CHAPTER 14

Multiple Integrals

I 14.1 Double Integrals NN

This chapter shows how to integrate functions of two or more variables. First, a
double integral is defined as the limit of sums. Second, we find a fast way to com-
pute it. The key idea is to replace a double integral by two ordindisingle’
integrals

The double integraf[ f(x, y)dy dx starts with[ f(x, y)dy. For each fixed: we
integrate with respect tp. The answer depends an Now integrate again, this time
with respect toc. The limits of integration need care and attention! Frequently those
limits on y andx are the hardest part.

Why bother with sums and limits in the first place ? Two reasons. There has to be a
definition and a computation to fall back on, when the single integrals are difficult or
impossible. And also—this we emphasize—multiple integrals represent more than
area and volumeThose words and the pictures that go with them are the easiest to
understand. You can almost see the volume as a “sum of slices” or a “double sum of
thin sticks.” The true applications are mostly to other things, but the central idea is
always the sameéAdd up small pieces and take limits

We begin with the area a® and the volume o¥, by double integrals.

A LIMIT OF SUMS

The graph ot = f(x, y) is a curved surface above the plane. At the pointx, y)
in the plane, the height of the surfacezis(The surface issbovethe xy plane only
whenz is positive. Volumes below the plane come with minus signs, like areas below
thex axis.) We begin by choosing a positive function—for exampte 1 4 x2 4 y2.

The base of our solid is a regidR in the xy plane. That region will be chopped
into small rectangles (sidesx andAy). WhenR itself is the rectangl® < x <1,
0 <y <2, the small pieces fit perfectly. For a triangle or a circle, the rectangles
miss part ofR. But they do fit in the limit, and any region with a piecewise smooth
boundary will be acceptable.

Question What is the volume abovR andbelow the graph of = f(x,y)?
Answer It is a double integral—théntegral of f(x,y) over R. To reach it we

begin with a sum, as suggested by Figure 14.1.
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14.1 Double Integrals 599

= X / ‘

X area AA

point (x;, ¥;)
Fig. 14.1 BaseR cutinto small piecea 4. Solid V' cut into thin sticksAV = zA A.

For single integrals, the intervfd, b] is divided into short pieces of lengthx.
For double integralsR is divided into small rectangles of aréed = (Ax)(Ay).
Above theith rectangle is a “thin stick” with small volume. That volume is the base
areaA A times the height above it—except that this heigkt f(x, y) varies from
point to point. Therefore we select a poity;, y;) in theith rectangle, and compute
the volume from the height above that point:

volume of one stick f(x;,y;)AA volume of all sticks= Zf(xi,y,‘)AA.

This is the crucial step for any integral—to see it as a sum oflgmeces.

Now take limits: Ax — 0 and Ay — 0. The heightz = f(x,y) is nearly con-
stant over each rectangle. (We assume thas a continuous function.) The sum
approaches a limit, which depends only on the b&send the surface above it. The
limit is the volume of the solid, and it is thdouble integralof f(x, y) overR:

JJ fey)dA=lim 3" f(xi,yi)AA. (1)
R Ax —0

Ay —0

To repeat: The limit is the same for all choices of the rectangles and the points
(xi,yi). The rectangles will not fit exactly int®, if that base area is curved. The
heights are not exact, if the surface= f(x, y) is also curved. But the errors on the
sides and top, where the pieces don't fit and the heights are wrong, approach zero.
Those errors are the volume of the “icing” around the solid, which gets thinner as
Ax —0andAy — 0. A careful proof takes more space than we are willing to give.
But the properties of the integral need and deserve attention:

1. Linearity: [[(f +g)dA= [[f dA+ [[gdA
2. Constant comes outsidéfc f(x, y)dA=c [[f(x.y)dA

3. R splits intoS and T (not overlapping){| fdA= [[ fdA+ [[f dA.
R s T

In 1 the volume underf + g has two parts. The “thin sticks” of heightt + g split
into thin sticks underf and underg. In 2 the whole volume is stretched upward by
c¢. In 3the volumes are side by side. As with single integrals, these properties help in
computations.

By writing d A, we allow shapes other than rectangles. Polar coordinates have an
extrafactor indA = r dr df. By writing dx dy, we choose rectangular coordinates
and prepare for the splitting that comes now.
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SPLITTING A DOUBLE INTEGRAL INTO TWO SINGLE INTEGRALS

The double integraf|[ f(x. y)dy dx will now be reduced to single integrals jnand

thenx. (Or vice versa. Our first integral could equally well Jﬁf(x, y)dx.) Chapter

8

described the same idea for solids of revolution. First came the area of a slice, which is

a single integral. Then came a second integral to add up the slices. For solids formed

by revolving a curve, all slices are circular disks—now we expect other shapes.
Figure 14.2 shows a slice of argidx). It cuts through the solid at a fixed value of

x. The cut starts ap = ¢ on one side oR?, and ends ap = d on the other side. This

particular example goes from=0to y =2 (R is a rectangle). The area of a slice is

the y integral of f(x, y). Remember that is fixed andy goes from: to d:

d
A(x) = area of slice= J f(x,y)dy (the answer is a function of).
C

2

EXAMPLE1 A= J

3qr=2
8
(1+x2+y2)dy=[y+xZY+y?] =2+2x2+§.
=0

y=0

This is the reverse of a partial derivative! The integrahdt/y, with x constant, is
x2y. This “partial integral” is actually called a@nner integral. After substituting the
limits y =2 andy = 0 and subtracting, we have the arééx) =2+ 2x2 + % Now
theouter integraladds slices to find the volumjed (x) dx. The answer is aumber

volume Jl re2 4 ) ar =[x 224 8] 2ay 2,816
= X —ldx=|2x+—4+—-x| = — 4 —=—.
x=0 3 3 3 0 3 3 3

height :’ E
f(x, y) j ;

area A(x) E " L‘“‘l ¥
: B E a)
: g ! !

ﬁx:_\ / [ /é - : :.
/R : /R :

fix v

X X

Fig. 14.2 A dice of V at afixed x has aread (x) = [ f(x,y)dy.

To complete this example, check the volume whendlitegral comes first:

1

1 x=1 4
inner integral:f (1+x24+yHdx = |:x+ —x3 +y2x] =— 4 y?
x=0 3 x=0 3
outer inte ral:f2 4+ 2)dy = 4 +1 3 y:2—8+8_16
EE NN CRE el RS N R S

The fact that double integrals can be split into single integrafiisini’'s Theorem.
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14A if f(x,y) is continuous on the rectangl® then

HR fery)dA= f ’ Ud f(x,y)dy} dx = f ‘ [ f ’ e y)dx} —

The innerintegrals are the cross-sectional arias anda () of the slices. The outer
integrals add up the volumet(x)dx anda(y)dy. Notice the reversing of limits.

Normally the brackets i(2) are omitted. When the integral is firstdy is written
insidedx. The limits on y are inside too|l strongly recommend that you compute
the inner integral on one line and the outer integral separate line

EXAMPLE 2 Find the volume below the plane= x —2y and above the base
triangle R.

The triangleR has sides on the and y axes and the ling + y = 1. The strips in
the y direction have varying lengths. (So do the strips inthéirection.) This is the

main point of the example—the base is not a rectangle. The upper limit on the inner

integral changes as changesThe top of the triangle is ay = 1 —x.

Figure 14.3 shows the strips. The region should always be drawn (except for

rectangles). Without a figure the limits are hard to find. A sketcR ofiakes it easy:
y goes fromr =0tod =1—x. Thenx goes froru =0tob =1.

The inner integral hagariable limitsand the outer integral h@&onstant limits

y=1-x y x
inner:f (x —2y)dy = [xy—yz] . =x(1—x)—(1—x)>=—1+3x—2x2
»=0 r=

1 3 2 1
outerj (—14+3x— 2x2)dx = [_x + Exz _ §x3]

x=0

=—1+ 2.

0 2 3 6

The volume is negative. Most of the solid is below the plane. To check the answer
—1 dothex integral first:x goes frond to 1 — y. Theny goes fromd to 1.

) 1-y 1 ) 1-y 1 ) 1 5 5
inner: (x—=2y)dx=|=-x"—2xy ==(1—-y) —2(0—-y)y==-3y+=y
1 1
1 5 1 3 5 1 3 5 1
outer: 3y 22 dy =l Sy 2324023 = 24—
Lzo(z y+2y) Y [2y 27 Y L 271767 76

Same answer, very probably right. The next example compﬁfelsdx dy = area ofR.

1 1—x 1 1-y
EXAMPLE 3 The area ofR is f J dy dx and alsof J dx dy.
x=0Jy=0 y=0Jx=0

The first has vertical strips. The inner integral equalsx. Then the outer integral
(of 1 —x) has limitsO and1, and the area i%. Itis like an indefinite integral inside
a definite integral.
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602 14 Multiple Integrals

Fig. 14.3  Thin sticks above and below (Example 2). Reversed order (E>xesrgolnd 4).

2 2x

EXAMPLE 4 Reverse the order of integrationf x3dy dx.
x=0Jy=x2

Solution  Draw a figure! The inner integral goes from the parabola x2 up

the straight liney = 2x. This gives vertical strips. The strips sit side by side between

x =0andx = 2. They stop wher@x equalsx?, and the line meets the parabola.
The problem is to put the integral first. It goes along horizontal strips. On each

line y = constant, we need thentry valueof x and theexit valueof x. From the

figure,x goes from%y to ,/y. Those are the inner limits. Pay attention also to the

outer limits, because they now apply o The region starts af =0 and ends at

y = 4. No change in the integrand®—that is the height of the solid:

2 2x 4 Jy
J J x3dy dx isreversed to J J x3dx dy. (3)
x=0Jy=x2 y=0Jx=1y
EXAMPLE 5 Find the volume bounded by the planes=0, y =0, z=0, and
2x+y+z=4.

