
CHAPTER 14

Multiple Integrals

14.1 Double Integrals

This chapter shows how to integrate functions of two or more variables. First, a
double integral is defined as the limit of sums. Second, we find a fast way to com-
pute it. The key idea is to replace a double integral by two ordinary“single”
integrals.

The double integral
rr
f .x;y/dy dx starts with

r
f .x;y/dy: For each fixedx we

integrate with respect toy: The answer depends onx: Now integrate again, this time
with respect tox: The limits of integration need care and attention! Frequently those
limits ony andx are the hardest part.

Why bother with sums and limits in the first place ? Two reasons. There has to be a
definition and a computation to fall back on, when the single integrals are difficult or
impossible. And also—this we emphasize—multiple integrals represent more than
area and volume. Those words and the pictures that go with them are the easiest to
understand. You can almost see the volume as a “sum of slices” or a “double sum of
thin sticks.” The true applications are mostly to other things, but the central idea is
always the same:Add up small pieces and take limits.

We begin with the area ofR and the volume ofV; by double integrals.

A LIMIT OF SUMS

The graph ofzD f .x;y/ is a curved surface above thexy plane. At the point.x;y/
in the plane, the height of the surface isz: (The surface isabovethexy plane only
whenz is positive. Volumes below the plane come with minus signs, like areas below
thex axis.) We begin by choosing a positive function—for examplezD 1Cx2 Cy2:

The base of our solid is a regionR in thexy plane. That region will be chopped
into small rectangles (sides�x and�y). WhenR itself is the rectangle0¤ x¤ 1;
0¤ y¤ 2; the small pieces fit perfectly. For a triangle or a circle, the rectangles
miss part ofR: But they do fit in the limit, and any region with a piecewise smooth
boundary will be acceptable.

Question What is the volume aboveR andbelow the graph ofzD f .x;y/ ?
Answer It is a double integral—theintegral of f .x;y/ overR: To reach it we
begin with a sum, as suggested by Figure 14.1.
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Fig. 14.1 BaseR cut into small pieces�A: SolidV cut into thin sticks�V D z�A:

For single integrals, the intervalŒa;b� is divided into short pieces of length�x:
For double integrals,R is divided into small rectangles of area�AD .�x/.�y/:
Above thei th rectangle is a “thin stick” with small volume. That volume is the base
area�A times the height above it—except that this heightzD f .x;y/ varies from
point to point. Therefore we select a point.xi ;yi / in the i th rectangle, and compute
the volume from the height above that point:

volume of one stickD f .xi ;yi/�A volume of all sticksD
X

f .xi ;yi/�A:

This is the crucial step for any integral—to see it as a sum of small pieces.
Now take limits:�xÑ 0 and�yÑ 0: The heightzD f .x;y/ is nearly con-

stant over each rectangle. (We assume thatf is a continuous function.) The sum
approaches a limit, which depends only on the baseR and the surface above it. The
limit is the volume of the solid, and it is thedouble integralof f .x;y/ overR:» »

R

f .x;y/dAD lim
�xÑ0

�yÑ0

X

f .xi ;yi/�A: (1)

To repeat: The limit is the same for all choices of the rectangles and the points
.xi ;yi/: The rectangles will not fit exactly intoR; if that base area is curved. The
heights are not exact, if the surfacezD f .x;y/ is also curved. But the errors on the
sides and top, where the pieces don’t fit and the heights are wrong, approach zero.
Those errors are the volume of the “icing” around the solid, which gets thinner as
�xÑ 0 and�yÑ 0: A careful proof takes more space than we are willing to give.
But the properties of the integral need and deserve attention:

1. Linearity:
rr
.f Cg/dAD

rr
f dAC

rr
g dA

2. Constant comes outside:
rr
cf .x;y/dAD c

rr
f .x;y/dA

3. R splits intoS andT (not overlapping):
rr
R

fdAD
rr
S

fdAC
rr
T

f dA:

In 1 the volume underf Cg has two parts. The “thin sticks” of heightf Cg split
into thin sticks underf and underg: In 2 the whole volume is stretched upward by
c: In 3 the volumes are side by side. As with single integrals, these properties help in
computations.

By writing dA; we allow shapes other than rectangles. Polar coordinates have an
extra factorr in dAD r dr d�:By writing dx dy;we choose rectangular coordinates
and prepare for the splitting that comes now.
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SPLITTING A DOUBLE INTEGRAL INTO TWO SINGLE INTEGRALS

The double integral
rr
f .x;y/dy dx will now be reduced to single integrals iny and

thenx: (Or vice versa. Our first integral could equally well be
r
f .x;y/dx:) Chapter

8
described the same idea for solids of revolution. First came the area of a slice, which is
a single integral. Then came a second integral to add up the slices. For solids formed
by revolving a curve, all slices are circular disks—now we expect other shapes.

Figure 14.2 shows a slice of areaA.x/: It cuts through the solid at a fixed value of
x: The cut starts atyD c on one side ofR; and ends atyD d on the other side. This
particular example goes fromyD 0 to yD 2 (R is a rectangle). The area of a slice is
they integral off .x;y/: Remember thatx is fixed andy goes fromc to d :

A.x/D area of sliceD
» d

c

f .x;y/dy .the answer is a function ofx/:

EXAMPLE 1 AD

» 2

yD0

.1Cx2 Cy2/dyD

�

yCx2yC
y3

3

�yD2

yD0

D 2C2x2 C
8

3
:

This is the reverse of a partial derivative! The integral ofx2dy; with x constant, is
x2y: This “partial integral” is actually called aninner integral. After substituting the
limits yD 2 andyD 0 and subtracting, we have the areaA.x/D 2C2x2C 8

3
: Now

theouter integraladds slices to find the volume
r
A.x/dx: The answer is anumber:

volumeD

» 1

xD0

�

2C2x2 C
8

3

�

dxD

�

2xC
2x3

3
C
8

3
x

�1

0

D 2C
2

3
C
8

3
D
16

3
:

Fig. 14.2 A slice of V at afixedx has areaA.x/D
r
f .x;y/dy:

To complete this example, check the volume when thex integral comes first:

inner integralD

» 1

xD0

.1Cx2 Cy2/dxD

�

xC
1

3
x3 Cy2x

�xD1

xD0

D
4

3
Cy2

outer integralD

» 2

yD0

�

4

3
Cy2

�

dyD

�

4

3
yC

1

3
y3

�yD2

yD0

D
8

3
C
8

3
D
16

3
:

The fact that double integrals can be split into single integrals isFubini’s Theorem.
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14A if f .x;y/ is continuous on the rectangleR; then»»
R

f .x;y/dAD

» b

a

"» d

c

f .x;y/dy

#

dxD

» d

c

"» b

a

f .x;y/dx

#

dy: (2)

The inner integrals are the cross-sectional areasA.x/ anda.y/ of the slices. The outer
integrals add up the volumesA.x/dx anda.y/dy: Notice the reversing of limits.

Normally the brackets in(2) are omitted. When they integral is first,dy is written
insidedx: The limits ony are inside too. I strongly recommend that you compute
the inner integral on one line and the outer integral on aseparate line.

