100 (1001)1000 ... Then find the limit of (12)10, (122)100,

100 1000
. 10 100)101 (1000)1001
10001000, ... and the limit of (13)'*, (153)*°", (1301
e The terms of the first sequence are (2%:1)" = (1+ 1) where n = 10,100, 1000, ---. The limit is e.
The terms of the second sequence are the reciprocals of those of the first. So the second limit is %
The terms of the third are each (%) times those of the second. Since ;37 — 1 as n — oo, the third

1
limit is again <.

The third sequence can also be written (232)" or (1— %)". Its limit is e~!. See Problem 12 with r = —1.

Exercises 6.2.27 and 6.2.45 — 6.2.54 give plenty of practice in integrating exponential functions. Usually
the trick is to locate e*du. Problems 15 — 17 are three models.

15. (This is 6.2.32) Find an antiderivative for v(z) = X + .

x

o The first term is e~ *.
1

antiderivative is {2-z'~°. The answer is f(z) = —¢™* + ;2=z'7° + C.

Its antiderivative is —e™*. The second term is just z" with n = —e. Its

16. Find an antiderivative for v(z) = 372*. You may change to base e.

e The change produces =223, The coefficient of z in the exponent is —21n3. An antiderivative is
_—1 —2:;1113 -1 2:1:
(=) = 53¢ or 333"

We need —2 and In 3 in the denominator, the same way that we needed n + 1 when integrating z".

17. (This is 6.2.52) Find f el1**) 2 dz. Set u = 1422 and du = 2z dz. The integral is 5 f (((?)) e*du. The new

limits of integration are u(0) = 1+ 0% = 1 and u(3) = 1+ 3% = 10. Now 1 fl etdu = 1e¥|}% = L(e!0 —e).

This s not the same as Eeg‘

Read-throughs and selected even-numbered solutions :

The number e is approximately 2.78. It is the limit of (1 + k) to the power 1/h. This gives 1.01}°° when
h = .01. An equivalent form is ¢ = lim (1 + %)n_

When the base is b = e, the constant ¢ in Section 6.1 is 1. Therefore the derivative of y = €% is dy/dz = eX.

The derivative of z = log, y is dz/dy = 1/y. The slopes at z = 0 and y = 1 are both 1. The notation for log, y
is In y, which is the natural logarithm of y.

The constant ¢ in the slope of 4 is ¢ = In b. The function b* can be rewritten as eX Inb s derivative
is (Inb)eXnb — (1 b)bX. The derivative of e*(*) is eu(x)g_:. The derivative of ¢ is €8I0 X cog x. The

derivative of ¢“* brings down a factor c.

The integral of e® is €* + C. The integral of e°* is %ecx + C. The integral of e“(‘)du/dx is ™) + C. In
general the integral of ¢*() by itself is impossible to find.
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6.3 Growth and Decay in Science and Economics (page 250)

18 z71/% = ¢~(In2)/2 hag derivative (— & + B2)e~(n2)/z = (Inzpl)-1/=

20 (1+ 1) — e ~7.7and (1+ 1)v# _, 1. Note that (1+ 1)V7 is squeesed between 1 and e!/V" which
approaches 1.

28 (e3%)(e7*) = €'%% which is the derivative of ILGeIOX

42 z1/7 = ¢(I82)/2 h55 glope c(l"“)/“(;l; —bz)= xl/x(-l—"—xlg—x). This slope is zero at x = ¢, when Inz = 1.
The second derivative is negative so the maximum of z!/# is e!/¢. Check: £ (nz)/z(1=lnz)
e(lnz)/’[(l_—;’ﬂi)z + LL"I:;.?.I“_ZL] = _;]'Tel/c at z = e.

44 z° = ¢” at z = e. This is the only point where z°¢™* = 1 because the derivative is z¢(—e™%) + ez¢~le™% =
(£ — 1)z°e~*. This derivative is positive for z < ¢ and negative for z > e. So the function z°¢~*
increases to 1 at z = e and then decreases: it never equals 1 again.

58 The asymptotes of (1+ 2)* = (2:1)* = (;2;)= are z = —1 (from the last formula) and y = ¢ (from the
first formula).

o 2 _ . 6zd _ 1 _— 3. L .
62 lim % = lim 8% = lim 3% = lim 128 = }im 3892 = |im 7202 = |im 220 = 0.

6.3 Growth and Decay in Science and Economics (page 250)

The applications in this section begin to suggest the power of the mathematics you are learning. Concentrate
on understanding how to use y = yoe®* and y = yoe™ + 2(e” — 1) as you work the examples.
In Problems 1 and 2, solve the differential equations starting from y; = 1 and yo = —1. Draw both solutions

on the same graph.

dy

1. % = Ly (pure exponential) 2. &

- = %y + 0.8 (exponential with source term)

e Problem 1 says that the rate of change is proportional to y. There are no other complicating terms.

t/3

Use the exponential law yoe® with ¢ = 31 and yo = £1. The graphs of y = +e"/° are at left below.

e Problem 2 changes Problem 1 into % = cy+s. We have ¢ = %— and s = 0.8. Its solution is

y = yoet/3 + 4B (et/® — 1) = yoet/® + 2.4(e*/® — 1). Study the graphs to see the effect of yo and s.

3
With a graphing calculator you can carry these studies further. See what happens if s is very large,
or if s is negative. Exercise 6.3.36 is also good for comparing the effects of various ¢’s and s’s.
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6.3 Growth and Decay in Science and Economics (page 250)

. (This is 6.3.5) Start from yo = 10. If %‘t‘ = 4y, at what time does y increase to 1007

o The solution is y = ype® = 10e*t. Set y = 100 and solve for ¢:

100 = 10¢*t gives 10 =¢** and In10=4t. Thent = %ln 10.

. Problem 6.3.6 looks the same as the last question, but the right side is 4t instead of 4y. Note that "—:’f =4t
is not exponential growth. The slope % is proportional to ¢ and the solution is simply y = 2¢t2 + C. Start
at yo = C = 10. Setting y = 100 gives 100 = 2¢? + 10 and t = 1/45.

Problems 5 - 10 involve y = yoe®t.