Solution  The solid is a tetrahedron (four sides). It goes froe 0 (the xy plane)
up to the plan€x + y +z =4. On that planez =4 —2x — y. This is the height
function f'(x, y) to be integrated.

Figure 14.4 shows the bage To find its sides, set = 0. The sides ofR are the
linesx =0andy =0 and2x + y = 4. Taking vertical stripsdy is inner:

4-2x

4-—2x 1 1
inner: J (4—2x—y)dy= |:(4—2x)y——y2] = —(4—2x)?
=0 27 ], 2

(4—2x)T_ £ 16

2
1

outer: —(4—2x)%dx = = =—.
2 2-32 |, 232 3

x=0
: . . . . 1 5 16
Question What is the meaning of the inner |nteglﬂza(4—2x) and alse3— ?
16
Answer The firstisA(x), the area of the slice? isthe solid volume.

Question What if the inner integraff(x,y)dy has limits that depend on?
Answer It can’t. Those limits must be wrong. Find them again.
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‘\'

area AA
; mass p AA

density p=y y=0

Fig. 14.4 Tetrahedron in Example 5, semicircle in Example 6, trianglexarBple 7.

EXAMPLE 6 Find the mass in a semicircle< y <+/1—x2 if the density is
pP=).

This is a new application of double integrals. The total mass is a sum of small masses
(p times A A) in rectangles of areA A. The rectangles don't fit perfectly inside the

semicircleR, and the density is not constant in each rectangle—but those problems
disappear in the limit. We are left with a double integral:

total massM = Jf pdA= JJ p(x,y)dxdy. (4)
R R

Setp = y. Figure 14.4 shows the limits onandy (try bothdy dx anddx dy):

1 \/1-x2 1 1-y2
massM = J J ydydx andalso M = J J ydxdy.
x==1Jy=0 y=0J-4/1—y2
The first inner integral is} y2. Substituting the limits givest (1 —x2). The outer
integral of 1 (1 — x?) yields the total mas/ = 2.

The second inner integral dsy. Substituting the limits o gives . Then the
outer integral is— 2 (1 — y2)3/2. Substitutingy = 1 andy = 0 yields M =

Remark This same calculation also produces thementround thex axis, when
the density isp = 1. The factory is the distance to the axis. The moment is
M, = [[ ydA=2%. Dividing by the area of the semicircle (whichss/2) locates
the centroidXx = 0 by symmetry and

moment 2/3 4
== (5)

area 7/2 3w

y = height of centroid=

This is the “average height” of points inside the semicircle, found earligrin

EXAMPLE 7 Integrateﬁz(l)fi: cos x2dx dy avoiding the impossibl¢ cos x2 dx.

This is a famous example where reversing the order makes the calculation possible.
The baseR is the triangle in Figure 14.4 (note thatgoes fromy to 1). In the
opposite orde goes from0 to x. Then [ cosx?dy = x cosx? contains the factor

x that we need:

1

1
outer integral:[ x cosx?dx =[3sinx?],

0

_1lg
_zsml.
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14.1 EXERCISES

Read-through questions

The double integralff, f(x,y)dA gives the volume betweeR 20 R = triangle inside the lines =x,y =2x,y =4.
and__a . The base is flrs_t cut _|nto small_ b of areaAA. 21 R = triangle with verticeg0,0), (4,4), (4,8).

The volume above théth piece is approximately ¢ . The _ _ _

limit of the sum__d__is the volume integral. Three properties of2 R = triangle with verticeg0,0), (-2, —1),(1,-2).

double integrals are_e _ (linearity)and__f and g . 23 R = triangle with verticeg0,0), (2,0). (1,5). Hereb > 0.

If R is the rectangl® <x <4,4<y <6, the integral [[ xdA *24 R= triangle with vertices (0.0),(a.b).(c.d). The sides
can be computed two ways. One iff xdy dx, when the arey=bx/a,y=dx/c,andy =b+ (x —a)(d —b)/(c —a). Find

inner integral is__h ]g: i__. The outer integral givesA:ffdydx when0 <a <c,0<d <b.
i J3=_k . When thex integral comes first it equals b ra
[xdx=_1 ]g: m__. Then they integral equals_n . 25 Evaluatej J & f/oxdydxdy.
0 Jo

This is the volume between o (describel).

b ra

The area ofR is [[ p dydx. WhenR is the triangle be- 26 Evaluatej J 0f/0xdxdy.

tweenx =0,y =2x, and y = 1, the inner limits ony are q 0 Jo

This is the length of a_r__ strip. The (outer) limits onx ae | 27_28, divide the unit squareR into triangles S and 7 and
s_.Theareais t . In the opposite order, the (inner) lim-yerity 1, £ dA = ([ f dA+ [f; f dA.

itsonx are__u_.Nowthe stripis v __and the outer integral is 27 — 2 —3v 41 o8 oYy
w__. When the density ip(x, y), the total mass in the regioR Jexy)=2x=3y+ fx.y)=xer —ye
is [f_x_.The moments aré/, = y andM,=__z .The 29 The area undey = f(x) is a single integral fronu to b or a
centroid hasx = M, /M. double integralfind the limits):
Complute tt;e double integralf 1—42by two integrations Jb Fx)dx = le dy dx.
1 J J x2dx dy andj J y2dx dy ¢
y=0Jx=0 y=0Jx=0 30 Find the limits and the area under= 1 — x2:
2e e 2e e
2 J J 2xy dx dy and J dxdy/xy J(l —x2)dx andjfl dx dy (reversed from 2
y=2Jx=1 y=2Jx=1

n/2 cm/4 2 (2 ) 31 A city inside the circlex? + y2 =100 has population density
3 Jo Jo sin(x +y) dx dy andjl Jo dydx/(x+y) p(x.y) =10(100—x2 — y2). Integrate to find its population.

32 Find the volume bounded by the planes-0,y =0,z =0, and

1 2 1 3
4 J J ye*Ydx dy andj J dydx/A/3+2x+y ax—+by+cz=1.
0 J1 —-1J0

In 5-10, draw the region and compute the area In 33-34 the rectangle with corners (1,1),(1,3),(2,1),(2,3)
> o Lo has densityp(x,y) = x2. The moments areM, = [[ xpdA and
5 J J dy dx 6 J dy dx My = [[ypdA.
x=1Jy=1 0 Jx? 33 Find the mass. 34 Find the center of mass.
w0 reX 1 p1—x2 L . .
7 J' Je dy dx 8 J x dy dx I_n 35-36 the region is a circular wedge of radius 1 between the
0 Je—2x —1Jx2-1 linesy=xandy=—ux.
1l 1 plyl 35 Find the area. 36 Find the centroidx, ).
9 J J dx dy 10 J J dx dy . 11
_1hy2 “1Jx=y 37 Write a program to computef,[of(x,y)dxdy by the

midpoint rule midpoints ofn? small squares Which f(x,y) are
In 11-16 reverse the order of integration (and find the new integrated exactly by your program ?

limits) in 5-10 respectivel
) P y 38 Apply the midpoint code to integrate? ard xy and y2. The

In 17-24 find the limits on ff dy dx and If dx dy.Draw R and errors decrease like what powerdf = Ay =1/n?

compute its area .
Use the program to compute the volume underf(x,y) in

17 R = triangle inside the lines =0,y =1,y = 2x. 39-42 Check by integrating exactly or doublings.
18 R = triangle inside the lines = —1,y =0,x +y =0. 39 f(x,y)=3x+4y+5 40 f(x,y)=1//x2+y2
19 R = triangle inside the lines = x,y = —x,y =3. 41 f(x,y)=x7 42 f(x,y)=e*sinmy
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43 In which order is [[xYdxdy= [[xYdydx easier to 45 Y y;AA might not approach([y dA if we only know that
integrate over the square<x <1, 0<y<1? By reversing AA—0. In the squared <x,y <1, take rectangles of side&x
order, integrate(x—1)/In x from 0 to 1—its antiderivative and 1 (not Ax and Ay). If (x;,y;) is a point in the rectangle
is unknown. wherey; =1, then)_ y; Ad = .But [[ydA=

44 Explain in your own words the definition of the double
integral of f(x, y) over the regionR.
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I 14.2 Change to Better Coordinates | NS

You don't go far with double integrals before wantingdeange variables. Many

regions simply do not fit with the and y axes. Two examples are in Figure 14.5,

a tilted square and a ring. Those are excellent shapes—in the right coordinates
We have to be able to answer basic questions like these:

Find the areaffdA and momenjfx d A and moment of inertiaﬁ

The problem isWhat isd A ? We are leaving they variables wher@d A = dx dy.

The reason for changing is this: The limits of integration in jhdirection are
miserable. | don’t know them and | don’t want to know them. For ewerye would
need the entry poinP of the linex = constant, and the exit poiif). The heights of
P and Q are the limits onj dy, the inner integral. The geometry of the square and
ring are totally missed, if we stick rigidly to andy.

(—sin o, cos o)

(cos a, sin o)

Fig. 14.5  Unit square turned through angie Ring with radii4 and5.

Which coordinates are better ? Any sensible person agrees that the area of the tilted
square isl. “Just turn it and the area is obvious.” But that sensible person may not
know the moment or the center of gravity or the moment of inertia. So we actually
have to do the turning.