EXAMPLE 2 Find the volume below the planezD x�2y and above the base
triangleR:

The triangleR has sides on thex andy axes and the linexCyD 1: The strips in
they direction have varying lengths. (So do the strips in thex direction.) This is the
main point of the example—the base is not a rectangle. The upper limit on the inner
integral changes asx changes.The top of the triangle is atyD 1�x:

Figure 14.3 shows the strips. The region should always be drawn (except for
rectangles). Without a figure the limits are hard to find. A sketch ofR makes it easy:

y goes fromcD 0 to d D 1�x: Thenx goes fromaD 0 to bD 1:

The inner integral hasvariable limitsand the outer integral hasconstant limits:

inner:

» yD1�x

yD0

.x�2y/dyD
h

xy�y2
iyD1�x

yD0
D x.1�x/� .1�x/2 D�1C3x�2x2

outer:

» 1

xD0

.�1C3x�2x2/dxD

��xC
3

2
x2� 2

3
x3

�1

0

D�1C
3

2
� 2
3

D�1
6
:

The volume is negative. Most of the solid is below thexy plane. To check the answer�1
6
; do thex integral first:x goes from0 to 1�y: Theny goes from0 to 1:

inner:

» 1�y

xD0

.x�2y/dxD

�

1

2
x2�2xy�1�y

0

D
1

2
.1�y/2�2.1�y/yD

1

2
�3yC

5

2
y2

outer:

» 1

yD0

�

1

2
�3yC

5

2
y2

�

dyD

�

1

2
y� 3

2
y2 C

5

6
y3

�1

0

D
1

2
� 3
1

C
5

6
D�1

6
:

Same answer, very probably right. The next example computes
rr
1 dx dyD area ofR:

EXAMPLE 3 The area ofR is

» 1

xD0

» 1�x

yD0

dy dx and also

» 1

yD0

» 1�y

xD0

dx dy:

The first has vertical strips. The inner integral equals1�x: Then the outer integral
(of 1�x) has limits0 and1; and the area is1

2
: It is like an indefinite integral inside

a definite integral.
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Fig. 14.3 Thin sticks above and below (Example 2). Reversed order (Examples 3 and 4).

EXAMPLE 4 Reverse the order of integration in

» 2

xD0

» 2x

yDx2

x3dy dx:

Solution Draw a figure! The inner integral goes from the parabolayD x2 up to
the straight lineyD 2x: This gives vertical strips. The strips sit side by side between
xD 0 andxD 2: They stop where2x equalsx2; and the line meets the parabola.

The problem is to put thex integral first. It goes along horizontal strips. On each
line yD constant, we need theentry valueof x and theexit valueof x: From the
figure,x goes from1

2
y to

?
y: Those are the inner limits. Pay attention also to the

outer limits, because they now apply toy: The region starts atyD 0 and ends at
yD 4: No change in the integrandx3—that is the height of the solid:» 2

xD0

» 2x

yDx2

x3dy dx is reversed to
» 4

yD0

» ?y

xD
1
2

y

x3dx dy: (3)

EXAMPLE 5 Find the volume bounded by the planesxD 0; yD 0; zD 0; and
2xCyCzD 4:

Solution The solid is a tetrahedron (four sides). It goes fromzD 0 (thexy plane)
up to the plane2xCyCzD 4: On that planezD 4�2x�y: This is the height
functionf .x;y/ to be integrated.

Figure 14.4 shows the baseR: To find its sides, setzD 0: The sides ofR are the
linesxD 0 andyD 0 and2xCyD 4: Taking vertical strips,dy is inner:

inner:

» 4�2x

yD0

.4�2x�y/dyD

�

.4�2x/y� 1
2
y2

�4�2x

0

D
1

2
.4�2x/2

outer:

» 2

xD0

1

2
.4�2x/2dxD

�� .4�2x/3
2 �3 �2 �2

0

D
43

2 �3 �2 D
16

3
:

Question What is the meaning of the inner integral
1

2
.4�2x/2�and also

16

3

�

‹

Answer The first isA.x/; the area of the slice.
16

3
is the solid volume.

Question What if the inner integral
r
f .x;y/dy has limits that depend ony ?

Answer It can’t. Those limits must be wrong. Find them again.
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Fig. 14.4 Tetrahedron in Example 5, semicircle in Example 6, triangle in Example 7.

EXAMPLE 6 Find the mass in a semicircle0¤ y¤?1�x2 if the density is
�D y:

This is a new application of double integrals. The total mass is a sum of small masses
(� times�A) in rectangles of area�A: The rectangles don’t fit perfectly inside the
semicircleR; and the density is not constant in each rectangle—but those problems
disappear in the limit. We are left with a double integral:

total massM D

»»
R

� dAD

»»
R

�.x;y/dx dy: (4)

Set�D y: Figure 14.4 shows the limits onx andy (try bothdy dx anddx dy):

massM D

» 1

xD�1

» ?1�x2

yD0

y dy dx and also M D

» 1

yD0

» ?1�y2�?1�y2

y dx dy:

The first inner integral is1
2
y2: Substituting the limits gives1

2
.1�x2/: The outer

integral of 1
2
.1�x2/ yields the total massM D 2

3
:

The second inner integral isxy: Substituting the limits onx gives : Then the
outer integral is�2

3
.1�y2/3=2: SubstitutingyD 1 andyD 0 yieldsM D :

Remark This same calculation also produces themomentaround thex axis, when
the density is�D 1: The factory is the distance to thex axis. The moment is
Mx D

rr
y dAD 2

3
: Dividing by the area of the semicircle (which is�=2) locates

the centroid:xD 0 by symmetry and

yD height of centroidD
moment

area
D
2=3

�=2
D

4

3�
: (5)

This is the “average height” of points inside the semicircle, found earlier in8:5:

EXAMPLE 7 Integrate
r yD1

yD0

r xD1

xDy
cosx2dx dy avoiding the impossible

r
cosx2 dx:

This is a famous example where reversing the order makes the calculation possible.
The baseR is the triangle in Figure 14.4 (note thatx goes fromy to 1). In the
opposite ordery goes from0 to x. Then

r
cosx2dyD x cosx2 contains the factor

x that we need:

outer integral:
1r

0

x cosx2dxD
�

1
2

sin x2
�1

0
D 1

2
sin 1:
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14.1 EXERCISES

Read-through questions

The double integral
rr

R f .x;y/dA gives the volume betweenR
and a . The base is first cut into small b of area�A:
The volume above thei th piece is approximately c . The
limit of the sum d is the volume integral. Three properties of
double integrals are e (linearity) and f and g .

If R is the rectangle0¤ x¤ 4;4¤y¤ 6; the integral
rr
x dA

can be computed two ways. One is
rr
x dy dx; when the

inner integral is h �64 D i . The outer integral gives
j �40 D k . When the x integral comes first it equals

r
x dxD l �40 D m : Then they integral equals n .

This is the volume between o (describeV ).

The area ofR is
rr

p dy dx: WhenR is the triangle be-
tweenxD 0;yD 2x; andyD 1; the inner limits ony are q .
This is the length of a r strip. The (outer) limits onx are

s . The area is t . In the opposite order, the (inner) lim-
its onx are u . Now the strip is v and the outer integral is

w . When the density is�.x;y/; the total mass in the regionR
is

rr
x . The moments areMy D y andMx D z . The

centroid hasxDMy=M:

Compute the double integrals 1–4 by two integrations.