Write the equation describing a bacterial colony growing exponentially. Start with 100 bacteria and end
with 10® after 30 hours.

e Right away we know yo = 100 and y = 100e®. We don’t yet know ¢, but at ¢ = 30 we have
= 10% = 100e3%¢. Taking logarithms of 10* = 3°¢ gives 4In 10 = 30 ¢ or -4—-1‘,;‘—01-9 = c. The equation
is y = 100e(*3"%), More concisely, since €!®1° = 10 this is y = 100 - 10%¢/30,

. The number of cases of a disease increases by 2% a year. If there were 10,000 cases in 1992, how many will
there be in 19957

o The direct approach is to multiply by 1.02 after every year. After three years (1.02)%10,000 ~ 10,612.

e We can also use y = 10%¢°*. The 2% increase means ¢ = In(1.02). After three years (1992 to 1995)
we set t = 3: y = 101312 1.02) = 10,612,
This is not the same as y = 10%¢:%%*. That is continuous growth at 2%. It is continuous compounding,
and ¢2 = 1.0202 - - - is a little different from 1.02.

. How would Problem 6 change if the number of cases decreases by 2%?
e A 2% decrease changes the multiplier to .98. Then ¢ = In(.98). In 3 years there would be 9,411 cases.

(This is 6.3.15) The population of Cairo grew exponentially from 5 million to 10 million in 20 years. Find
the equation for Cairo’s population. When was y = 8 million?

e Starting from yo = 5 million = 5 - 10° the population is y = 5 - 10%t. The doubling time 22 is 20
years. We deduce that ¢ = 22 = .035 and y = 5 - 10%°3%. This reaches 8 million = 8 - 10® when

In &
8 = ¢35, Then t = 55 =~ 13.6 years.

. If y=4500 at ¢t = 4 and y = 90 at ¢t = 10, what was y at t = 07 (We are assuming exponential decay.)

e The first part says that y = 4500e°(*~%). The ¢ in the basic formula is replaced by (t — 4). [The
“shifted” formula is y = yrec(t'r).] Note that y = 4500 when t = 4, as required. Since y = 90 when
t = 10, we have 90 = 4500¢% and €% = 1%;3 = .02. This means 6¢c = In.02 and ¢ = %;ln .02. Finally,
set ¢t = 0 to get the amount at that time: y = 4500¢(3 1n-02)(0-4)  61074.

10. (Problem 6.3.13) How old is a skull containing } as much radiocarbon as a modern skull?

e Information about radioactive dating is on pages 243-245. Since the half-life of carbon 14 is 5568
years, the amount left at time ¢ is yoe® with exponent ¢ = 1261682 = %. We do not know the initial

amount yo. But we can use yo = 1 (100% at the start) and y = = 0.2 at the unknown age t. Then
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6.3 Growth and Decay in Science and Economics (page 250)

(In 0.2)5568

“In 2 = 31,425 years.

0.2 = e¥sént ylelds t =

11. (Problem 6.3.37) What value y = constant solves %% = 4 —y? Show that y(t) = Ae™* +4 is also a solution.
Find y(1) and yoo if yo = 3.
e If y is constant, then %-'f = 0. Therefore y — 4 = 0. The steady state yo, is the constant y = 4.
e A non-constant solution is y(t) = Ae™* + 4. Check: % = —Ae™* equals 4 — y = 4 — (Ae™* + 4).
o If we know y(0) = A +4 =3, then A = —1. In this case y(t) = —1e™* + 4 gives y(1) =4 — L.
e To find yeo, let t — co. Then y = —e ™% + 4 goes to yoo = 4, the expected steady state.
12. (Problem 6.3.46) (a) To have $50,000 for college tuition in 20 years, what gift yo should a grandparent

make now? Assume ¢ = 10%. (b) What continuous deposit should a parent make during 20 years to save
$50,000?7 (c) If the parent saves s = $1000 per year, when does the account reach $50,0007

e Part (a) is a question about the present value yp, if the gift is worth $50,000 in 20 years. The formula
y = yoe® turns into yo = ye~°t = (50,000)e~%1(20) = $6767.

e Part (b) is different because there is a continuous deposit instead of one lump sum. In the formula
Yoe + £(e°® — 1) we know yo = 0 and ¢ = 10% = 0.1. We want to choose s so that y = 50,000 when
t = 20. Therefore 50,000 = 5% (e(®-1)29 — 1). This gives s = 782.59. The parents should continuously
deposit $782.59 per year for 20 years.

e Part (c) asks how long it would take to accumulate $50,000 if the deposit is s = $1000 per year.

1000 In6
50,000 = —— (e®* — 1) leads to 5 = ¢*'* — 1 and t = 22 =179 years.
0.1 0.1
This method takes 17.9 years to accumulate the tuition. The smaller deposit s = $782.59 took 20

years.

13. (Problem 6.3.50) For how long can you withdraw $500/year after depositing $5000 at a continuous rate of
8%? At time t you run dry: and y(t) = 0.

e This situation uses both terms of the formula y = yoe® + £(e° — 1). There is an initial value yo = 5000
and a sink (negative source) of s = —500/year. With ¢ = .08 we find the time ¢t when y = 0:
500

Multiply 0 = 5000¢ %8¢ — O—S(e-os‘ — 1) by .08 to get 0 = 400e'°%¢ — 500(e 8t — 1).

Then e8¢ = ‘;gg =5andt= % = 20.1. You have 20 years of income.

14. Your Thanksgiving turkey is at 40°F when it goes into a 350° oven at 10 o’clock. At noon the meat
thermometer reads 110°. When will the turkey be done (195°)?

e Newton’s law of cooling applies even though the turkey is warming. Its temperature is approaching
Yoo = 350° from yo = 40°. Using method 3 (page 250) we have (y — 350) = (40 — 350)e°t. The value
of ¢ varies from turkey to turkey. To find ¢ for your particular turkey, substitute y = 110 when ¢t = 2:

—240 24 1, 24
110 — 350 = —310e%® = ———— = ¢2° = |n — = = Zln— = —.128.
e 310 e n31 2c=>c¢ 2ln 31 .128

The equation for y is 350 — 310e 128!, The turkey is done when y = 195:
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6.3 Growth and Decay in Science and Economics (page 250)

195 — 350
195 = 350 — 310e 128t or 0 " e 128 or — 128t =1In =70 5

This gives t = 5.4 hours. You can start making gravy at 3 : 24.