The new coordinates andv are in Figure 14.6a. The limits of integration on
are0 and1. So are the limits om. But when you change variables, you don't just
change limits Two other changes come with new variables:

1. The small ared A = dx dy becomes/A = du dv.
2. The integral ofx becomes the integral of .

Substitutingu = 4/x in a single integral, we make the same changes. Limits0
and x =4 becomeu =0 andu = 2. Sincex is u?, dx is 2u du. The purpose of
the change is to find an antiderivative. For double integrals, the usual purpose is to
improve the limits—but we have to accept the whole package.
To turn the square, there are formulas connectiagdy to v andv. The geometry
is clear—rotate axes by—nbut it has to be converted into algebra:

u=XxCOSa+ySina X =1u COSx — v Sina
and in reverse 1)
v=—Xx Sin+ y COSw Yy =u Sina+v COoSc.

Figure 14.6 shows the rotation. As points move, the whole square turns. A good way
to remember equatiofi) is to follow the corners as they becorfie 0) and(0, 1).
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The change fronf[ x dA to [ du dv is partly decided by equatidd). It
givesx as a function of: andv. We also need/ A. For a pure rotation the first guess
is correct.The areadx dy equals the arealu dv. For most changes of variable
this is false The general formula fa¥ A comes after the examples.

dA = Xxcoso+ ysino

U=—xSin0o+ ycoso \

dv| @

v=coso, v=sintgoestouw=1,v=0

<

du
= \l X = [

Fig. 14.6  Change of coordinates—axes turneddayFor rotationd A4 is du dv.

EXAMPLE 1 Find [[ dAand [[ x d A andx and also [ x? d A for the tilted square.

Solution  The area of the squaref%f(l) du dv = 1. Notice the good limits. Then
[fx dA:f(l)f(l)(u coso — v Sina)du dv:%COSa—%sinoz. (2)

This is themoment around the axis The factors; come fromJu? and Jv2. The
x coordinate of the center of gravity is

Y:JJXdA/JJdA:(%COSO{—%SH’]O{)/I.

Similarly the integral ofy leads toy. The answer is no mystery—the poit, ) is at
the center of the square! Substituting= u cosa — v sinae madex d A look worse,
but the limitsO and1 are much better.

The moment of inertid,, around they axis is also simplified:

2

1 1 . .
. cog cosw sin sin
JJdeA=J J (u cosa — v sine)?du dv = S a oz+ a.
o Jo 3 2 3
©)

You know this next fact but | will write it anywayfhe answers don’t contaim or
v. Those are dummy variables likeand y. The answers do contain, because the
square has turned. (The area is fixed atThe moment of inertid, = [ y*dA is
the same as equati@8) but with all plus signs.

Question The sumly + I, simplifies to% (aconstant). Why no dependence®fl
Answer I+ I, equalsly. This moment of inertia aroun@, 0) is unchanged by
rotation. We are turning the square around one of its corners.

CHANGE TO POLAR COORDINATES

The next change is te and 6. A small area becomesA = r dr d6 (definitely not
dr df). Area always comes from multiplying two lengths, a#é is not a length.

Figure 14.7 shows the crucial region—a “polar rectangle” cut out by rays and circles.

Its areaA A is found in two ways, both leading todr d6:

607



608 14 Multiple Integrals

(Approximatg The straight sides have lengthr. The circular arcs
areclose tor Af. The angles ar@0°. So A A is close to(Ar)(rA6).

(Exact) A wedge has areérzAQ. The difference between wedges is
AA:

1 Ar\? 1 Ar\?
A== (r+25) A0 (r=2") A0=rArae.
2 2 2

The exact method placesdead center (see figure). The approximation says: Forget
the change imrAf as you move outward. Keep only the first-order terms.

A third method is coming, which requires no picture and no geometry. Calculus
always has a third method! The change of variablesr cosf, y = r sin8 will go
into a general formula fo# A, and out will come the areadr d6.

2n +

Fig. 14.7  Ring and polar rectangle iny ard 6, with stretching factor = 4.5.

EXAMPLE 2 Find the area and center of gravity of the ring. Also fifjdv?d A.

Solution  The limits onr are4 and 5. The limits onf are0 and2x. Polar coordi-
nates are perfect for a ringCompared with limits liker = 4/25 — y2, the change
tor dr d6 is a small price to pay:

2 5
area:ffrdrde 27r[1 2]4—n52—n42 9.

The 6 integral is27z (full circle). Actually the ring is a giant polar rectangle. We

could have used the exact formuld\r A6, with A0 =27 andAr =5—4. When

the radius is centered a4.5, the product Ar A@ is (4.5)(1)(27) = 97 as above.
Since the ring is symmetric arouit@, 0), the integral ofx d A must bezera

2 5 27

[[xda=] [ costrdrds = [4r 3] [sino] " =0.

0

Noticer cosf from x—the other is fromd A. The moment of inertia is

2m 5

[[wda=[]r cog0rdrdf =} 4] fcosz9d0_1(54 4.

This 6 integral ism not2, because the average@ds 0 is % not 1.
For reference here are the moments of inertia when the dengify jg/):

Iy=[[x?pdA I.=[[y*pdA Io= [[r?pdA=polar moment= I, + I,.
(4)
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EXAMPLE 3 Find masses and moments for semicircular plates:1 and
p=1—r.

Solution  The semicircles in Figure 14.8 have= 1. The angle goes frofi to =
(the upper half-circle). Polar coordinates are b&be mass is the integral of the
densityp:

M = Jl“rdrdez(%)(n) and M:ffl(l—r)rdrcw:(%)(n).
0 00

S—my

The first massr/2 equals the area (becayse= 1). The second mass/6 is smaller
(because < 1). Integratingo = 1 is the same as finding a volume when the height is
z =1 (part of a cylinder). Integrating = 1 — r is the same as finding a volume when
the heightiz = 1 — r (part of a cone). Volumes of cones have the extra fa%:td’me
center of gravity involves the momeM,. = [[ ypdA. The distance from thex
axis isy, the mass of a small piece jsd A4, integrate to add mass times distance
Polar coordinates are still best, wigh=rsin6. Againp=1andp=1—r:

A=

T 1 T 1
ffydAszrSiﬂ@rdrdGz% [[y(—=rydA={ [rsin(1—r)rdrdb =
00 00

The height of the center of gravity is= M, /M = moment divided by mass

_1/6 1

2/3 4
/3 _ =— whenp=1-r.
/6 7«

y=——-=— whenp=1 y
Y w/2 3w P Y

Fig. 14.8  Semicircles with density piled above them. Fig. 14.9 Bell-shaped curve.

Question Comparey for p =1 and p = other positive constants apd= 1 —r.

Answer Any constanto givesy=4/3x. Sincel —r is dense ar =0, y drops to
1/m.

Question How isy = 4/3x related to the “average” of in the semicircle ?
Answer They are identical. This is the point @f Divide the integral by the area:

The average value of a function |ﬂ f(x,y)dA/ JJdA. (5)

Theintegral of f is divided by the integral of (the area). In one dimensi(ﬁ v(x)dx

was divided byjz 1 dx (the lengthb —a). That gave the average value wfx) in
Section5.6. Equation(5) is the same idea fof (x, y).
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o0 o0 0
EXAMPLE 4 Computed = e"zdx:\/}fromAzzf exzdxf e dy=

—0 —0 —0

TT.

A is the area under a “bell-shaped curve”—see Figure 14.9. This is the most impor-
tant definite integral in the study of probability. It is difficult because a fa2tors

not present. Integratin@xe‘x2 gives—e‘xz, but integratinge‘x2 is impossible—
except approximately by a computer. How can we hope to showAhatexactly
A/ ? The trick is to go from an area integrdl to a volume integrak?. This is
unusual (and hard to like), but the end justifies the means:

%0 %0 27 0
A2=J J e‘xze_yzdy dx=f f e "’rdrdo. (6)
X=—0 Jy=—xn0 6=0Jr=0

The double integrals cover the whole plane. Tecomes fromx? + y2, and the
key factorr appears in polar coordinates. It is now possible to substituter2.
The r integral is3 [, e ™du=1. The 6 integral is27r. The double integral is

(%)(211). Therefore4? =  and the single integral id = /7.

EXAMPLE 5  Apply Example 4 to the “nomal distribution” p(x) = e=*"/2//2x.

Section 8.4 discussed probability. It emphasized the importance of this particular
p(x). At that time we could not verify thafp(x)dx = 1. Now we can:

o0

1 i 2 1 2
x =42 ields —f e 20y = — eV dy=1. 7
yy NCZ NE - g )

Question Why include the2’s in p(x) ? The integral oﬁ*xz/\/ﬁ aso equaldl.

Answer With the2's the “variance’is [ x?p(x)dx = 1. This is a convenient num-
ber.

CHANGE TO OTHER COORDINATES

A third method was promised, to finddr d6 without a picture and without geome-
try. The method works directly from = r cosé andy = r sin#. It also finds thel

in du dv, after a rotation of axes. Most important, this new method finds the factor
J inthe arealA = J du dv, for any change of variables. The change is fromto

uv.

For single integrals, thestretching factof J between the originalx and the new
du is (not surprisingly) the ratidx /du. Where we havex, we write (dx/du)du.
Where we havédu/dx)dx, we write du. That was the idea of substitutions—the
main way to simplify integrals.