1
» 1

yD0

» 2

xD0
x2dx dy and

» 1

yD0

» 2

xD0
y2dx dy

2
» 2e

yD2

» e

xD1
2xy dx dy and

» 2e

yD2

» e

xD1
dx dy=xy

3
» �=2

0

» �=4

0
sin.xCy/ dx dy and

» 2

1

» 2

0
dy dx=.xCy/2

4
» 1

0

» 2

1
yexydx dy and

» 1�1

» 3

0
dy dx=

a
3C2xCy

In 5–10, draw the region and compute the area.

5
» 2

xD1

» 2x

yD1
dy dx

7
» 8

0

» e�x

e�2x
dy dx

9
» 1�1

» 1

y2
dx dy

6
» 1

0

» x

x3
dy dx

8
» 1�1

» 1�x2

x2�1
dy dx

10
» 1�1

» |y|
xDy

dx dy

In 11–16 reverse the order of integration (and find the new
limits) in 5–10 respectively.

In 17–24 find the limits on
rr
dy dx and

rr
dx dy: Draw R and

compute its area.

17 RD triangle inside the linesxD 0;yD 1;yD 2x:

18 RD triangle inside the linesxD�1;yD 0;xCyD 0:

19 RD triangle inside the linesyD x;yD�x;yD 3:

20 RD triangle inside the linesyD x;yD 2x;yD 4:

21 RD triangle with vertices.0;0/; .4;4/; .4;8/:

22 RD triangle with vertices.0;0/; .�2;�1/;.1;�2/:
23 RD triangle with vertices.0;0/; .2;0/; .1;b/: Hereb¡ 0:�24 RD triangle with vertices .0;0/; .a;b/; .c;d/: The sides
areyD bx=a;yD dx=c; andyD bC.x�a/.d�b/=.c�a/: Find
AD

rr
dy dx when0 a  c;0 d   b:

25 Evaluate
» b

0

» a

0
B2f=BxBy dx dy:

26 Evaluate
» b

0

» a

0
Bf=Bx dx dy:

In 27–28, divide the unit squareR into triangles S and T and
verify

rr
R f dAD

rr
S f dAC

rr
T f dA.

27 f .x;y/D 2x�3yC1 28 f .x;y/D xey�yex

29 The area underyD f .x/ is a single integral froma to b or a
double integral (find the limits):» b

a
f .x/ dxD

»»
1 dy dx:

30 Find the limits and the area underyD 1�x2:»
.1�x2/ dx and

»»
1 dx dy .reversed from 29/:

31 A city inside the circlex2 Cy2 D 100 has population density
�.x;y/D 10.100�x2�y2/: Integrate to find its population.

32 Find the volume bounded by the planesxD 0;yD 0;zD 0; and
axCbyCczD 1:

In 33–34 the rectangle with corners .1;1/; .1;3/; .2;1/; .2;3/
has density�.x;y/D x2: The moments areMy D

rr
x� dA and

Mx D
rr
y� dA.

33 Find the mass. 34 Find the center of mass.

In 35–36 the region is a circular wedge of radius 1 between the
linesyD x and yD�x.
35 Find the area. 36 Find the centroid.x;y/:

37 Write a program to compute
r 1

0

r 1
0f .x;y/dx dy by the

midpoint rule (midpoints ofn2 small squares). Which f .x;y/ are
integrated exactly by your program ?

38 Apply the midpoint code to integratex2 and xy andy2: The
errors decrease like what power of�xD�yD 1=n ?

Use the program to compute the volume underf .x;y/ in
39–42: Check by integrating exactly or doublingn.
39 f .x;y/D 3xC4yC5

41 f .x;y/D xy

40 f .x;y/D 1=
a
x2 Cy2

42 f .x;y/D ex sin�y
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43 In which order is
rr
xydx dyD

rr
xydy dx easier to

integrate over the square0¤x¤ 1; 0¤y¤ 1? By reversing
order, integrate.x�1/= ln x from 0 to 1—its antiderivative
is unknown.

44 Explain in your own words the definition of the double
integral off .x;y/ over the regionR:

45
P

yi�A might not approach
rr
y dA if we only know that

�AÑ 0: In the square0¤x;y¤ 1; take rectangles of sides�x
and 1 (not �x and �y). If .xi ;yi / is a point in the rectangle
whereyi D 1; then

P

yi�AD : But
rr
y dAD :
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14.2 Change to Better Coordinates

You don’t go far with double integrals before wanting tochange variables. Many
regions simply do not fit with thex andy axes. Two examples are in Figure 14.5,
a tilted square and a ring. Those are excellent shapes—in the right coordinates.

We have to be able to answer basic questions like these:

Find the area

»»
dA and moment

»»
x dA and moment of inertia

»u
The problem is:What isdA ? We are leaving thexy variables wheredAD dxdy:

The reason for changing is this: The limits of integration in they direction are
miserable. I don’t know them and I don’t want to know them. For everyx we would
need the entry pointP of the linexD constant, and the exit pointQ: The heights of
P andQ are the limits on

r
dy; the inner integral. The geometry of the square and

ring are totally missed, if we stick rigidly tox andy:

Fig. 14.5 Unit square turned through anglę: Ring with radii4 and5:

Which coordinates are better ? Any sensible person agrees that the area of the tilted
square is1: “Just turn it and the area is obvious.” But that sensible person may not
know the moment or the center of gravity or the moment of inertia. So we actually
have to do the turning.

The new coordinatesu andv are in Figure 14.6a. The limits of integration onv
are0 and1: So are the limits onu: But when you change variables, you don’t just
change limits. Two other changes come with new variables:

1. The small areadAD dx dy becomesdAD du dv:

2. The integral ofx becomes the integral of :

SubstitutinguD
?
x in a single integral, we make the same changes. LimitsxD 0

and xD 4 becomeuD 0 anduD 2: Sincex is u2; dx is 2u du: The purpose of
the change is to find an antiderivative. For double integrals, the usual purpose is to
improve the limits—but we have to accept the whole package.

To turn the square, there are formulas connectingx andy tou andv: The geometry
is clear—rotate axes by̨—but it has to be converted into algebra:

uD x cos˛Cy sin˛ xDu cos˛�v sin˛
and in reverse

vD�x sin˛Cy cos˛ yDu sin˛Cv cos˛:
(1)

Figure 14.6 shows the rotation. As points move, the whole square turns. A good way
to remember equation(1) is to follow the corners as they become.1;0/ and.0;1/:
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The change from
rr
x dA to

rr
du dv is partly decided by equation(1). It

givesx as a function ofu andv:We also needdA: For a pure rotation the first guess
is correct:The areadx dy equals the areadu dv: For most changes of variable
this is false. The general formula fordA comes after the examples.

Fig. 14.6 Change of coordinates—axes turned by˛: For rotationdA is du dv:

EXAMPLE 1 Find
rr
dA and

rr
x dA andx and also

rr
x2 dA for the tilted square.