Read-throughs and selected even-numbered solutions :

If y' = cy then y(t) = yOeCt. If dy/dt = Ty and yo = 4 then y(t) = de’t. This solution reaches 8 at ¢ = ITZ
If the doubling time is T then ¢ = l—‘%. If y' = 3y and y(1) = 9 then yo was 9e¢~3. When ¢ is negative, the

solution approaches zero as { — oo.

The constant solution to dy/dt = y+6 is y = —6. The general solution is y = Ae! —6. If yo = 4 then A = 10.
The solution of dy/dt = cy + s starting from yo is y = Ae®* + B = (yg + %)ect - %. The output from the source
is —g—(eCt —1). An input at time T grows by the factor eCt=T) 3¢ time ¢.

At ¢ = 10%, the interest in time dt is dy = .01y dt. This equation yields y(t) = yoe'on. With a source
term instead of yo, a continuous deposit of s = 4000/year yields y = 40,000(e — 1) after ten years. The deposit
required to produce 10,000 in 10 years is s = ye¢/(eSt — 1) = 1000/(e — 1). An income of 4000/year forever (!)
comes from yo = 40,000. The deposit to give 4000/year for 20 years is yo = 40,000(1 — e_z). The payment
rate s to clear a loan of 10,000 in 10 years is 1000e/(e — 1) per year.

The solution to y' = —3y + s approaches y,, =8/3.

12 To multiply again by 10 takes ten more hours, a total of 20 hours. If ¢!°¢ = 10 (and ¢2°¢ = 100) then

10c =1n10 and ¢c = lnl(]).O ~ .23.

16 801 = 601 gives 2 = ¢%% and t = A InE = 250In § = 72 years.

24 Go from 4 mg back down to 1 mg in T hours. Then ¢~ T = 2 and —.01T =In} and T = 1_1.0%1— =139

hours (not so realistic).

28 Given mv = mv — vAm + mAv — (Am)Av + Am(v — 7); cancel terms to leave mAv — (Am)Av = TAm;
divide by Am and approach the limit m((ii—x‘é =7 . Then v=Tlnm+ C. At t =0thisis 20=7In4 + C
sothat v="7lnm+20-7In4 =7 In% + 20.

36 (a) %’t‘ =3y+6givesy > oo (b) % =-3y+6givesy —2 (c) %% = -3y —6 givesy — —2
(d) %‘t‘ = 3y — 6 gives y — —oo.

42 $1000 changes by ($1000) (—.04dt), a decrease of 40dt dollars in time dt. The printing rate should be s = 40.

48 The deposit of 4dT grows with factor ¢ from time T to time ¢, and reaches e(t~T)44T. With t = 2 add
. (2~ 2
deposits from T =0to T = 1: [ e®(2~T)4dT = [ (_zc )= 4e°:§e .

58 If %’f = —y + 7 then % is zero at Yoo = 7 (thisis —£ = %) The derivative of y — y is %‘%,

so the derivative of y — 7 is —(y — 7). The decay rateisc= —1,andy — 7 = e‘t(yo -7).

60 All solutions to j—% = ¢(y — 12) converge to y = 12 provided ¢ is negative.

66 (a) The white coffee cools to Yo, + (Y0 — Yoo )€ = 20 + 40eSt. (b) The black coffee cools to 20 + 50e¢t.
The milk warms to 20 — 10e®t. The mixture 2(Plack c°ﬂge)+l(m“k) has 20 + &06"-1—96“ = 20 + 40e°t,

So it doesn’t matter when you add the milk!
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6.4 Logarithms (page 258)

6.4 Logarithms (page 258)

This short section is packed with important information and techniques — how to differentiate and integrate
logarithms, logarithms as areas, approximation of logarithms, and logarithmic differentiation (LD). The examples
cover each of these topics:

Derivatives  The rule for y =Inu is % =1 Z—:—. With a different base b, the rule for y = log, u = ll—"‘l—';

g ¥ — 1 du mind 9 _
s =50 % Find #in Problems 1 - 4.

1. y=In(5-2). eu=5-zs0 & =(:)(~1)=L.
2. y=log,,(sinz). e Change to base e with y = l—“l(l—:%)-. Now %z! =5 s cosz.
3. y=(nz)3. o This is y = u?, s0 3¢ = 3u?42 = 3(Inz)%L.
4. y=tanzlnsinz. ® The product rule gives
d
d—z_— =tanz - cos z + sec? z(Insin z) = 1 + sec? z(Insin z).
z

5. (This is 6.4.53) Find lim,_ 28eU*2),

® This limit takes the form 3, so turn to I’Hépital’s rule (Section 3.8). The derivative of log, (1 + z) is
(2e)(1 +z) The derivative of z is 1. The ratio is W which approaches 2.

Logarithms as areas
6. (This is 6.4.56) Estimate the area under y = 1 for 4 < z < 8 by four trapesoids. What is the exact area?

® Each trapezoid has base Az = 1, so four trapezoids take us from z = 4 to z = 8. Withy = -i— the

sides of the trapezoids are the heights yo, y1,¥2, Y3, %4 = 3, 5 &> 5, - Lhe total trapezoidal area is

1 1 1 1 1 1
= Sy) =15+ 42+ =+ =) =0.697
Az(2y0+y1+y2+y3+2y4) G+tstet71 18 ) 0.
To get the exact area we integrate f4 zdz=In8— 1n4=ln% =1n2 =~ 0.6931.

It is interesting to compa.re with the trapezoidal area from z=1to z =2. The ezact area flz Ldz s

still In2. Now Az = — and the heights are T’ 1—, -5, 1-, 2 The total trapezoidal area comes from the
same rule:

1.1 1 4 4 4 11 1 1 1 1 1

o 2 r 2. 2)=(>+-+>+=+—)=0.6970 as before.