For double integrals the stretching factor appears in the dredy become$J | du dv.
The old and new variables are related by= x (u,v) and y = y(u,v). The point
with coordinatest andv comes from the point with coordinatesandy. A whole re-
gion S, full of points in theuv plane, comes from the regid® full of corresponding
points in thexy plane. A small piece with ardd | du dv comes from a small piece
with areadx dy. The formula forJ is a two-dimensional version @fx/du.
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14B The stretching factor for area is tBdoy 2 Jacobian determinant/ (u, v):

Ox/0u 0x/dv _a_x 6_y_6_x 6_y @)
dy/ou 0y/dv '

" Ou Ov v Ou

An integral overR in the xy plane becomes an integral oveiin theuv plane:

JL f(x,y)dxdy = JL S(x(u,v),yu,v)|J|du dv. (9)

The determinant/ is often written d(x,y)/0d(u,v), as a reminder that this
stretching factor is likelx/du. We requireJ # 0. That keeps the stretching and
shrinking under control.

You naturally ask: Why take the absolute vallig| in equation(9)? Good
question—it wasn’t done for single integrals. The reason is in the limits of integration.
The single integraf(l) dx is f;l (—du) after changinge to —u. We keep the minus
sign and allow single integrals to run backwaiouble integrals could too, but
normally they go left to right and down to up. We use the absolute yalliand run
forward.

EXAMPLE 6 Polar coordinates hawe= u cosv = r cos6 andy = usinv =rsin 6.

ox/or 0x/06

dy/or 0y/00

cosfd —r sinf
With no geometry: J =

=r. (20)

sin® r cost

EXAMPLE 7 Find J for thelinear changeo x = au + bv andy = cu + dv.

a b

Ox/ou 0Ox/dv
J =ad —bc. (1)

Ordinary determinant: J =

dy/ou 0dy/dv c

Why make this simple change, in whiehb,c,d are all constant? It straightens
parallelograms into squares (and rotates those squares). Figure 14.10 is typical.
Common sense indicatetl= 1 for pure rotation—no change in area. No= 1
comes from equationd) and(11), becaused — bc is coS « + Sirf a.
In practice,xy rectangles generally go intov rectangles. The sides can be curved
(as in polar rectangles) but the angles are of@h The change isdrthogonal’ The
next example has angles that are 9@, andJ still gives the answer.

(3.3)
(3,3)

LY

S
v L)

[ : 1
du (3,0
i > X
Fig. 14.10 Change fromxy touv hasJ = % Fig. 14.11  Curved areas are also

dA=|J|dudv.
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EXAMPLE 8 Find the area oR in Figure 14.10. Also comput§( e*dx dy.
R

Solution  The figure shows = Zu + v and y = u + %v. The determinantis

0x/0u 0x/0v
dy/ou 0y/ov

2/3 1/3
1/3 2/3

1
= = = =3

4 1
9 9

The area of thery parallelogram becomes an integral overghesquare:
33
[[dxdy=[[|J|dudv=[[idudv=1-3-3=3.
R s 00

The square has areh the parallelogram has aréa | don't know if J =3 isa

stretching factor or a shrinking factor. The other integﬁf:\kxdx dyis

3 03 1 3 3 13
J J e2U/34v/3_ 1 dv = [_ e2”/3] |:3ev/3] —=2(®—=1)(e—1).
o Jo 3 2 0 03 2

Main point: The change te andv makes the limits easy (juStand3).

1
3

Why is the stretching factor/ a dderminant? With straight sides, this goes
bad to Sectionl1.3 on vectors.The area of a parallelogram is a determinant
Here the sides are curved, but that only produdes? and(dv)?, which we ignore.

A changedu gives one side of Figure 14.11—it{@x/0u i+ 0y /0uj)du. Side
2 is (0x/dvi+ dy/dvj)dv. The curving comes from second derivatives. The area
(the cross product of the sides)|i6|du dv.

Final remark | can't resist looking at the change in the reverse direction. Now the
rectangle is inxy and the parallelogram is mv. In all formulas, exchange for u
andy for v:

ou/ox 0Ou/dy

newJ = = =—. (12

ov/ox 0v/dy

This is exactly likedu/dx = 1/(dx/du). Itis the derivative of the inverse function.
The product of slopes is—stretch out, shrink back. Fromy to uv we have2 by 2
matrices, and the identity matriktakes the place df:

Ox/0u Ox/ov || du/Ox Ou/dy B L0
dy/ou dy/ov || dv/ox avjay | o 1]

dxd_u_

T dx =1 becomes [

The first row times the first column i60x/0u)(du/0x)+ (0x/0v)(0v/ox) =
0x/0x = 1. The first row times the second column(&x/du)(du/dy) + (0x/0v)
(0v/0y) = 0x /0y =0. The matrices are inverses of each othérhe determi-
nants of a matrix and its inverse obey our rule: dldimes newJ = 1. ThoseJ’s
cannot be zero, just abv /du anddu/dx were not zero. (Inverse functions increase
steadily or decrease steadily.)

In two dimensions, an are#x dy goes toJ du dv and comes back tdx dy.
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14.2 EXERCISES

Read-through questions

We change variables to improve the a _ of integration.
The disk x2+y2 <9 becomes the rectangleé <r < b |,
0<6<_c . The inner limits on[[dydx arey=+ _ d

In polar coordinates this area integral becorfifs e =_ f

A polar rectangle has sidegr and ¢
not h __ but the angles are stil
the circlesr =1 and r =3 and the raysd =0 and 0§ =n/4 is
j . The integral [[xdydx changes tof[ __k . This is

the _ | around the__m  axis. Thenx is the ratio__n
This is the x coordinate of the._o , and it is the p
value ofx.

In a rotation througly, the point that reache@:, v) starts atx =
u Cosa —v Sine,y = (
froma_ r
toris J=__t . This is the determinant of the matrix u
containing cos and sina. The moment of inertiaff x2dx dy

changestd| _ v dudv.

For single integralsdx changes to__w  du. For double
integralsdx dy changes toJ du dv with J =__x . The stretch-
ing factor J is the determinant of th@ by 2 matrix vy
The functionsx(u,v) and y(u,v) connect anxy region R to a
uv region S, and [[pdxdy=[[g_z = area of _A . For
polar coordinatesx=_ B , y=_C . Forx=u,y=u+4v
the 2 by 2 determinant is/ =__D . A square in thexv plane

. Two sides are
i . The area between

8 Find limits on [[ r dr d6 to integrate oveR* in Problem?.

9 The right coordinates foR* arer* and6*, with x = r* cos6*
andy =r*sin6* +1.
(@) Showthat =r* sodA=r*dr*do*.
(b) Find limits on [ r*dr*d6* to integrate oveR*.

10 If the centroid of R is (0,y), the centroid ofR* is
The centroid of the circle with radiud and cente(1,2) is
The centroid of the upper half of that circle is .

11 The moments of inertidx, Iy, o of the original wedgeR
are

12 The moments of inertidy, Iy, of the shifted wedgeR*

. A rectangle in theyv plane comes 4o
in xy. The areas are_s _ so the stretching fac-

Problems 13-16 change four-sided regions to squares.

13 R hasstraightsides=2x,x =1,y =1+42x, x =0. Locate its
four corners and drawR. Find its area by geometry.

14 Choosea, b, ¢, d so that the changec =au+bv, y =cu+
dv takes the previousR into S, the unit square0<u <1,
0<wv<1. From the stretching factod =ad —bc find the area
of R.

15 The region R has straight sidesx =0, x=1, y=0, y=
2x+3. Choosea,b,c so that x=u and y =au+bv+cuv

comes from a__E __in xy. In the opposite direction the changehangeRr to the unit square.

hasu=x andv=1%(y—x) and a newJ =__F . This J is

constant because this change of variables i& .
In1-12R is a pie-shaped wedged <r <1 and /4 <0 <37 /4.

16 A nonlinear termuv was needed in Problem5. Which
regionsR could change to the squafewith a linearx = au + bv,
y=cu+dv?

1 What is the area ofR? Check by integration in polar Draw the xy region R that corresponds in 17-22 to theuv

coordinates.

2 Find limits on [ dy dx to yield the area ofR, and integrate.

Extra credit Find limits on [{ dx dy.

3 Equation (1) witha =x/4 rotates R into the uv region
S= . Find limits on [ du dv.

4 Compute the centroid height of R by changing [[ y dx dy
to polar coordinates. Divide by the areaRf

5 The region R has X =0 because . After rotation

througha = /4, the centroid(x,y) of R becomes the centroid

of S.

6 Find the centroid of any wedde<r <a,0<6 <b.

square S with corners (0,0), (1,0), (0,1), (1,1). Locate the
corners of R and then its sides (like a jigsaw puzzle).

17 x=2u+v,y=u+2
18 x=3u+2v, y=u-+v
19 x = 2UTY = ut2v

20 x=uv, y:v2—u2
21 x=u, y=v(1+u2)
22 x=u cosv, y =u sinv (only three corners)

23 In Problemsl7 ard 19, computeJ from equation (8). Then find
the area ofR from [[ |/ |du dv.

24 In 18 and 20, find J = d(x, y)/d(u,v) and the area oR.

7 SupposeR* is the wedgeR moved up so that the sharp

pointisatx =0, y = 1.
(@) Find limits onf[ dy dx to integrate oveR*.
(b) With x*=x and y* =y —1, the xy region R* corre-
sponds to what region in the® y * plane ?
(c) Afterthat chang@xdy equals_ dx*dy*.

25 If R lies betweenx=0 amd x=1 under the graph of
y=f(x)>0, thenx=u,y=vf(u) takes R to the unit square
S. Locate the corners ofR and the point corresponding to
U= % v = 1. ComputeJ to prove what we know:

area ofR = [(1) f(x)dx = [(l)f(l) J dudv.
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26 From r =+/x2+y2 and § =tan~!(y/x), compute or/ox, (@ [[x%pdA (b) [[y%pdA () [[r?pdA?
or/dy, 06/0x, 00/dy, and the determinanf = d(r,0)/d(x,y).
How is this J related to the factor = 0(x,y)/d(r,0) that enters 3, True or false with a reason:

?
rdrdf? ) (a) If theuv region S corresponds to they region R, then
27 Example 4 integrated=" from 0 to oo (answery/7). Also area ofS = area ofR.