Solution The area of the square is
r 1

0

r 1

0
du dvD 1: Notice the good limits. Then

rr
x dAD

r 1

0

r 1

0
.u cos˛�v sin˛/du dvD 1

2
cos˛� 1

2
sin˛: (2)

This is themoment around they axis. The factors1
2

come from 1
2
u2 and 1

2
v2: The

x coordinate of the center of gravity is

xD

»»
x dA

�»»
dAD

�

1
2

cos˛� 1
2

sin˛
�

=1:

Similarly the integral ofy leads toy: The answer is no mystery—the point.x;y/ is at
the center of the square! SubstitutingxDu cos˛�v sin˛ madex dA look worse,
but the limits0 and1 are much better.

The moment of inertiaIy around they axis is also simplified:»»
x2 dAD

» 1

0

» 1

0

.u cos˛�v sin˛/2du dvD
cos2˛

3
� cos˛ sin˛

2
C

sin2˛

3
:

(3)
You know this next fact but I will write it anyway:The answers don’t containu or
v: Those are dummy variables likex andy: The answers do contain̨; because the
square has turned. (The area is fixed at1:) The moment of inertiaIx D

rr
y2 dA is

the same as equation(3) but with all plus signs.

Question The sumIx CIy simplifies to 2
3

(aconstant). Why no dependence on˛ ?
Answer Ix CIy equalsI0: This moment of inertia around.0;0/ is unchanged by
rotation. We are turning the square around one of its corners.

CHANGE TO POLAR COORDINATES

The next change is tor and �: A small area becomesdAD r dr d� (definitely not
dr d� ). Area always comes from multiplying two lengths, andd� is not a length.
Figure 14.7 shows the crucial region—a “polar rectangle” cut out by rays and circles.
Its area�A is found in two ways, both leading tor dr d� :
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(Approximate) The straight sides have length�r: The circular arcs
areclose tor��: The angles are90�: So�A is close to.�r/.r��/:

(Exact) A wedge has area1
2
r2��: The difference between wedges is

�A:

�AD
1

2

�

rC
�r

2

�2

��� 1
2

�

r��r
2

�2

�� D r �r ��:

The exact method placesr dead center (see figure). The approximation says: Forget
the change inr�� as you move outward. Keep only the first-order terms.

A third method is coming, which requires no picture and no geometry. Calculus
always has a third method! The change of variablesxD r cos�;yD r sin� will go
into a general formula fordA; and out will come the arear dr d�:

Fig. 14.7 Ring and polar rectangle inxy and r�; with stretching factorr D 4:5:

EXAMPLE 2 Find the area and center of gravity of the ring. Also find
rr
x2dA:

Solution The limits onr are4 and5: The limits on� are0 and2�: Polar coordi-
nates are perfect for a ring. Compared with limits likexD

a
25�y2; the change

to r dr d� is a small price to pay:

areaD
2�r
0

5r
4

r dr d� D 2�
h

1
2
r2
i5

4
D�52��42 D 9�:

The � integral is2� (full circle). Actually the ring is a giant polar rectangle. We
could have used the exact formular �r��; with �� D 2� and�r D 5�4: When
the radiusr is centered at4:5; the productr �r �� is .4:5/.1/.2�/D 9� as above.

Since the ring is symmetric around.0;0/; the integral ofx dAmust bezero:

rr
R

x dAD
2�r
0

5r
4

.r cos�/r dr d� D
h

1
3
r3
i5

4

h

sin �
i2�

0
D 0:

Noticer cos� from x—the otherr is fromdA: The moment of inertia is

rr
R

x2 dAD
2�r
0

5r
4

r2 cos2 � r dr d� D
h

1
4
r4
i5

4

2�r
0

cos2 � d� D 1
4
.54�44/�:

This� integral is� not2�; because the average ofcos2 � is 1
2

not 1:
For reference here are the moments of inertia when the density is�.x;y/:

Iy D
rr
x2� dA Ix D

rr
y2� dA I0 D

rr
r2� dAD polar momentD Ix CIy :

(4)
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EXAMPLE 3 Find masses and moments for semicircular plates:�D 1 and
�D 1�r:
Solution The semicircles in Figure 14.8 haver D 1: The angle goes from0 to �
(the upper half-circle). Polar coordinates are best.The mass is the integral of the
density�:

M D
�r
0

1r
0

r dr d� D .1
2
/.�/ and M D

�r
0

1r
0

.1�r/r dr d� D .1
6
/.�/:

The first mass�=2 equals the area (because�D 1). The second mass�=6 is smaller
(because�  1). Integrating�D 1 is the same as finding a volume when the height is
zD 1 (part of a cylinder). Integrating�D 1�r is the same as finding a volume when
the height iszD 1�r (part of a cone). Volumes of cones have the extra factor1

3
: The

center of gravity involves the momentMx D
rr
y� dA: The distance from thex

axis isy; the mass of a small piece is� dA; integrate to add mass times distance.
Polar coordinates are still best, withyD r sin�: Again�D 1 and�D 1�r :
rr
y dAD

�r
0

1r
0

r sin� r dr d� D 2
3

rr
y.1�r/ dAD

�r
0

1r
0

r sin�.1�r/r dr d� D 1
6
:

The height of the center of gravity isyDMx=M D moment divided by mass:

yD
2=3

�=2
D

4

3�
when�D 1 yD

1=6

�=6
D
1

�
when�D 1�r:

Fig. 14.8 Semicircles with density piled above them. Fig. 14.9 Bell-shaped curve.

Question Comparey for �D 1 and�D other positive constants and�D 1�r:
Answer Any constant� givesyD4=3�: Since1�r is dense atr D 0; y drops to
1=�:

Question How isyD 4=3� related to the “average” ofy in the semicircle ?
Answer They are identical. This is the point ofy: Divide the integral by the area:

The average value of a function is
»»

f .x;y/dA

�»»
dA: (5)

Theintegral off is divided by the integral of1 (the area). In one dimension
r b

a
v.x/ dx

was divided by
r b

a
1 dx (the lengthb�a). That gave the average value ofv.x/ in

Section5:6: Equation(5) is the same idea forf .x;y/:
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EXAMPLE 4 ComputeAD

» 8�8e�x2

dxD
?
� fromA2D

» 8�8e�x2

dx

» 8�8e�y2

dyD

�:

A is the area under a “bell-shaped curve”—see Figure 14.9. This is the most impor-
tant definite integral in the study of probability. It is difficult because a factor2x is
not present. Integrating2xe�x2

gives�e�x2
; but integratinge�x2

is impossible—
except approximately by a computer. How can we hope to show thatA is exactly?
� ? The trick is to go from an area integralA to a volume integralA2: This is

unusual (and hard to like), but the end justifies the means:

A2 D

» 8
xD�8 » 8yD�8 e�x2

e�y2

dy dxD

» 2�

�D0

» 8
rD0

e�r2

r dr d�: (6)

The double integrals cover the whole plane. Ther2 comes fromx2 Cy2; and the
key factorr appears in polar coordinates. It is now possible to substituteuD r2:
The r integral is 1

2

r 8
0
e�uduD 1

2
: The � integral is2�: The double integral is

.1
2
/.2�/: ThereforeA2 D� and the single integral isAD

?
�:

EXAMPLE 5 Apply Example 4 to the “normal distribution” p.x/D e�x2=2=
?
2�:

Section 8:4 discussed probability. It emphasized the importance of this particular
p.x/: At that time we could not verify that

r
p.x/dxD 1: Now we can:

xD
?
2y yields

1?
2�

» 8�8 e�x2=2dxD
1?
�

» 8�8 e�y2

dyD 1: (7)

Question Why include the2’s inp.x/ ? The integral ofe�x2
=
?
� also equals1:

Answer With the2’s the “variance” is
r
x2p.x/dxD 1: This is a convenient num-

ber.