12 itstetrte "Gttt as belore

The sum is not changed! This is another way to see why In8 —In4 is equal to In2 — In1. The area stays
the same when we integrate % from any a to 2a.

Questions 7 and 8 are about approximations going as far as the z3 term:

3

2
ln(l+z)~z—%+f§— and e’as1+z+?2—

2,3

+—.
6
7. Approximate In(.98) by choosing z = —.02. Then 1+ z = .98.
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o In(1—.02) m (—.02) — (0217 4 (=-02)° _ _ 0902026667
The calculator gives In.98 = —.0202027073. Somebody is wrong by 4 - 10~8,

8. Find a quadratic approximation (this means z? terms) near z = 0 for y = 2°.
3
e 2% is the same as ¢*!®2, Put zIn2 into the series. The approximation is 1+ zIn2 + (_11-?2)_22_

Integration The basic rule is [ % = In [u| + C. Why not just Inu + C? Go back to the definition of Inu
= area under the curve y = -;— from z = 1 to z = u. Here 4 must be positive since we cannot cross z = 0,
where -i- blows up. However if u stays negative, there is something we can do. Writ.e d“ = 'd" The
denominator —u is positive and the numerator is its derivative! In that case, —_—— = ln(—u) + C’ The
expression [ %"-* = In |u| + C covers both cases. When you know u is positive, as in In(z2 + 1), leave off the

absolute value sign.

For definite integrals, the limits of integration should tell you whether u is negative or positive. Here are
two examples with u = sin z:

/2 3n/4
/ 222 4r = In(sin .1:)]"'/2 / 2% 4z = In | sin z|]2'/'44.

/s Sinz x/2 8INZ

The integral f; £22dz is illegal. It starts and ends with u =sinz =0

9. Integrate —“—‘i%-

® Let 1 — z? equal u. Then du = —2zdz. The integral becomes —1 [ %% = —11n|u| + C. This is
—2In|1 - 2%|+ C. Avoid z = +1 where u = 0.

10. Integrate [ 242, This is not [ 4. But we can write ;2= as —1 + 71
o [z = [(~1+;)dz=-z—-In|1-z|+C.

11. (This is 6.4.18) Integrate Iz T—-T-

Inz

e A sneaky one, not 2%, Set u = Inz and du = 4

1
du 1, 1
—_— —— = -1 —_—
/ s =1+ o
Logarithmic differentiation (LD) greatly simplifies derivatives of powers and products, and quotients. To

find the derivative of z1/%, LD is the best way to go. (Exponential differentiation in Problem 6.5.70

amounts to the same thing.) The secret is in decomposing the original expression. Here are examples:

12. y=M(4z8) leads to Iny = 3In(z2 + 7) + In4 + 8Inz —  In(z® - 9).

Multiplication has become addition. Division has become subtraction. The powers 3, 8, £ now multiply.
This is as far as logarithms can go. Do not try to separate Inz2 and In7. Take the denvatlve ofIny:

1dy __o_2 8 3z?
o =345 +0+ ;- z(:‘z—g)'

. 3, 913.4.8
If you substitute back for y then % = E—}—;—-’-_—gﬁ— zf_t, + 8- 2(:,_9)]

13. y = (sin :::)"‘2 has a function sin z raised to a functional power z2. LD is necessary.

@ First take logarithms: Iny = zZInsin z. Now take the derivative of both sides. Notice especially the
left side: é%ﬁ 72282 4 27z Insin z. Multiply by y to find -*V-

sinz
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14. Find the tangent line y?(2 — z) = z° at the point (1,1). ID and LD are useful but not necessary.

e We need to know the slope dy/dz at (1,1). Taking logarithms gives

Iny? +1n(2-z) =Inz® or 2Iny +In(2 — z) = 3Inz.

Now take the z derivative of both sides: 335 + 5= _1 = % Plugin z = 1,y = 1 to get 2% + -_1—1 =3

or % = 2. The tangent line through (1,1) with slope 2isy—1=2(z—1).

Read-throughs and selected even-numbered solutions :

The natural logarithm of z is f: % (or fi( %) This definition leads to Inzy = Inx +Iny and Inz" =
n In x. Then e is the number whose logarithm (area under 1/z curve) is 1. Similarly e® is now defined as the
number whose natural logarithm is X. As £ — co,ln z approaches infinity. But the ratio (In z)/y/z approaches

zero. The domain and range of Inz are 0 < x < 00, —00 < In x < oco.

The derivative of In z is )lc The derivative of ln(l + z) is 735 The tangent approximation to In(1 + z) at

1

z = 0 is x. The quadratic approximation is x — 2x . The quadratlc approximation to ¢* is 1+ x + 3 1 x2.

The derivative of In u(z) by the chain rule is u(x) g;: Thus (Incos z)’ = SLI;;(( —tan x. An antiderivative
of tan z is —In cos x. The product p = z¢®* has Inp = 5x + In x. The derivative of this equation is p’/p = 5 + )l‘
Multiplying by p gives p' = xe®X (5 + )l() = 5xe®X + e5X which is LD or logarithmic differentiation.

The integral of u’(z)/u(z) is In u(x). The integral of 2z/(z% + 4) is ]n(x2 + 4). The integral of 1/cz is lncx

The integral of 1/(ct -+ s) is LI]—L%—tt&. The integral of 1/cos z, after a trick, is In (sec x + tan x). We should

write In |z| for the antiderivative of 1/z, since this allows x < 0. Similarly [ du/u should be written In|u].

3)-0 1-1
4 = ne) x121x 6 Use (log, 10)(log,, z) = log, z. Then 2 (log;,z) = TJE%B L= xh} io
16 y = £ equals £ — %7 Its integral is [32% — S In(z® + 1)]§ = 2 - %ln 5.
20 fHn2gy = [=du — _Jpy = —In(cos z) ]0 = —ln:/Li+0= %—ln 2.
24 Set u = Inln z. By the chain rule % = -1 Our integralis [ %* = Inu = In (In(In x)) + C.
28 Iny = 1 In(z% + 1) + % In(z? — 1). Then ;I‘I‘ =gt = 22° Then % o= ffil = \/—i_—f_i—l
36 Iny=—Inzso i% = —71 and ﬁy = —e_;”. Alternatively we have y = ; and 35 = —ﬁ.
40 L1nz = ——. Alternatively use % & (22) — L4 (z) = L,

b%Inb = Iln b. We have redone the derivative of b at z = 0.