B=[ge ™ dx leads to B2 = [} e > dx [§ e dy. Change  (b) [[xdA<[[x2dA

this double integral over the unit squarert@nd 6—and find the (c) The average value of(x, ) is [[ f(x,y)dA

limits onr that make exact integration impossible. o 2

(d) [7, xe ™ dx=0
28 Integrate by parts to prove that),/the standard normal gy A polar rectangle has the same area as a straight-sided
distribution p(x) =e~*"/2/y/2x haso? = [ x?p(x)dx = 1. region with the same corners.

29 Find the average distance from a point on a circle % ring the mass of the tilted square in Example 1 if the
the points inside. Suggestion: Lef0,0) be the point and let dersity isp = xy.

0<r<2acosf, 0<6 < be the circle (radiug). The distance
is r, so the average distanceris= [ /[f . 36 Find the mass of the ring in Example 2 if the densitypis
x2 4+ y2. This is the same as which moment of inertia with which

30 Draw the region R:0<x<1, 0<y<o and describe :
density ?

it with polar coordinates (limits onr and 6). Integrate
JIz (x2 4 y2)=3/24dx dy in polar coordinates. 37 Find the polar moment of inerti#y of the ring in Example 2

i Hoie 2 2
31 Using polar coordinates, find the volume undee x2 4 y2 I the density isp=x=+ y=.

above the unit diske? +y2 < 1. 38 Give the following statement an appropriate name:
32 The end of Example 1 stated the moment of inefffa2dA. [Jg f(x.y)dA= f(P) times (area ofR), where P is a point in
Check that integration. R. Which point P makes this correctfof =xand f =y ?

33 In the square—1<x<2, —2<y<1, where could you 39 Find the xy coordinates of the top point in Figure 14.6a
distribute a unit mass (witlfif p dxdy = 1) to maximize and check that it goes (@, v) = (1, 1).
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I 14.3 Triple Integrals |

At this point in the book, | feel | can speak to you directly. You can guess what
triple integrals are like. Instead of a small interval or a small rectangle, there is a
small box. Instead of lengttix or areadx dy, the box has voluméV =dx dy dz.
That is length times width times height. The goal is to put small boxes together (by
integration). The main problem will be to discover the correct limitscon, z.

We could dream up more and more complicated regions in three-dimensional
space. But | don't think you can see the method clearly without seeing the region
clearly. In practice six shapes are the most important:

box prism cylinder cone tetrahedron sphere

The box is easiest and the sphere may be the hardest (but n@mpriwbbpherical
coordinates). Circular cylinders and cones fall in the middle, wherecoordinates
are possible butfz are the best. | start with the box and prism and:.

EXAMPLE 1 By triple integrals find the volume of a box and a prism (Figure. 24.

j]]‘dvzi‘ [ [ dxdvaz and [[[av=[ [ [ dvdyd:

box z=0y=0x=0 prism z=0 y=0 x=0

The inner integral for both if dx = 2. Linesin thex direction have lengtB, cutting
through the box and the prism. The middle integrals show the limitg (sincedy
comes second):

3 3-3z
[ 2dy=6 and [ 2dy=6-6z.
y=0 y=0

After two integrations these asgeas The first ared is for a plane section through
the box. The second aréa- 6z is cut through the prism. The shaded rectangle goes
from y =0 to y =3 —3z—we needed and used the equatipr-3z =3 for the
boundary of the prismAt this pointz is still constant But the area depends an
because the prism gets thinner going upwards. The base aeads = 6, the top
areaist—6z =0.

The outer integral multiplies those areasdyy, to give the volume of slices. They
are horizontal slices becausecame last. Integration adds up the slices to find the
total volume:

1 1 1
boxvolume= [ 6dz=6  prismvolume= [ (6—6z)dz= [62 - 322]0 =3.
z=0 z=0
The box volume2-3-1 didn’t need calculus. The prism is half of the box, so its

volume was sure to b&—but it is satisfying to see howz — 3z2 gives the answer.
Our purpose is to see how a triple integral works.

Question Find the prism volume in the ordelz dy dx (six orders are possib)e

2 3 ((3-)/3 20303y 23
Answer J J J dzdydxzf J (—)dydxzf —dx =3.
0 Jo Jo 0 Jo 3 02

To find those limits on the integral, follow a line in thez direction. It enters the
prism atz =0 and exits at the sloping face+ 3z = 3. That gives the upper limit
z=(3—y)/3. Itis the height of a thin stick as in Sectidd.1. This section writes
outfdz for the height, but a quicker solution starts at the double integral.
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Fig. 14.12  Box with sides2,3,1. The prism is half of the box: volumg (6 —6z)dz or
f%dx.

What is the numbeg inthe last integral ? It is tharea of a vertical slicecut by
a planex = constant. The outer integral adds up slices.

Jf f(x,y,z)dV is computed from three single integrafs[f[ff dx |dy |dz.

That step cannot be taken in silence—some basic calculus is/@uoThe triple
integral is the limit of)_ f; AV, a sum over small boxes of volum®V. Here f; is
any value of f(x, y,z) in theith box. (In the limit, the boxes fit a curved region.)
Now take those boxeis a certain order Put them into lines in the direction and
put the lines of boxes into planes. The lines lead to the inrietegral, whose answer

y+3z=3

area 3/

2

depends ory andz. They integral combines the lines into planes. Finally the outer

integral accounts for all planes and all boxes.

Example 2 is important because it displays more possibilities than a box or prism.

EXAMPLE 2 Find the volume of a tetrahedron-gided pyramid). Locatex, y,z).

Solution A tetrahedron has four flat faces, all triangles. The fourth fate
Figure 14.13 is on the plane+ y +z = 1. A line in the x direction enters at =0
and exits att =1 —y —z. (The length depends on andz. The equation of the
boundary plane gives.) Then those lines are put into plane slices by thategral:

1-z pl—y—z 1-z - 1—z 1 5
J f dxdy:f (l—y—Z)dyz[y—ay —Zy] =5(1—2)"
y=0 =0 0

x=0 y

What is this numbeé(l —z)27? Itis the area at heightz. The plane at that height
slices out a right triangle, whose legs have lengthz. The area is correct, but look
at the limits of integrationlf x goestol —y —z, why doesy gotol —z ? Reason:
We are assembling lines, not points. The figure shows a line at evepyto 1 —z.

Adding the slices gives the vqumé’(')1 L1—2)2dz=[t(z- 1)3](1) =1 This
agrees With%(base times height), the volume of a pyramid.

The heightZ of the centroid is “zverage” We compute [[[zdV and divide by
the volume. Each horizontal slice is multiplied by its heightand the limits of
integration don’t change:

1 pl—y pl—y—z 1 )
jjjde:jJ J za’xdydz=f Ma’z=i.
0 Jo 0 0 2 24

This is quick because is constant in ther and y integrals. Each triangular slice
contributes times its are%(l —z)? timesdz. Then thez integral gives the moment

-
Y

volume 3/2 dx
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(1=2)2
=

arca

y=1=2
end of triangle

z(l = 2)?

momenmnt ——

vr=|l-y-z
- end of line

Fig. 14.13 Lines end at plane + y 4+z = 1. Triangles end at edge+ z = 1. The average
heightisz = [[[zdV/ [[[dV.

1/24. To find theaverageheight, dividel /24 by the volume:

_ : o [[fzaVv 1/24 1
z = height of centroid= === = =,
[[[dv 1/6 4

By symmetryx = 1 and y = 1. The centroid is the point, 1. 1). Compare that

with (1, 1), the centroid of the standard right triangle. Compare also fitihe cen-

ter of the unit interval. There must be a five-sided region in four dimensions centered

at(5.5.5.3)- _ _
For area and volume we meet another pattern. Length of standard inteval is

area of standard triangle § volume of standard tetrahedron%s hypervolume in

four dimensions must be . The interval reaches the point=1, the triangle
reaches the ling + y =1, the tetrahedron reaches the plane¢ y +z=1. The four-
dimensional region stops at the hyperplane  =1.

EXAMPLE 3 Find the volume[[[ dx dy dz inside the unit sphere? 4+ y2 4+ z2 =
1.

First question: What are the limits on? If a needle goes through the sphere in the
x direction, where does it enter and leave ? Moving inittdérection, the numberg
andz stay constant. The inner integral deals only withThe smallest and largest
are at the boundary whex€ + y2 + z2 = 1. This equation does the work—we solve
it for x. Look at the limits on ther integral:

2?7 A/ 1-y2_22 2777
volume of sphere= [ | [ i dxdydz= [[24/1—y2—z2dydz. (1)
297 —4/1-y2-z2 29

The limits ony are—+/1 —z2 and++/1 —z2. You can use algebra on the bound-
ary equationc? + y2 4+ z2 = 1. But notice thatx is gone! We want the smallest and
largesty, for eachz. It helps very much to draw the plane at heighslicing through

the sphere in Figure 14.14. The slice is a circle of radiasy/1 —z2. So the area is
712, which must come from the integral:

[ 24/1—y?—z2dy = areaof slice= n(1—2z?). 2

| admit that | didn’t integrate. Is it cheating to use the formule? ? | don’t think
so. Mathematics is hard enough, and we don’t have to work blindfolded. The goal is
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understanding, and if you know the area then use it. Of coursantegral of
4/1—y?—z2 can be done if necessary—use Secfich

The triple integral is down to a single integral. We went from one needle to a circle
of needles and now to a sphere of needles. The volume is a sum of slices of area
(1 —z2). The South Pole is at= —1, the North Pole is at = +1, and the integral
is the volumedsr /3 inside the unit sphere:

1 1
J_ln(l—z2)dz=n(z—%z3)j|l =§n—(—§n) =gn. 3

Question 1 A cone also has circular slices. How is the last integral chafiged
Answer The slices of a cone have radilis- z. Integrate(1 — z)? not+/1 — z2.