CHANGE TO OTHER COORDINATES

A third method was promised, to findr dr d� without a picture and without geome-
try. The method works directly fromxD r cos� andyD r sin�: It also finds the1
in du dv; after a rotation of axes. Most important, this new method finds the factor
J in the areadAD J du dv; for any change of variables. The change is fromxy to
uv:

For single integrals, the “stretching factor” J between the originaldx and the new
du is (not surprisingly) the ratiodx=du:Where we havedx; we write.dx=du/du:
Where we have.du=dx/dx; we writedu: That was the idea of substitutions—the
main way to simplify integrals.

For double integrals the stretching factor appears in the area:dx dy becomes|J | du dv:
The old and new variables are related byxD x.u;v/ andyD y.u;v/: The point
with coordinatesu andv comes from the point with coordinatesx andy: A whole re-
gionS; full of points in theuv plane, comes from the regionR full of corresponding
points in thexy plane. A small piece with area|J | du dv comes from a small piece
with areadx dy: The formula forJ is a two-dimensional version ofdx=du:
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14B The stretching factor for area is the2 by 2 Jacobian determinantJ.u;v/:

J D

�����Bx=Bu Bx=BvBy=Bu By=Bv �����D BxBu ByBv � BxBv ByBu : (8)

An integral overR in thexy plane becomes an integral overS in theuv plane:»»
R

f .x;y/dx dyD

»»
S

f .x.u;v/;y.u;v//|J |du dv: (9)

The determinantJ is often written B.x;y/=B.u;v/; as a reminder that this
stretching factor is likedx=du: We requireJ ¤ 0: That keeps the stretching and
shrinking under control.

You naturally ask: Why take the absolute value|J | in equation(9)? Good
question—it wasn’t done for single integrals. The reason is in the limits of integration.

The single integral
r 1

0
dx is

r �1

0
.�du/ after changingx to�u:We keep the minus

sign and allow single integrals to run backward. Double integrals could too, but
normally they go left to right and down to up. We use the absolute value|J | and run
forward.

EXAMPLE 6 Polar coordinates havexDucosvD r cos� andyDusinvD r sin�:

With no geometry: J D

�����Bx=Br Bx=B�By=Br By=B� �����D �����cos� �r sin�

sin� r cos�

�����D r: (10)

EXAMPLE 7 FindJ for the linear changeto xD auCbv andyD cuCdv:

Ordinary determinant: J D

�����Bx=Bu Bx=BvBy=Bu By=Bv �����D �����a b

c d

�����D ad�bc: (11)

Why make this simple change, in whicha;b;c;d are all constant ? It straightens
parallelograms into squares (and rotates those squares). Figure 14.10 is typical.

Common sense indicatedJ D 1 for pure rotation—no change in area. NowJ D 1
comes from equations(1) and(11), becausead�bc is cos2˛Csin2˛:

In practice,xy rectangles generally go intouv rectangles. The sides can be curved
(as in polar rectangles) but the angles are often90�: The change is “orthogonal.” The
next example has angles that are not90�; andJ still gives the answer.

Fig. 14.10 Change fromxy to uv hasJ D 1
3 : Fig. 14.11 Curved areas are also

dAD |J |dudv:
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EXAMPLE 8 Find the area ofR in Figure 14.10. Also compute
rr
R

exdx dy:

Solution The figure showsxD 2
3
uC 1

3
v and yD 1

3
uC 2

3
v: The determinant is

J D

�����Bx=Bu Bx=BvBy=Bu By=Bv �����D �����2=3 1=3

1=3 2=3

�����D 4

9
� 1
9

D
1

3
:

The area of thexy parallelogram becomes an integral over theuv square:

rr
R

dx dyD
rr
S

|J |du dvD
3r
0

3r
0

1
3
du dvD 1

3
�3 �3D 3:

The square has area9; the parallelogram has area3: I don’t know if J D 1
3

is a
stretching factor or a shrinking factor. The other integral

rr
exdx dy is» 3

0

» 3

0

e2u=3Cv=3 1

3
du dvD

�

3

2
e2u=3

�3

0

�

3ev=3

�3

0

1

3
D
3

2
.e2�1/.e�1/:

Main point: The change tou andv makes the limits easy (just0 and3).

Why is the stretching factorJ a determinant? With straight sides, this goes
back to Section11:3 on vectors.The area of a parallelogram is a determinant.
Here the sides are curved, but that only produces.du/2 and.dv/2; which we ignore.

A changedu gives one side of Figure 14.11—it is.Bx=Bu i CBy=Bu j/du: Side
2 is (Bx=Bv i CBy=Bv j/dv: The curving comes from second derivatives. The area
(the cross product of the sides) is|J |du dv:
Final remark I can’t resist looking at the change in the reverse direction. Now the
rectangle is inxy and the parallelogram is inuv: In all formulas, exchangex for u
andy for v:

newJ D

�����Bu=Bx Bu=ByBv=Bx Bv=By �����D B.u;v/B.x;y/ D
1

old J
: (12)

This is exactly likedu=dxD 1=.dx=du/: It is the derivative of the inverse function.
The product of slopes is1—stretch out, shrink back. Fromxy to uv we have2 by 2
matrices, and the identity matrixI takes the place of1:

dx

du

du

dx
D 1 becomes

"Bx=Bu Bx=BvBy=Bu By=Bv#"Bu=Bx Bu=ByBv=Bx Bv=By #D

"

1 0

0 1

#

:

(13)
The first row times the first column is.Bx=Bu/.Bu=Bx/C .Bx=Bv/.Bv=Bx/DBx=BxD 1: The first row times the second column is.Bx=Bu/.Bu=By/C .Bx=Bv/
.Bv=By/D Bx=ByD 0: The matrices are inverses of each other. The determi-
nants of a matrix and its inverse obey our rule: oldJ times newJ D 1: ThoseJ ’s
cannot be zero, just asdx=du anddu=dx were not zero. (Inverse functions increase
steadily or decrease steadily.)

In two dimensions, an areadx dy goes toJ du dv and comes back todx dy:
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14.2 EXERCISES

Read-through questions

We change variables to improve the a of integration.
The disk x2 Cy2¤ 9 becomes the rectangle0¤ r ¤ b ,
0¤ � ¤ c . The inner limits on

rr
dy dx are yD� d .

In polar coordinates this area integral becomes
rr

e D f .