54 Use I’Hopital’s Rule: lirr:]

62 al—tlni = *]"TI —0asz—00. Thismeansylny — Oasy= % — 0. (Emphasize: The factor y — 0
is “stronger” than the factor Iny — —o0.)
70LD:Inp = zlnz so 151 =1+Inz and —L =p(l+Inz) = z*(1+ Inz). Now find the same answer by

iz

ED: f(e2lne) = e“’”d‘ix(:rln:z) = z"(l + In z).
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6.5 Separable Equations Including the Logistic Equation (page
266)

Separation of variables works so well (when it works) that there is a big temptation to use it often and
wildly. I asked my class to integrate the function y(z) = ﬁ(elﬂ'z) from z = 0 to z = 3. The point of this

1+2?

question is that you don’t have to take the derivative of e . When you integrate, that brings back the original

function. So the answer is

3
[ vtada= (=g =0 -
0
One mistake was to write that answer as e°. The separation of variables mistake was in y dy :

from y = %(e”"”) the class wrote [y dy = [ ﬁ(c”"”)d:ﬁ.

You can’t multiply one side by dy and the other side by dz. This mistake leads to %yQ which shouldn’t appear.
Separation of variables starts from % = u(y)v(z) and does the same thing to both sides. Divide by u(y), multiply
by dz, and integrate. Then [ dy/u(y) = [ v(z)dz. Now a y-integral equals an z-integral.

Solve the differential equations in Problems 1 and 2 by separating variables.

L. .% = /zy with yo = 4 (which means y(0) = 4.)

e First, move dz to the right side and ,/y to the left: y—‘,i% = z1/2dz. Second, integrate both sides:
2yl/2 = %.71:3/2 + C. (This constant C combines the constants for each integral.) Third, solve for y =
(%13/2 + C)2. Here C/2 became C. Half a constant is another constant. This is the general solution.
Fourth, use the starting value yo = 4 to find C:

4= (%(0)3/2 + C)? yields C = +2. Then y = (%:1;3/2 +2)%
2. Solve (z — 3)t dt + (t*> + 1)dz = 0 with z = 5 when t = 0.
e Divide both sides by (z — 3)(t? + 1) to separate t from z :
tdt dzx tdt dz
2y1 T3 0° _/t2+1 :/:c—s'

Integrating gives — 2 In(t> + 1) = In(z — 3) + C or (¢t + 1)~1/2 = ¢®(z — 3). Since =5 when t =0
we have 1 = 2¢“. Put ¢“ = 1 into the solution to find z — 3 = 2(t2 + 1)1/2 or z = 3+ 2(t2 + 1)~ /2,

Problems 3 — 5 deal with the logistic equation y’ = cy — by?.

3. (This is 6.5.15.) Solve ‘(—iif = —z + 1 with 2o = 2. Turned upside down, what is y = %? Graph y and 2.

dz

e Separation of variables gives 7 = dtor ~In|—-2z+1/=¢t+C. Put in z = 2 when t = 0 to find
C = 0. Also notice that —2 + 1 is negative. The absolute value is reversing the sign. So we have

—In(z-1)=t or z—1=¢* or z=e'+1.

Now y=1= ﬁ% According to Problem 6.3.15, this y solves the logistic equation ¥ = y — y2.

z
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4. Each graph above is an S-curve that solves a logistic equation y = +y + by® with ¢ = 1 or ¢ = —1. Each
has an inflection point at (2.2,50). Find the differential equations and the solutions.

e The first graph shows yo = 10. The inflection point is at height 53 = 50. Thenc = 1and b = 100 = -01.
The limiting value yo, = § is twice as high at yo, = 100. The differential equation is dy/dt = y—.01y°.
The solution js given by equation (12) on page 263:

¢~ byo _1- (.01)(10) — .09. Then y = 1
R .01 — .09¢e-t’

where d =

(]
Y=t de= % 10

The second graph must solve the differential equation % = —y + by?. Its slope is just the opposite of
the first. Again we have 5 = 50 and b = 0.01. Substitute ¢ = —1 and yo = 90:

c—b -1+ .01(90 -1 -1 900
= y0= + ( )=-—a,ndy(t)= — = .
Yo 90 900 —-.01- &5 94 et

d

This is a case where death wins. Since yo < § = 100 the population dies out before the cooperation term

+by? is strong enough to save it. See Example 6 on page 264 of the text.
5. Change yo in Problem 4 to 110. Then yo > § = 100. Find the solution y(t) and graph it.
e As in 4(b) the equation is %’f = —y + .01y%. Since yo is now 110, the solution has

_—1+ .01(110) _ 1 -1 1100

d = d t) = = .
110 1100 24 ¥ = —5 17 TR

The graph is sketched below. After a sluggish start, the population blows up at ¢ = In 11.
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attracting  repelling  attracting

-1 0 +1
—; — —————t -y
0 1 In11 y' >0 y'<0 y'>0 y' <0

6. Draw a y-line for y’ = y — y>. Which steady states are approached from which initial values yo?

e Factor y — y° to get ¥’ = y(1—y)(1 +y). A steady state has y’ = 0. This occurs at y =0, 1, and —1.
Plot those points on the straight line. They are not all attracting.
Now consider the sign of y(1—-y)(1+y) = y'. If y is below —1,y’' is positive. (Two factors y and 1+y
are negative but their product is positive.) If y is between —1 and 0, y' is negative and y decreases.
If y is between O and 1, all factors are positive and so is y'. Finally, if y > 1 then y’ is negative.

The signs of y’ are + — +—. The curved line f(y) is sketched to show those signs. A positive y’ means an
increasing y. So the solution moves toward —1 and also toward +1. It moves away from y = 0, because y
is increasing on the right of zero and decreasing on the left of zero.

The arrows in the y-line point to the left when y' is negative. The sketch shows that y = —1 and y = +1
are stable steady states. They are attracting, while y = 0 is an unstable (or repelling) stationary point.
The solution approaches —1 from yo < 0, and it approaches +1 from yo > 0.