Question 2  How does this compare with a circular cylinder (heightadius1) ?

Answer Now all slices have radius. Abovez =0, a cylinder has volume and a
half-sphere has volumg&r and a cone has volumér.
For solids with equal surface area, the sphere has largest volume.

Question3  Whatis the average heighin the cone and half-sphere and cylinder ?

_ [z(diceareadz 1 3 1
Answer z=—F—————=- and - and .
J(dice areadz 4 8 2

dx=adu (f_\' =bhdv dz=cdw

Fig. 14.14 [ dx = length of needle[[ dx dy = area of slice. Ellipsoid is a stretched sphere.

EXAMPLE 4 Find the volumef[| dx dy dz inside the ellipsoid? /a® + y? /b* +
z2/c? =1.

The limits onx are nowi\/l —y2/b%—z2/c2. The algebra looks terrible. The
geometry is better—all slices are ellipseschange of variableis absolutely the
best.

Introducex = x/a andv = y/b andw = z/c. Then the outer boundary becomes
u? 4+v2% 4+ w? = 1. In these new variables the shape is a sphere. The triple integral for
a sphere i [ du dv dw = 47 /3. But what volumed V' in xyz space corresponds
to a small box with sidedu anddv anddw ?

Everyuvw box comes from anxyz box. The box is stretched with no bending
or twisting. Sinceu is x/a, the lengthdx is a du. Similarly dy = b dv anddz =
¢ dw. The volume of thexyz box (Figure 14.14) islx dy dz = (abc) du dv dw.
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Thestretching factorJ = abc is a constant, and the volume of the ellipsoid is

bagli.rr]its bettgr Ii.mits 477
[[[ dxdydz= [[[ (abc)dudvdw=—abc. (4)
ellipsoid sphere 3

You realize that this is special—other volumes are much more complicated. The
sphere and ellipsoid are curved, but the smalt boxes are straight. The next section
introduces spherical coordinates, and we can finally wateod limits” But then we

need a differeny.

14.3 EXERCISES

Read-through questions

Six important solid shapes are a . The integral[[[dxdydz 7 Partof the same cube, the prism above the plaaey.
adds the volume__b  of small ¢ . For computation

it becomes__d  single integrals. The inner integraf dx
is the __e of a line through the solid. The variables 9 Partof the same cube, abave- x andbelowz = y.

_f and g are held constant. The double integraly part of the same cube, where<y <z. What shape is
Jfdxdy is the _h of a slice, with_i  held constant. s~

Then thez integral adds up the volumes of j .

8 Part of the same cube, above= y andz =0.

11 The tetrahedron bounded by planes=0, y =0, z =0, ard
If the solid regionV’ is bounded by the planes=0, y =0, x4y 427=2.
z=0, andx +2y +3z =1, the limits on the inner integral are
k . The limits ony are __| . The limits onz are __m__.
In the new variables: = x, v=2y, w =3z, the equation of th
outer boundary is_n . The volume of the tetrahedron inww 13 The part of the tetrahedron in Probldrhbdow z = 1

. -z
space is_0_. Fromdx =du anddy =dv/2 anddz=_p_, 14 The tetrahedron in Problei2 with its top sliced off by the plane

the volume of anxyz box is dxdydz= q dudvdw. —
So the volume ofV/ is __r =1
15 The volume above = 0 below the cone\/x2 +y2 =1—:.
To find the average heigtd in V we compute__ s/t xy g

To find the total mass inV if the density is p=e? Wé *16 The tetrahedron in Problenh2, after it falls across thex
compute the integral _u . To find the average density weaxis onto thexy plane.

compute__ v/ w . In the order[[[dz dxdy the limits on . o
the inner integral can depend onx__. The limits on the middle In 1720 find the limits in [ffdxdydz or [ffdzdydx.

integral can depend on y . The outer limits for the ellipsoid Compute the volume
x2+2y?+3z2<8are_z . 17 Acircular cylinder with height and basex? + y2 < 1.

12 The tetrahedron with corne(8, 0,0), (2,0,0), (0,4,0), (0,0,4).
First find the plane through the last three corners.

1 For the solid region0<x<y<z<1, find the limits in 18 The part of that cylinder below the plane= x. Watch the base.
[[[ dx dy dz and compute the volume. Draw a picture.

2 Reverse the order in Probleto [[[ dz dy dx and find the lim- 19 The volume shared by the cube (Problgnand cylinder.
its of integration. The four faces of this tetrahedron are the planﬁ)s The same cylinder lying along theaxis.
x=0andy=x and

. ) o ) 21 Acubeisinscribed in a sphere: radiugath centers a(0,0,0).
3 This tetrahedron and five others like it fill the unit (:ubewhat is the volume of the cube ?

Change the inequalities in Probleinto describe the other five.
) . . 22 Find the volume and the centroid of the region bounded by
4 Find the centroidX,y,z) in Probleml. x=0,y=0,z=0andx/a+y/b+z/c=1.

23 Find the volume and ~centroid of the solid

Find the limits of integration in dx dy dz and the volume of
g ‘UT vdydz 0$z$4—x2—y2.

solids 5-16. Draw a very rough picture.
24 Based on the text, what is the volume inside
x24+4y24+9:2=16? What is the “hypervolume” of the
6 Half of that cube, the box above the plane. 4-dimensional pyramid that stopsat-y +z4+w =17

5 A cube with sides of lengtR, centered a{0, 0, 0).
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25 Find the partial derivatived! /dx, 1 /dy, 8*1 /0y oz of %29 Find the limit asAx — 0 of 3/ZAX2/XA:X i (Ax)?

zy zZyx i=1 j=1k=1
1 :J(J;dx dy and/ :M fx,y,z)dxdyd:z. 30 The midpoint rule for an integral over the unit cube chooses
the center valuef(3,1.1). Which functions f =x™y"z? are

i . . i 2
26 Define the average value ¢f(x, y,z) in a solidV. integrated correctly 7

. . 1l el
27 Find the moment of inertif[[ 124V of the cubelx| <1, |y|< 3! The trapezoidal rule estimatef, [, [o f(x.y.z)dxdydz
1, |z| <1 whenl is the distance to as% times the sum off(x,y,z) at 8 corners. This correctly

(a) thex axis (b) the edge = z = 1 (c) the diagonak — y =z, \ntegratesc™y®z? forwhichm, n, p?

28 Add upper limits to produce the volume of a unit cube fror%2 Propose a27-point Slmpson_s Rule” for integration over
smdlcubes:V = 3 Y Y (Ax)3=1 a cube. If many small cubes fill a large box, why are there
e el o o only 8 new points per cube ?
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Cylindrical coordinates are good for describing solids thaisgnemetric around
an axis. The solid is three-dimensional, so there are three coordin&tes

r: outfrom the axis f: aroundthe axis z: alongthe axis.

This is a mixture of polar coordinate$ in a plane, plug upward. You will not find

r 6z difficult to work with. Start with a cylinder centered on thexis:

solid cylinder 0 <r <1 flatbottomandtop0<z<3 half-cylinder,0<6<n

Integration over this half-cylinder bégjgf(l) ? drd6dz. Theselimitsom, 6,z
are especially simple. Two other axially symmetric solids are almost as convenient:

cone:integrate tor +z =1 sphere: integrate tar? + 22 =

| would not use cylindrical coordinates for a box. Or a tetrabadr

R2

The integral needs one thing more—the voludlé. The movementdr anddf
anddz give a “curved box” inxyz space, drawn in Figure 14.15c. The base is a polar
rectangle, with area dr d6. The new part is the heightz. The volume of the
curved box isr dr df dz. Thenr goes in the blank space in the triple integral—the
stretching factor i/ = r. There are six orders of integration (we give two):

volume:fffr‘dr‘de;:fffrdrdsz.
zJO Jr 6JzJr

(r.9,2)

0=m/2
(v axis)

v
)
-~
~é v=rcosB
y=rsind

8 = 0 (x axis)

(1)

Fig. 14.15 Cylindrical coordinates for a point and a half-cylinder. Smvalumer dr d6 dz.

EXAMPLE 1 (Volume of the half-cylinder). The integral efdr from0Oto 1 is %

The 6 integral isw and thez integral is3. The volume i3 /2.

EXAMPLE 2 The surfacer =1—z encloses the cone in Figure 14.16. Find its

volume.

First solution  Sincer goes out tol — z, the integral ofr dr is %(1 —2)2. Thef

integral is27r (a full rotation). Stop there for a moment.

We have reachefl[ r dr d6 = (1 —z)? 2z. This is thearea of a slice at height
z. The slice is a circle, its radius is— z, its area ist (1 —z)2. Thez integral adds
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those slices to giver/3. That is correct, but it is not the only way to compute the
volume.

Second solution Do thez and# integrals first. Since goes up tol —r, and6
goes around t@x, those integrals produq]éjr dz df =r(1 —r)2m. Stop again—
this must be the area of something.

After the z and# integrals we have ahell at radiusr. The height isl —r (the
outer shells are shorter). This height tinesr gives the area around the shell. The
choice between shells and slices is exactly as in Chapfeifferent orders of inte-
gration give different ways to cut up the solid

The volume of the shell is area times thicknéss The volume of the complete

cone is the integral of shell volumeﬁér(l —r)2ndr=mn/3.