A polar rectangle has sidesdr and g . Two sides are
not h but the angles are still i . The area between
the circles r D 1 and r D 3 and the rays� D 0 and � D�=4 is

j . The integral
rr
x dy dx changes to

rr
k . This is

the l around the m axis. Thenx is the ratio n .
This is the x coordinate of the o , and it is the p
value ofx:

In a rotation through̨ ; the point that reaches.u;v/ starts atxD

u cos˛�v sin˛;yD q . A rectangle in theuv plane comes
from a r in xy: The areas are s so the stretching fac-
tor is J D t . This is the determinant of the matrix u
containing cos̨ and sin˛: The moment of inertia

rr
x2dx dy

changes to
rr

v du dv:

For single integralsdx changes to w du: For double
integralsdx dy changes toJ dudv with J D x . The stretch-
ing factor J is the determinant of the2 by 2 matrix y .
The functionsx.u;v/ and y.u;v/ connect anxy region R to a
uv region S; and

rr
R dx dyD

rr
S

z D area of A . For
polar coordinatesxD B , yD C . For xDu;yDuC4v

the 2 by 2 determinant isJ D D . A square in theuv plane
comes from a E in xy: In the opposite direction the change
has uD x and vD 1

4 .y�x/ and a newJ D F . This J is
constant because this change of variables isG .

In 1–12R is a pie-shaped wedgeW 0¤ r ¤ 1 and �=4¤ � ¤ 3�=4:
1 What is the area ofR ? Check by integration in polar

coordinates.

2 Find limits on
rr
dy dx to yield the area ofR; and integrate.

Extra credit: Find limits on
rr
dx dy:

3 Equation (1) with ˛D�=4 rotates R into the uv region
S D : Find limits on

rr
dudv:

4 Compute the centroid heighty of R by changing
rr
y dx dy

to polar coordinates. Divide by the area ofR:

5 The region R has xD 0 because : After rotation
through˛D�=4; the centroid.x;y/ of R becomes the centroid

of S:

6 Find the centroid of any wedge0¤ r ¤ a, 0¤ � ¤ b:
7 SupposeR� is the wedgeR moved up so that the sharp

point is atxD 0, yD 1:

(a) Find limits on
rr
dy dx to integrate overR�:

(b) With x� D x and y� D y�1; the xy region R� corre-
sponds to what region in thex�y� plane ?
(c) After that changedx dy equals dx�dy�:

8 Find limits on
rr
r dr d� to integrate overR� in Problem7:

9 The right coordinates forR� arer� and��; with xD r� cos��
andyD r� sin��C1:

(a) Show thatJ D r� sodAD r�dr�d��:
(b) Find limits on

rr
r�dr�d�� to integrate overR�:

10 If the centroid ofR is .0;y/; the centroid ofR� is :

The centroid of the circle with radius3 and center.1;2/ is :

The centroid of the upper half of that circle is :

11 The moments of inertiaIx ;Iy ;I0 of the original wedgeR
are :

12 The moments of inertiaIx ;Iy ;I0 of the shifted wedgeR�
are :

Problems 13–16 change four-sided regions to squares.

13 R has straight sidesyD 2x; xD 1;y D 1C2x; xD 0: Locate its
four corners and drawR: Find its area by geometry.

14 Choosea; b; c; d so that the changexD auCbv, yD cuC

dv takes the previousR into S; the unit square0¤u¤ 1,
0¤ v¤ 1: From the stretching factorJ D ad�bc find the area
of R:

15 The regionR has straight sidesxD 0, xD 1, yD 0, yD

2xC3: Choose a;b;c so that xDu and yD auCbvCcuv

changeR to the unit squareS:

16 A nonlinear termuv was needed in Problem15: Which
regionsR could change to the squareS with a linearxD auCbv,
yD cuCdv ?

Draw the xy region R that corresponds in 17–22 to theuv
square S with corners .0;0/, .1;0/, .0;1/, .1;1/: Locate the
corners ofR and then its sides (like a jigsaw puzzle).

17 xD 2uCv; yDuC2v

18 xD 3uC2v; yDuCv

19 xD e2uCv; yD euC2v

20 xDuv; yD v2�u2

21 xDu; yD v.1Cu2/

22 xDu cosv; yDu sin v (only three corners)

23 In Problems17 and 19; computeJ from equation (8). Then find
the area ofR from

rr
S |J |dudv:

24 In 18 and20; find J D B.x;y/=B.u;v/ and the area ofR:

25 If R lies betweenxD 0 and xD 1 under the graph of
yD f .x/¡ 0; then xDu;yD vf .u/ takesR to the unit square
S: Locate the corners ofR and the point corresponding to
uD 1

2 ;vD 1: ComputeJ to prove what we know:

area ofRD
r 1

0 f .x/dxD
r 1

0

r 1
0 J dudv:
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26 From r D
a
x2 Cy2 and � D tan�1.y=x/; compute Br=Bx,Br=By, B�=Bx, B�=By; and the determinantJ D B.r;�/=B.x;y/:

How is thisJ related to the factorr D B.x;y/=B.r;�/ that enters
r dr d� ?

27 Example 4 integratede�x2
from 0 to 8 (answer

?
�). Also

BD
r 1

0 e
�x2

dx leads toB2 D
r 1

0 e
�x2

dx
r 1

0 e
�y2

dy: Change
this double integral over the unit square tor and�—and find the
limits on r that make exact integration impossible.

28 Integrate by parts to prove that the standard normal

distributionp.x/D e�x2=2=
?
2� has�2 D

r8�8 x2p.x/dxD 1:

29 Find the average distance from a point on a circle to
the points inside. Suggestion: Let.0;0/ be the point and let
0¤ r ¤ 2acos� , 0¤ � ¤� be the circle (radiusa). The distance
is r; so the average distance isr D

rr
=
rr

:

30 Draw the region R W 0¤x¤ 1, 0¤y¤8 and describe
it with polar coordinates (limits onr and �). Integraterr

R.x
2 Cy2/�3=2dx dy in polar coordinates.

31 Using polar coordinates, find the volume underzD x2 Cy2

above the unit diskx2 Cy2¤ 1:
32 The end of Example 1 stated the moment of inertia

rr
y2dA:

Check that integration.

33 In the square�1¤x¤ 2, �2¤y¤ 1; where could you
distribute a unit mass (with

rr
� dxdyD 1) to maximize

(a)
rr
x2� dA (b)

rr
y2� dA (c)

rr
r2� dA?

34 True or false, with a reason:

(a) If the uv regionS corresponds to thexy regionR; then
area ofS D area ofR:

(b)
rr
x dA¤ rr

x2 dA

(c) The average value off .x;y/ is
rr
f .x;y/dA

(d)
r8�8 xe�x2

dxD 0

(e) A polar rectangle has the same area as a straight-sided
region with the same corners.

35 Find the mass of the tilted square in Example 1 if the
density is�D xy:

36 Find the mass of the ring in Example 2 if the density is�D

x2 Cy2: This is the same as which moment of inertia with which
density ?

37 Find the polar moment of inertiaI0 of the ring in Example 2
if the density is�D x2 Cy2:

38 Give the following statement an appropriate name:rr
R f .x;y/dAD f .P / times (area ofR), whereP is a point in

R: Which pointP makes this correct forf D x andf D y ?