Read-throughs and selected even-numbered solutions :

The equations dy/dt = cy and dy/dt = cy + s and dy/dt = u(y)v(t) are called separable because we can
separate y from t. Integration of [ dy/y = [ c dt gives In y = ct + constant. Integration of [ dy/(y + s/c) =
[ c dt gives In(y + &) = ct + C. The equation dy/dz = —z/y leads to [y dy = — [x dx. Then y* + z2 =
constant and the solution stays on a circle.

The logistic equation is dy/dt = cy — byz. The new term —by? represents competition when cy represents
growth. Separation gives [ dy/(cy — by?) = [ dt, and the y-integral is 1/c times In c—_% Substituting yo at
t = 0 and taking exponentials produces y/(c — by) = ey /(c — byg). As t — oo,

y approaches % That is the steady state where cy — by? = 0. The graph of y looks like an S, because it has an
inflection point at %%

In biology and chemistry, concentrations y and z react at a rate proportional to y times z. This is the
Law of Mass Action. In a model equation dy/dt = c(y)y, the rate ¢ depends on y. The MM equation is
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dy/dt = —cy/(y + K). Separating variables yields | Z“;,—K-dy =f—~cdt=—ct+C.

6 %Y — coszdz gives In(siny) = sinz + C. Then C = In(sin 1) at z = 0. After taking exponentials

tany =
sin y = (sin 1)e®2 X, No solution after sin y reaches 1 (at the point where (sin 1)e*"* = 1).
8 e¥dy = e*dt so e¥ = ¢* + C. Then C = e — 1 at t = 0. After taking logarithms y = In(e® + e — 1).

10 %{- = %‘:ﬂ- = n. Therefore Iny = nlnz + C. Therefore y = (z")(e®) = constant times x™.

16 Equation (14) is z = (b + ry—:me_“). Turned upside down this is y = 3= with d = S—Ty—"’;"—"-.
20 ¥ = y+y® hasc =1 and b = —1 with yo = 1. Then y(t) = —1 ___ by formula (12). The denominator

~1+2e-t
is zero and y blows up when 2¢"*=1lort = In 2.
26 At the middle of the S-curve y = 3 and %’t‘ =c(5) -b(5)? = :—;. If b and ¢ are multiplied by 10 then so
is this slope 94-’3, which becomes steeper.
28 If y'-'cf—yr—{' =dthency=dy+dK andy = ‘%I% At this steady state the maintenance dose replaces the aspirin
being eliminated.

80 The rate B = ;3¥ is a decreasing function of K because ar - PES SLR
84 %%l = —r[A][B] = —r[A](bo — Z(ao — [A])). The changes ao — [A] and b — [B] are in the proportion m

to n; we solved for [B].

6.6 Powers Instead of Exponentials (page 276)

1. Write down a power series for y(z) whose derivative is 7y(z). Assume that y(0) = 1.

® First method: Look for y = ap + ;2 + a2z% + -- - + @,z™ + - - -, and choose the a’s so that ' = %y.
Start with ap = 1 so that y(0) = 1. Then take the derivative of each term:

y'=0+a1+2agz+3a3zz+4a4x3+~-+na,,z"_1+---

Matching this series with %y gives a; = %ao and 2a2; = %al. Therefore a; = -21- and ap = %. Similarly

3a3 matches %ag and na,, matches %an_ 1- The pattern continues with a3 = %—-5 -az and a4 = %;f; -as.

The typical term is a, = 5=

2 3 n
. o z T z T
Theserdes o yle) =1+ Tt e Yo VT

® Second method: We already know the solution to 3y’ = %y. It is yoe%’. Starting from yo = 1, the
solution is y = 3%, We also know the exponential series ¢* = 1+ z + 1’2—? + Z—T +---+ z;'.: +---. So
just substitute the new exponent %a: in place of z:
1 1,z 1 z 1,z
y=ei*=1+ 5=+ 5(5)2 + 5—.(5)3 + 5(5)" + .-+ = same answer.
2. (This is 6.6.19) Solve the difference equation y(t + 1) = 3y(t) + 1 with yo = 0.
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e Follow equations 8 and 9 on page 271. In this problem a = 3 and s = 1. Each step multiplies the
previous y by 3 and adds 1. From yo = 0 we have y; = 1 and y; = 4. Then y3 = 13 and y, = 40.
The solution is

_gt.o418 =1 _¥-1
y(t)=3"-0+1 5-1 T y(t) = 5

3. If prices rose %% in the last month, what is the equivalent annual rate of inflation?

o The answer is not 12 times 1‘% = 3.6%. The monthly increases are eompounded. A $1 price at the
beginning of the year would be (1 + .003)!2 =5 1.0366 at the end of the year. The annual rate of
inflation is .0366 or 3.66%.

4. If inflation stays at 4% a year, find the present value that yields a dollar after 10 years.

e Use equation 2 on page 273 with n = 1 and y = 1. The rate is .04 instead of .05, for 10 years instead
of 20. We get yo = (1+ 22)71°1 = 0.6755. In a decade a dollar will be worth what 67.55 cents is
worth today.

5. Write the difference equation and find the steady state for this situation: Every week 80% of the cereal is
sold and 400 more boxes are delivered to the supermarket.

o If C(t) represents the number of cereal boxes after t weeks, the problem states that C(t + 1) =
0.2C(t) + 400. The reason for 0.2 is that 80% are sold and 20% are left. The difference equation has
a = 0.2 and s = 400. Since |a| < 1, a steady state is approached: Co, = 2= = % = 500. At that

1—a

steady state, 80% of 500 boxes are sold (that means 400) and they are replaced by 400 new boxes.