Third solution Do ther andz integrals first:[ [ r dr dz = 1. Then the integral
is [ df, which gives} times2z. This is the volumer /3—but what is; d6 ?
The third cone is cut into wedges. The volume of a wedgé 0. It is quite

common to do thé integral last, especially when it just multiplies By . It is not so
common to think of wedges.

Question Isthe volumeé df equal to an are% times a thicknesg6 ?

Answer  No! The triangle in the third cone has arganot ¢ . Thickness is never
de.

area w1 — =37
area 2mril —r)

= l=r

Fig. 14.16 A cone cut three ways: slice at heightstell at radiusr, wedge at anglé.

This cone is typical of &olid of revolution The axis is in thez direction. The
0 integral yields2s, whether it comes first, second, or third. Thentegral goes
out to a radiusf(z), which is 1 for the cylinder andl — z for the cone. The in-
tegral [[r dr d6 is n(f(z))* = area of circular slice. This leaves theintegral

J 7 (f(2))?dz. Thatis our old volume formulfi ( f(x))?dx from ChapteB, where
the slices were cut through theaxis.

EXAMPLE 3 Themoment of inertiaaround thez axis is [ [ [ r3dr df dz. The
extrar? is (distance to axig. For the cone this triple integral is/10.

EXAMPLE 4 The momentaround thez axis is [ [ r? dr df dz. For the cone
this isz/6. Theaverage distance is (momeny/(volume = (/6)/(x/3) = %

EXAMPLE 5 A sphere of radiuR hasthe boundary? + z2 = R?, in cylindrical
coordinates. The outer limit on theintegral isv/R2 — z2. That is not acceptable in

volume i}
s

@8
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difficult problems. To avoid it we now change to coordinates #rat natural for a
sphere.

SPHERICAL COORDINATES

The Earth is a solid sphere (or near enough). On its surface ewgvasoordinates—
latitude and longitude. To dig inward or fly outward, there is a third coordinate—the
distancep from the centerThis Greek letterho replaces: to avoid confusion with
cylindrical coordinates. Wherneis measured from the axis, p is measured from the
origin. Thusr? = x2 + y2 andp? = x2 + y2 + z2.

The angléf is the same as before. It goes frénmo 2. It is the longitude, which
increases as you travel east around the Equator.

The anglep is new. It equal$ at the North Pole ang (not2r) at the South Pole.
Itis thepolar angle measured down from theaxis. The Equator has a latitude®f
but a polar angle of/2 (halfway down). Here are some typical shapes:

solid sphere (orbal)0 < p< R surface of sphereo = R
upper half-sphered < ¢ < /2 eastern half-spher@.< 6 <

North Pole ¢ =0

dp psinpdd

pdd

x=psindcosO
y=psindsin6

South Pole ¢=mn

Fig. 14.17  Spherical coordinatep¢f. The volumed V = p? sin ¢ dp d¢ d6 of a spherical
box.

The angleg is constant on a cone from the origin. It cuts the surface in a circle
(Figure 14.17b), but not a great circle. The anfllés constant along a half-circle
from pole to pole. The distange is constant on each inner sphere, starting at the
centerp = 0 and moving out tgp = R.

In spherical coordinates the volume integral i§[ [ p*>sin ¢ dp d¢ df. To
explain that surprising factof = p? sin¢, start withx = r cosf andy = rsinf. In
spherical coordinatesis p Sing andz is p cos¢p—see the triangle in the figure. So
substitutep sin¢ for r:

x=psSing cosh, y =p sing sinb, z = p cos¢. (1)
Remember those two steps¢f to r6z to xyz. We check thak? + y2 + 22 = p?:
0% (sin? ¢ coS O + sin? ¢ si? 6 4-cog ¢) = p?(Sin* ¢ + cos ¢) = p>.

The volume integral is explained by Figure 14.17c. That showsphérical boX
with right angles and curved edges. Two edgesdarand pd¢. The third edge is
horizontal. The usualdf become® sin¢ df. Multiplying those lengths giveg V.
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The volume of the box ig/ V = p?sin ¢ dp d¢ dB. This is adistance cubedrom
2
p-dp.

EXAMPLE 6 A solid ball of radiusR has known volumeV = %nR3. Notice the
limits:

27T T R
L jo L p>sing dp dp d6 =[1p*]X[ —cosp];[6]2 = (LR (2)2n).

Question What is the volume above the cone in Figure 14.17 ?
Answer Theg integral stops at—cos@|7/> = 3. The volume is(1 R?) (1) (27).

EXAMPLE 7 Thesurface areaf a sphere ist = 47 R?. Forget thep integral:

21w T
A= f f R*sing dp d0 = R*[ —cosg]; [0]2" = R2(2)(2n).
0 0

After those examples from geometry, here is the real thing from sciemeent
to compute one of the most important triple integrals in physics—"the gravitational
attraction of a solid sphere.” For some reason Isaac Newton had trouble with this
integral. He refused to publish his masterpiece on astronomy until he had solved it. |
think he didn’t use spherical coordinates—and the integral is not easy even now.
The answer that Newton finally found is beautiflihe sphere acts as if all its
mass were concentrated at the centét an outside point0,0, D), the force of
gravity is proportional tol / D2. The force from a uniform solid sphere equals the
force from a point mass, at every outside pdtfThat is exactly what Newton wanted
and needed, to explain the solar system and to prove Kepler's laws.
Here is the difficulty. Some parts of the sphere are closer Iharome parts are
farther away. The actual distangefrom the outside poinP to a typical inside point,
is shown in Figure 14.18. Thaveragedistanceg to all points in the sphere is not
D. But what Newton needed was a different average, and by good luck or some
divine calculus it works perfectlyThe average ofl/q is 1/D. This gives the
potential energy:

Volume of sphere

potential at pointP = [ ld V= D

sphereq

)

A small volumed V at the distancg contributesi V' /¢ to the potential (Sectio8.6,
with density 1). The integral adds the contributions from the whole sphere.
Equation(2) says that the potential at= D is not changed when the sphere is
squeezed to the center. The potential equals the whole volume divided by the single
distanceD.

Important point: The average df/¢ is 1/D and notl/g. The average ofz— and
% is not % Smaller point: | wrote “sphere” where | should have written “ball.” The
sphere is solid) < p < R,0 < ¢ < 7,0 < 0 <2x. What about the force ? For the

small volume it is proportional td V' /¢ (this is the inverse square law). Biatrce is

a vector pulling the outside point toward VV—not toward the center of the sphere.
The figure shows the geometry and the symmé&ify.want thez component of the
force. (By symmetry the overalt andy components are zero.) The angle between
the force vector and the axis is«, so for thez component we multiply byosa.
The total force comes from the integral that Newton discovered:
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. ... COS volume of sphere
force at pointP = [J[ zadV: —p.
JJJ q D2

sphere

©)

I will compute the integra2) and leave you the privilege of solving (3). | mean that
word seriously. If you have come this far, you deserve the pleasure of doing what at
one time only Isaac Newton could do. Probl2foffers a suggestion (just the law of
cosines) but the integral is yours.

outside ¢
point

(0,0,D)

Fig. 14.18 Distanceg from outside point to inside point. Distancgsrd Q to surface.

The law of cosines also helps wif{2). For the triangle in the figure it gives
g% = D? —2pD cos¢ + p?. Call this whole quantity.. We do the surface integral
first (d¢ andd® with p fixed). Theng? = u andg = \/u anddu = 2pD sin¢ d¢:

T 2 sing dpdf (2mp® du  [2m ¢=x
)Lt w5, o
0o Jo q 2pD /u D =0

27 came from the) integral. The integral of/u/+/u is 24/u. Sincecos¢ = —1

at the upper limitu is D?+2pD + p?. The square root ofi is D + p. At the
lower limit cos¢ = +1 andu = D2 —2pD + p?. This is another perfect square—
its square root i — p. The surface integral (4) with fixedis

dA 2 4mp?
“7=§[<D+p>—w—m]= o ®)

Last comes the integral: f§4np2dp/D = %nR3/D. This proves formulg2):
potential equals volume of the sphere divided by

Notel Physicists are also happy about equaidh The average ot /g is 1/D

not only over the solid sphere but over each spherical shell of4arpa. The shells

can have different densities, as they do in the Earth, and still Newton is correct. This
also applies to the force integré@)—each separate shell acts as if its mass were
concentrated at the centellhen the finap integral yields this property for the solid
sphere.

Note 2 Physicists also know that force is minus the derivative of potential. The
derivative of(2) with respect toD produces the force integréB). Problem27 ex-
plains this shortcut to Equatidi3).
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EXAMPLE 8 Everywhere inside a hollow sphere the force of gravity is zero.

When D is smaller thamp, the lower limit,/u in the integra{4) changes fronD — p
to p— D. That way the square root stays positive. This changes the ans{@rtm
47p?/ p, so the potential no longer depends BnThe potential is constant inside
the hollow shellSince the force comes from its derivative, the force is zero.

A more intuitive proof is in the second figure. The infinitesimal areas on the surface
are proportional tg/Z and Q2. But the distances to those areas @rend Q, so the
forces involvel /g2 and1/ Q? (the inverse square law). Therefore the two areas exert
equal and opposite forces on the inside point, and they cancel each other. The total
force from the shell is zero.

| believe this zero integral is the reason that the inside of a car is safe from lightning.
Of course a car is not a sphere. But electric charge distributes itself to keep the surface
at constant potential. The potential stays constant inside—therefore no force. The tires
help to prevent conduction of current (and electrocution of driver).