39 Find the xy coordinates of the top point in Figure 14.6a
and check that it goes to.u;v/D .1;1/:
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14.3 Triple Integrals

At this point in the book, I feel I can speak to you directly. You can guess what
triple integrals are like. Instead of a small interval or a small rectangle, there is a
small box. Instead of lengthdx or areadx dy; the box has volumedV D dx dy dz:
That is length times width times height. The goal is to put small boxes together (by
integration). The main problem will be to discover the correct limits onx;y;z:

We could dream up more and more complicated regions in three-dimensional
space. But I don’t think you can see the method clearly without seeing the region
clearly. In practice six shapes are the most important:

box prism cylinder cone tetrahedron sphere.

The box is easiest and the sphere may be the hardest (but no problem in spherical
coordinates). Circular cylinders and cones fall in the middle, wherexyz coordinates
are possible butr�z are the best. I start with the box and prism andxyz:

EXAMPLE 1 By triple integrals find the volume of a box and a prism (Figure 14.12).

rrr
box

dV D
1r

zD0

3r
yD0

2r
xD0

dx dy dz and
rr r
prism

dV D
1r

zD0

3�3zr
yD0

2r
xD0

dx dy dz

The inner integral for both is
r
dxD 2: Lines in thex direction have length2; cutting

through the box and the prism. The middle integrals show the limits ony (sincedy
comes second):

3r
yD0

2 dyD 6 and
3�3zr
yD0

2 dyD 6�6z:
After two integrations these areareas. The first area6 is for a plane section through
the box. The second area6�6z is cut through the prism. The shaded rectangle goes
from yD 0 to yD 3�3z—we needed and used the equationyC3zD 3 for the
boundary of the prism.At this pointz is still constant! But the area depends onz;
because the prism gets thinner going upwards. The base area is6�6zD 6; the top
area is6�6zD 0:

The outer integral multiplies those areas bydz; to give the volume of slices. They
are horizontal slices becausez came last. Integration adds up the slices to find the
total volume:

box volumeD
1r

zD0

6 dzD 6 prism volumeD
1r

zD0

.6�6z/dzD
h

6z�3z2
i1

0
D 3:

The box volume2 �3 �1 didn’t need calculus. The prism is half of the box, so its
volume was sure to be3—but it is satisfying to see how6z�3z2 gives the answer.
Our purpose is to see how a triple integral works.

Question Find the prism volume in the orderdz dy dx (six orders are possible).

Answer

» 2

0

» 3

0

» .3�y/=3

0

dz dy dxD

» 2

0

» 3

0

�

3�y
3

�

dy dxD

» 2

0

3

2
dxD 3:

To find those limits on thez integral, follow a line in thez direction. It enters the
prism atzD 0 and exits at the sloping faceyC3zD 3: That gives the upper limit
zD .3�y/=3: It is the height of a thin stick as in Section14:1: This section writes
out

r
dz for the height, but a quicker solution starts at the double integral.
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Fig. 14.12 Box with sides2;3;1: The prism is half of the box: volume
r
.6�6z/dz orr

3
2dx:

What is the number3
2

in the last integral ? It is thearea of a vertical slice, cut by
a planexD constant. The outer integral adds up slices.»»»

f .x;y;z/ dV is computed from three single integrals

»
�

»
�

»
f dx

�

dy
�

dz:

That step cannot be taken in silence—some basic calculus is involved. The triple
integral is the limit of

P

fi�V; a sum over small boxes of volume�V: Herefi is
any value off .x;y;z/ in the i th box. (In the limit, the boxes fit a curved region.)
Now take those boxesin a certain order. Put them into lines in thex direction and
put the lines of boxes into planes. The lines lead to the innerx integral, whose answer
depends ony andz: They integral combines the lines into planes. Finally the outer
integral accounts for all planes and all boxes.

Example 2 is important because it displays more possibilities than a box or prism.

EXAMPLE 2 Find the volume of a tetrahedron (4-sided pyramid). Locate (x;y;z).

Solution A tetrahedron has four flat faces, all triangles. The fourth facein
Figure 14.13 is on the planexCyCzD 1: A line in thex direction enters atxD 0
and exits atxD 1�y�z: (The length depends ony and z: The equation of the
boundary plane givesx:) Then those lines are put into plane slices by they integral:» 1�z

yD0

» 1�y�z

xD0

dx dyD

» 1�z

yD0

.1�y�z/dyD
h

y� 1
2
y2�zyi1�z

0
D 1

2
.1�z/2:

What is this number1
2
.1�z/2 ? It is the area at heightz: The plane at that height

slices out a right triangle, whose legs have length1�z: The area is correct, but look
at the limits of integration.If x goes to1�y�z; why doesy go to1�z ? Reason:
We are assembling lines, not points. The figure shows a line at everyy up to1�z:

Adding the slices gives the volume:
r 1

0
1
2
.1�z/2dzD

�

1
6
.z�1/3�1

0
D 1

6
: This

agrees with1
3
(base times height), the volume of a pyramid.

The heightz of the centroid is “zaverage:” We compute
rrr

z dV and divide by
the volume. Each horizontal slice is multiplied by its heightz; and the limits of
integration don’t change:»»»

z dV D

» 1

0

» 1�y

0

» 1�y�z

0

z dx dy dzD

» 1

0

z.1�z/2
2

dzD
1

24
:

This is quick becausez is constant in thex andy integrals. Each triangular slice
contributesz times its area1

2
.1�z/2 timesdz: Then thez integral gives the moment
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Fig. 14.13 Lines end at planexCyCzD 1: Triangles end at edgeyCzD 1: The average
height iszD

rrr
z dV=

rrr
dV:

1=24: To find theaverageheight, divide1=24 by the volume:

zD height of centroidD

rrr
z dVrrr
dV

D
1=24

1=6
D
1

4
:

By symmetryxD 1
4

and yD 1
4
: The centroid is the point.1

4
; 1

4
; 1

4
/: Compare that

with .1
3
; 1

3
/; the centroid of the standard right triangle. Compare also with1

2
; the cen-

ter of the unit interval. There must be a five-sided region in four dimensions centered
at .1

5
; 1

5
; 1

5
; 1

5
/:

For area and volume we meet another pattern. Length of standard interval is1;
area of standard triangle is1

2
; volume of standard tetrahedron is1

6
; hypervolume in

four dimensions must be : The interval reaches the pointxD 1; the triangle
reaches the linexCyD1; the tetrahedron reaches the planexCyCzD1: The four-
dimensional region stops at the hyperplane D 1:

EXAMPLE 3 Find the volume
rrr

dx dy dz inside the unit spherex2 Cy2 Cz2 D
1:

First question: What are the limits onx ? If a needle goes through the sphere in the
x direction, where does it enter and leave ? Moving in thex direction, the numbersy
andz stay constant. The inner integral deals only withx: The smallest and largestx
are at the boundary wherex2 Cy2 Cz2 D 1: This equation does the work—we solve
it for x: Look at the limits on thex integral:

volume of sphereD
‹r

‹

‹r
‹

r?1�y2�z2�?1�y2�z2

dx dy dzD
‹r

‹

‹r
‹

2
a
1�y2�z2 dy dz: (1)

The limits ony are�?1�z2 andC
?
1�z2: You can use algebra on the bound-

ary equationx2 Cy2 Cz2 D 1: But notice thatx is gone! We want the smallest and
largesty; for eachz: It helps very much to draw the plane at heightz; slicing through
the sphere in Figure 14.14. The slice is a circle of radiusr D

?
1�z2: So the area is

�r2; which must come from they integral:
r
2
a
1�y2�z2 dyD area of sliceD�.1�z2/: (2)

I admit that I didn’t integrate. Is it cheating to use the formula�r2 ? I don’t think
so. Mathematics is hard enough, and we don’t have to work blindfolded. The goal is
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understanding, and if you know the area then use it. Of course theintegral ofa
1�y2�z2 can be done if necessary—use Section7:2:

The triple integral is down to a single integral. We went from one needle to a circle
of needles and now to a sphere of needles. The volume is a sum of slices of area
�.1�z2/: The South Pole is atzD�1; the North Pole is atzD C1; and the integral
is the volume4�=3 inside the unit sphere:» 1�1

�.1�z2/dzD�

�

z� 1
3
z3

��1�1

D
2

3
����2

3
�

�

D
4

3
�: (3)

Question 1 A cone also has circular slices. How is the last integral changed?