Read-throughs and selected even-numbered solutions :

The infinite series for e® is 1 +x + %xz + %xs + -~ Its derivative is €*. The denominator n! is called “n

factorial” and is equal to n(n — 1)---(1). At z =1 the series for eis 1+ 1 + —% + % + o

To match the original definition of e, multiply out (1+1/n)" =1+ n(%) + IAll.",_—:ll(ll—l)z (first three terms).
As n — oo those terms approach 1+ 1+% in agreement with e. The first three terms of (1 + z/n)™ are
1+n(¥)+ -xl(nz;ll(’ﬁ‘)z. As n — oo they approach 1+x+ %xz in agreement with e*. Thus (1 + z/n)"
approaches eX. A quicker method computes In(1+ z/n)™ ~ x (first term only) and takes the exponential.

Compound interest (n times in one year at annual rate z) multiplies by (1 + ’ﬁ‘)n. As n — oo, continuous
compounding multiplies by eX. At z = 10% with continuous compounding, $1 grows to e ~ $1.105 in a year.

The difference equation y(t+ 1) = ay(t) yields y(t) = a® times yo. The equation y(t+ 1) = ay(t) + s is solved
. . t
by y = a’yo + s[1 + a + - + a*~1]. The sum in brackets is % or :T—l' When a = 1.08 and yo = 0, annual

. t
deposits of s = 1 produce y = ;—g%a:—l after t years. If a = % and yo = 0, annual deposits of s = 6 leave
12(1 - EIE) after ¢ years, approaching yo, = 12. The steady equation yo, = aye + s gives yoo = 8/(1 — a).

When : = interest rate per period, the value of yo = $1 after N periods is y(N) = (1 + i)N. The deposit
to produce y(N) = 11is yo = (1 +i)‘N. The value of s = $1 deposited after each period grows to y(N) =
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%—((1 + i)N — 1). The deposit to reach y(N) =1is s = %—(1 -(1+ i)‘N).

Euler’s method replaces y' = cy by Ay = cyAt. Each step multiplies y by 1 + cAt. Therefore y at t =1 is

(1 4 cAt)Y/Aty,, which converges to ygeC as At — 0. The error is proportional to At, which is too large for
scientific computing.

4 A larger series is 1+1+ 1+ 3+ 31+ .. =8. This is greater than 1+1+ 1+t +=
8 The exact sum is e~} = 37 (Problem 6) After five terms 1 -1+ — L + 214 = 2 = .375.
14 y(0) =0,y(1) = 1,y(2) = 3,y(8) = 7 (and y(n) = 22 - 1). 24 Ask for 39(0) —6 = y(0). Then y(0) = —
80 The equation —dP(t + 1) + b = cP(t) becomes -—2P(t +1)+8= P(t) or P(t+ 1) = —1P(t) + 4. Starting
from P(0) = 0 the solution is P(t) = 4{ ) —1] = g(l -(- 5) )— &
88 Solve $1000 = $8000 [1_—(1—1)_—,.] for n. Then 1-(1.1)""=.80or (1.1)"" = .2. Thus 1.1" =5 and
n = l—— s 17 years.
40 The interest is (.05)1000 = $50 in the first month. You pay $60. So your debt is now
$1000 - $10 = $990. Suppose you owe y(t) after month ¢, so y(0) = $1000. The next month’s
interest is .05y(t). You pay $60. So y(t +1) = 1. 05y(t) 60. After 12 months
y(12) = (1.05)121000 — 60[ 128L7=1) This s also 2 + (1000 — $2)(1.05)'2 » $841.
44 Use the loan formula with .09/n not .09n: payments s =80 000———(1—3%";—55 s $643.70.
Then 360 payments equal $231,732.

6.7 Hyperbolic Functions (page 280)

1. Given sinh z = 15—2, find the values of cosh z,tanh z,coth z,sech z and csch z.

e Use the identities on page 278. The one to remember is similar to cos? z + sin® z = 1:

25 169 13
2 s 12

— = =14 — = — and cosh z= —.
cosh® z — sinh® z = 1 gives cosh®’z =1+ 144 — 1aa 2nd cosh z= 5

Note that cosh z is always positive. Then tanh z = % is E— = 15—3. The others are upside down:
12

1 13 1 12 1 12
= — and s = = — and csch z = —.
tanh z 5 and sech z cosh z 13 anc csch = sinh z 5

coth z =

2. Find cosh(21n 10). Substitute z = 21In 10 = In 100 into the definition of cosh z:

n - In A
e cosh(21n10) = £ e e 1004 13 - 10001 — 50,005.

3. Find g’i when y = sinh(4z%). Use the chain rule with u = 4z° and §% = 1227
e The derivative of sinh u(z) is (cosh u)9% = 1222 cosh(42>).

4. Find %g when y = Intanh 2z. e Let y = Inu, where u = tanh 2z. Then

dy 1 du  2sech® 2z 2

dz  udz  tanh 2z sinh 2zcosh 2z
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5. Find %5 when y = sech™'6z. e See equation (3) on page 279. If u = 6z then

dy -1 du_ -6 3 -1
dz  y/1—-u2dz  6zv1-36z2 11— 3622

6. Find [ —\7:,’=_*_3. o Except for the 9, this looks like [ ﬁ =sinh™ 'z + C on page 279. Factoring out

V9 leaves \/::T-l-—Q = \/5\/ % + 1. So the problem has u = £ and du = %dz:
/ 3—;\/(;%—?1- = / —\/;d;fu:—l =sinh™'u+C= sinh“l(g + C).
7. Find [ cosh® zsinh z dz (This is 6.7.53.) Remember that u = cosh z has 4% = +sinh z:
o The problem is really [ u?du with u = cosh z. The answer is 2u®+ C = Lcosh®z+ C.
8. Find [ l—i%dz. (This is 6.7.29.) The top is the derivative of the bottom!
o [% =Inju|+C =1In(1+cosh z)+C.
The absolute value sign is dropped because 1+ cosh z is always positive.