P.S. Don't just step out of the car. Let a metal chain conduct the charge to the
ground. Otherwise you could be the conductor.

CHANGE OF COORDINATES—STRETCHING FACTOR J

Once more we look to calculus for a formula. We need the volungesafiall curved
box in anyuvw coordinate system. Thefz box and thep¢8 box have right
angles, and their volumes were read off from the geometry (stretching fakters

andJ = p?sin¢g in Figures 14.15 and 14.17). Now we change frope to other
coordinates:vw—which are chosen to fit the problem.

Going fromxy to uv, the arealA = J du dv was a2 by 2 determinant. In three
dimensions the determinant 3sby 3. The matrix is always the “Jacobian matrix,”
containing first derivatives. There were four derivatives froyto uv, now there are
nine fromxyz to uvw.

14C Supposex, y, z are given in terms oft, v, w. Then a small box imvw space
(sidesdu, dv, dw) comes from a volum€V = J du dv dw in xyz space:

Ox/0u 0Ox/dv Ox/0w

J=|0y/0u 0dy/0v 0y/dw|= stretching factof((x’ﬁy’z)). (6)
U,v,w

0z/0u 0z/0v 0z/0w

The volume integral [ [ dx dy dz becomes| [ [ |J|du dv dw, with limits on
Uvw.

Remember that 8 by 3 determinant is the sum of six terms (Sectibh.5). One
terminJ is (0x/0u)(dy/0v)(0z/0w), along the main diagonal. This comes from
pure stretching, and the other five terms allow for rotation. The best way to exhibit
the formula is for spherical coordinates—where the nine derivatives are easy but the
determinant is not:
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EXAMPLE 9 Find the factot/ for x = p sin ¢ cosf, y = p sin¢g siné, z = p cos¢.

sing cosé p cos¢ cosd —psing sind

0(x,y,2) . . . .

=——="~=|sing sind pcos¢y sinf psing cosd
d(p.¢.0)

CcOoSs¢ —p sing 0

The determinant has six terms, but two are zero—because of the zero in the
corner. The other four terms apé sing co$ ¢ sin?@ andp?sing cos ¢ cos
andp2sin®¢ sin? @ andp?sin®¢ cos 6. Add the first two (notesin? 6 4 cos 6)
and separately add the second two. Then add the sums tofeagt sin¢.

Geometry already gave this answer. For most variables, use the determinant.

14.4 EXERCISES

Read-through questions 10 What are x(¢),y(t).z(t) on the great circle fromp=1,
¢=m/2,0 =0withspeeditop=1,¢p =n/4,0=7/27
The three__a  coordinates arefz. The point atx =y =z =

lhasr=_b ,6=_c ,z=_d . The volume integral is From the limits of integration describe each region in 11-20 and

JJJ__e_ . The solid regionl <r <2,0<0 <27, 0<z<4isa findits volume. The inner integral has the inner limits.
f . ltsvolumeis g .From ther and 6 integrals the area

ofa__h equals__i .From thez and 6 integrals the area of " f” Jl/ﬁJV 1-r2
0 r=0 Jz=r

a | equals__k .Inrfz coordinates the shapes of | _are
convenient, while__m___ are not.

rdzdrdf
=0

z=1hasp=_0 ,¢= p , 0= g . The angleg is
dfrom_r .6 is measured from s is the distance 2l 2z
measure - ns .p 13 f J f rdrdzdf
0=0Jz=0Jr=0

to__t , wherer was the distance to_u_ . If pgp8 are known

thenx=_v ,y=_w ,z=_ x . The stretching factoy is T o opem
J J J rdfdrdz
o Jo Jo

7 1 p14r2
The three__n__ coordinates are¢f. The point atx =y = 12 Jo Jo Jo rdzdrdf

a3by3 y ,andvolumeis[[__z . 14

The solid regionl < p<2,0<¢<n,0<0<2risa_ A .lts /2 rn/2 1
volume is__B . From theg and 6 integrals the area of a C 15 J J J p2 sing dp d¢ do
at radiusp equals _ D . Newton discovered that the outside “° <0 JO

gravitational attraction of a_E__is the same as for an equal mass 27 (7/3 (2,

located at__F 16 Jo Jo Lewp sing dp d¢ do

Convert the xyz coordinates in 1-4 torfz and p¢6. T (T osing
17 J J J p° sing dp d¢ do
0 Jo Jo
1 (D,0,0) 2 (0,-D,0) or e
2 .
3 (0,0, D)(watchp) 4 (3,4,5) 18 JO L LP sing dp d¢ df
T T T 5
Convert the spherical coordinates in 5-7 taxyz and rz. 19 jo L Jo p” sing dp d¢ db
5 p=4 d=n/4 0 =—m/4 11 1
p=té=x/ ™/ 20 f f J 0% sing dp dg do
0 Jo Jo

6 p=2,¢0=mn/3,0=m/6

21 Example 5 gave the volume integral for a sphereriie
coordinates. What is the area of the circular slice at heighiWhat
8 Where doesx =r andy =67 is the area of the cylindrical shell at radin® Integrate over slices
(dz) and over shell§dr) to reachdn R3 /3.

7 p=1,¢=m, 6 =anyhing.

9 Find the polar anglg for the point with cylindrical coordinates
roz. 22 Describe the solid with < p < 1—cos¢ and find its volume.
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23 A cylindrical tree has radiug. A saw cuts horizontally, ending 34 A linear change of variables has=au +bv+cw,y =du +
halfway in at thex axis. Then it cuts on a sloping plane (angle ev+ fw, andz = gu +hv+iw. Write down the six terms in the
with the horizontal), also ending at theaxis. What is the volume determinant/. Three terms have minus signs.

of the wedge that falls out ? ) )
35 A pure stretching has =au,y = bv, andz = cw. Find the3

24 Find the mass of a planet of radiug, if its density at each py 3 matrix and its determinant. What is special about theyz
radiusp is § = (p+1)/p. Notice the infinite density at the centerpqy in this case ?

but finite massV = [[[§ dV. Herep is radius, not density.

25 For the cone out te = 1—z, the average distance from the
axis is¥ = . For the triangle out to = 1 —z the average i = 1.
How can they be different when rotating the triangle produces the
cone ?

36 (a) The matrix in Example 9 has three columns. Find the
lengths of those three vectors (sum of squares, then square root).
Compare with the edges of the box in Figure 14.17.

(b) Take the dot product of every columnJrwith every other
Problems 2632, on the attraction of a sphere, use Figure 14.18  column. Zero dot products mean right angles in the box/ $0
and the law of cosines;? = D% —2pD cos¢ + p2 =u. the product of the column lengths.

26 Newton's achievementShow that [ [(cose)dV/q? equals 37 Find the stretching factaf for cylindrical coordinates from the
volume/ D2. One hint only Find cosx from a second law of cosinesmatrix of first derivatives.

0% = D% —2¢D cosa +¢2. The¢ integral should involvd /¢ and o . .

1/¢3. Equation (2) integratel/q, leaving [ [ dV/q? stillto do. 38 Follow Problem36 for cylindrical coordinates—find the length

. . . of each column i/ and compare with the box in Figure 14.15.
27 Compute dq/0D in the first cosine law and show from

Figure 14.18 that it equals ces Then the derivative of 39 Findthe moment of inertia around theaxis of a spherical shell
equation (2) with respect taD is a shortcut to Newton's (radiusp, density1l). The distance from the axis to a point on the
equation (3). shellisr = . Substitute for to find

28 The lines of lengthD and ¢ meet at the angle.. Move the )
meeting point up byA D. Explain why the other line stretches by 1(p)= [y [o r?p*sing d¢ db.
Ag ~ ADcosa. S00q /0D = cosa as before.

29 Show that the average distancegis=4R/3, from the North Divide by mr?2 (which is4zp*) to compute the numbef for a hol-
Pole (D=R) to points on the Earth’s surfacép= R). To low ballin the rolling experiment of Sectidhs.
compute:g = [[gR?sing d¢ df/(area4mR?). Use the same

substitutioru. 40 The moment of inertia of a solid sphere (radiug,

. . B density 1) adds up the hollow spheres of Proble3d:
310 2Show as in Problgrﬂ9 that the average distanceg&=D+ ;_ j(lfl(p)dp — . Divide by mR? (which is %nR5) to find
3p°/D, from the outside poin(0,0, D) to points on the shell of ra- ; jn"the rolling experiment. A solid ball rolls faster than a hollow
diusp. Then integratd [ ¢ dV and divide byt R3 /3 to findg for  pa|l because )
the solid sphere.

41 Inside the Earth, the force of gravity is proportional to the

31 In Figure 14.18b, it is not true that the areas on the surface alrgancep from the center. Reason: The inner ball of radiubas

; 2 2 2
exactly propor.tlonal tg7* and Q. Why not > What happens to themass proportional to (assume constant density). The force is
second proof in Example 8 ?

proportional to that mass divided by . The rest of the Earth
32 For two solid spheres attracting each other (sun and plaret), gsphere with hole) exerts no force because .

we concentrat®oth spheres into point masses at their centers ? ] ] ]
42 Dig a tunnel through the center to Australia. Drop a ball in the

*33 Compute [ cosa dV/q? to find the force of gravity at tumnel aty = R; Australia isy = —R. The force of gravity is-cy
(0,0, D) from a cylinder x2+y2 <a?,0<z <h. Show from a by Problem41. Newton’s law ismy’ = —cy. What does the ball do
figure whyg? = r2 + (D —z)2 and cosx = (D —z) /q. when it reaches Australia ?
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