9. (This is Problem 6.7.54) A falling body with friction equal to velocity squared obeys ‘fi—'t’ =g—v°.
(a) Show that v(t) = \/gtanh /gt satisfies the equation. (b) Derive this yourself by integrating g—f‘:;; = dt.
(c) Integrate v(t) to find the distance f(t).

e (a) The derivative of tanh z is sech? z. The derivative of v(t) = /g tanh,/g t has u = /g t. The
chain rule gives 9% = ,/g(sech®u)9% = g sech?,/gt. Now use the identity sech®s = 1 — tanh? u:

d
a—: = g(1 — tanh? \/gt) = g — v,
e (b) The differential equation is %% = g — v?. Separate variables to find g_L"‘,; = dt:
dv /’ dv 1 1 v .
= = = —tanh™! — by equation (2), on page 279.
|55 M- v Va )

The integral of dt is t + C. Assuming the body falls from rest (v = 0 at ¢t = 0), we have C = 0. Then
t= -ﬁ tanh~?! % turns into v = /g tanh,/gt.
 (c) fvdt=[,/gtanh /gt dt =Incosh /gt + C.

Read-throughs and selected even-numbered solutions :
Cosh z = %—(ex + e™X) and sinh z = %(ex — e7X) and cosh? z — sinh? z = 1. Their derivatives are sinh x

and cosh x and zero. The point (z,y) = (cosh t,sinht) travels on the hyperbola x2 — y2 = 1. A cable hangs in
the shape of a catenary y = a coshX.
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6 Chapter Review Problems

The inverse functions sinh ™! z and tanh™! z are equal to In[z+Vv/z? + 1] and { In ﬁ Their derivatives are

1/Vv x2 + 1 and —L5. So we have two ways to write the antiderivative. The parallel to cosh z + sinh z = ¢®

1—-z3°
is Euler’s formula cos x + i sin x = e*. The formula cos z = ,i;(e‘I + e7**) involves imaginary exponents. The
ix —iX)

parallel formula for sin z is %;(e —e

12 sinh(lnz) = %(Clnx e lnz) = %(z - i) with derivative %(1 + ;12-)

16 %{%:‘—;E = ¢2® by the equation following (4). Its derivative is 2e2X . More directly the quotient rule gives

(1—tanh z)sech?z+(1+tanh z)sech’z — _2 sech?z — 2 — 2 _ 2e2x
(1—tanh z)3 {1—tanh z)? (cosh z—sinh )3 PREE :
d __dufdxz _ sech ztanhz—sech’z

18 dx Inu = u sech z+tanhz

sech z is sin”!(tanh z) + C.
30 [cothz dz = [ 224z = In(sinhx) + C. 32 sinhz + coshz =¢® and [ e"*dz = %enx +C.

sinh z

. Because of the minus sign we do not get sech z. The integral of

38 y = sechz looks like a bell-shaped curve with y,,,, = 1 at £ = 0. The z axis is the asymptote. But note
2
x

that y decays like 2¢™* and not like e~

40 11In(1£2) approaches +00 as z — 1 and —oo as z — —1. The function is odd (so is the tanh function).

1-z
The graph is an S curve rotated by 90°.
44 The z derivative of £ = sinh y is 1 = cosh y%-;i. Then %-’i = coslhy = \/1+slinh’ == \/1.lfx2 = slope of sinh™! z.

50 Not hyperbolic! Just f(z? + 1)‘1/21 dr = (x2 + 1)1/2 +C.
L . -1
58 cosiz = 1(e!?®) 4 ¢7ii®)) = L(¢=% 4+ ¢%) = cosh z. Then cos? = cosh1 = &+&— g (real!).

6 Chapter Review Problems

Graph Problems  (Sketch the graphs and locate maxima, minima, and inflection points)

G1 y=zInz G2 y=e*

G3 yze"s G4 y=1z°—T2Inz

G5 y =z%"° G6 y = e"® (watch the domain)
G7 Sketch In3 as an area under a curve. Approximate the area using four trapezoids.

G8 Sketch y = Inz and y = In 1. Also sketch y = ¢” and y = e~z

G9 Sketch y = 2 + ¢* and y = ¢**2 and y = 2¢% on the same axes.

94



6 Chapter Review Problems

Review Problems

R1

R2

R3

RS

Re6

R7

RS

R9

R10

Give an example of a linear differential equation and a nonlinear differential equation. If possible find
their solutions starting from y(0) = A.

Give examples of differential equations that can and cannot be solved by separation of variables.

In exponential growth, the rate of change of y is directly proportional to ——. In exponential decay,
dy/dt is proportional to . The difference is that

What is a steady state? Give an example for ‘-;—’{- =y+3.
Show from the definition that d(cosh z) = sinh z dz and d(sech z) = sech ztanh z dz.
A particle moves along the curve y = cosh z with dz/dt = 2. Find dy/dt when z = 1.

A chemical is decomposing with a half-life of 3 hours. Starting with 120 grams how much remains after
3 hours and how much after 9 hours?

A radioactive substance decays with a half-life of 10 hours. Starting with 100 grams, show that the
average during the first 10 hours is 100/In 2 grams.

How much money must be deposited now at 6% interest (compounded continuously) to build a nest egg
of $40,000 in 15 years?

Show that a continuous deposit of $1645 per year at 6% interest yields more than $40,000 after 15 years.

Drill Problems (Find dy/dz in D1to D 12.)

D1

D3

D5

D7

D9

D11

y = e = D2 e¥+e¥=2z
sinz = e¥ D4 y=nr+nr""%
y= % Dé y = sec ¥
y.—:lnfi-—zz- D8 y? = In(z% + y?)
y= ‘/z:};—f:ii_lz; ’ (use LD) D10 y= z°°s2

y = In(tanh z?) D12 y=coshzsinhz
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Find the integral in D13 to D20.

D13

D15

D17

D19

f5"" dz

f‘i\//;dx

CO8S X
4+sinzx dz

[ tanh? z sech?z dz

Solve the differential equations D21 to D26

D21 y = —4y with y(0) =2

D23 ¥ =1¢2 /Hwithy, =9

D25 % = ™ with yo = 10

Solutions y=12¢"* y=1e4+2 y= (% + 3)?2
D27

D14

Die

D18

D20

D22

D24

D26

— -1
V=37

f:c e=’+1 gz
fse?; dz
fsinhzcosh z dz

dz

1
zln

2 = 2 — 3y with yo = 1

& = 22 with yo = 1

& = y — 2y2 with yo = 100

y=—Inle" 10

— €

“|

_ 1
Y= 37700

If a population grows continuously at 2% a year, what is its percentage growth after 20 years?
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