Answer The slices of a cone have radius1�z: Integrate.1�z/2 not
?
1�z2:

Question 2 How does this compare with a circular cylinder (height1; radius1) ?

Answer Now all slices have radius1: AbovezD 0; a cylinder has volume� and a
half-sphere has volume2

3
� and a cone has volume1

3
�:

For solids with equal surface area, the sphere has largest volume.

Question 3 What is the average heightz in the cone and half-sphere and cylinder ?

Answer zD

r
z.slice area/dzr
.slice area/dz

D
1

4
and

3

8
and

1

2
:

Fig. 14.14
r
dxD length of needle,

rr
dx dyD area of slice. Ellipsoid is a stretched sphere.

EXAMPLE 4 Find the volume
rrr

dx dy dz inside the ellipsoidx2=a2 Cy2=b2 C

z2=c2 D 1:

The limits onx are now�a1�y2=b2�z2=c2: The algebra looks terrible. The
geometry is better—all slices are ellipses. Achange of variableis absolutely the
best.

IntroduceuD x=a andvD y=b andwD z=c: Then the outer boundary becomes
u2 Cv2 Cw2 D 1: In these new variables the shape is a sphere. The triple integral for
a sphere is

rrr
du dv dwD 4�=3: But what volumedV in xyz space corresponds

to a small box with sidesdu anddv anddw ?

Everyuvw box comes from anxyz box. The box is stretched with no bending
or twisting. Sinceu is x=a; the lengthdx is a du: Similarly dyD b dv anddzD
c dw: The volume of thexyz box (Figure 14.14) isdx dy dzD .abc/ du dv dw:
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Thestretching factorJ D abc is a constant, and the volume of the ellipsoid is

rrbadlimitsr
ellipsoid

dx dy dzD
rrbetter limitsr

sphere
.abc/ du dv dwD

4�

3
abc: (4)

You realize that this is special—other volumes are much more complicated. The
sphere and ellipsoid are curved, but the smallxyz boxes are straight. The next section
introduces spherical coordinates, and we can finally write “good limits.” But then we
need a differentJ:

14.3 EXERCISES

Read-through questions

Six important solid shapes are a . The integral
rrr

dx dy dz

adds the volume b of small c . For computation
it becomes d single integrals. The inner integral

r
dx

is the e of a line through the solid. The variables
f and g are held constant. The double integralrr
dx dy is the h of a slice, with i held constant.

Then thez integral adds up the volumes of j .

If the solid regionV is bounded by the planesxD 0, yD 0,
zD 0; andxC2yC3zD 1; the limits on the innerx integral are

k . The limits ony are l . The limits onz are m .
In the new variablesuD x, vD 2y, wD 3z; the equation of the
outer boundary is n . The volume of the tetrahedron inuvw
space is o . From dxD du anddyD dv=2 anddzD p ,
the volume of an xyz box is dx dy dzD q du dv dw:

So the volume ofV is r .

To find the average heightz in V we compute s = t .
To find the total mass inV if the density is �D ez we
compute the integral u . To find the average density we
compute v = w . In the order

rrr
dz dx dy the limits on

the inner integral can depend on x . The limits on the middle
integral can depend on y . The outer limits for the ellipsoid
x2 C2y2 C3z2¤ 8 are z .

1 For the solid region0¤x¤y¤ z¤ 1; find the limits inrrr
dx dy dz and compute the volume.

2 Reverse the order in Problem1 to
rrr

dz dy dx and find the lim-
its of integration. The four faces of this tetrahedron are the planes
xD 0 andyD x and :

3 This tetrahedron and five others like it fill the unit cube.
Change the inequalities in Problem1 to describe the other five.

4 Find the centroid.x;y;z/ in Problem1:

Find the limits of integration in
rrr

dx dy dz and the volume of
solids 5–16. Draw a very rough picture.

5 A cube with sides of length2; centered at.0; 0; 0/:

6 Half of that cube, the box above thexy plane.

7 Part of the same cube, the prism above the planezD y:

8 Part of the same cube, abovezD y andzD 0:

9 Part of the same cube, abovezD x andbelowzD y:

10 Part of the same cube, wherex¤y¤ z: What shape is
this ?

11 The tetrahedron bounded by planesxD 0, yD 0, zD 0, and
xCyC2zD 2:

12 The tetrahedron with corners.0;0;0/, .2;0;0/, .0;4;0/, .0;0;4/:
First find the plane through the last three corners.

13 The part of the tetrahedron in Problem11 below zD 1
2 :

14 The tetrahedron in Problem12with its top sliced off by the plane
zD 1:

15 The volume abovezD 0 below the cone
a
x2 Cy2 D 1�z:�16 The tetrahedron in Problem12; after it falls across thex

axis onto thexy plane.

In 17–20 find the limits in
rrr

dx dy dz or
rrr

dz dy dx:

Compute the volume.

17 A circular cylinder with height6 and basex2 Cy2¤ 1:
18 The part of that cylinder below the planezD x:Watch the base.
Draw a picture.

19 The volume shared by the cube (Problem5) and cylinder.

20 The same cylinder lying along thex axis.

21 A cube is inscribed in a sphere: radius1; both centers at.0;0;0/:
What is the volume of the cube ?

22 Find the volume and the centroid of the region bounded by
xD 0, yD 0, zD 0, and x=aCy=bCz=cD 1:

23 Find the volume and centroid of the solid
0¤ z¤ 4�x2�y2:

24 Based on the text, what is the volume inside
x2 C4y2 C9z2 D 16 ? What is the “hypervolume” of the
4-dimensional pyramid that stops atxCyCzCwD 1?



620 14 Multiple Integrals

25 Find the partial derivativesBI=Bx, BI=By, B2I=By Bz of

I D
zr

0

yr

0

dx dy andI D
zr

0

yr

0

xr

0

f .x;y;z/ dx dy dz:

26 Define the average value off .x;y;z/ in a solidV:

27 Find the moment of inertia
rrr

l2dV of the cube|x|¤ 1, |y|¤
1, |z|¤ 1 whenl is the distance to

(a) thex axis (b) the edgeyD zD 1 (c) the diagonalxD yD z:

28 Add upper limits to produce the volume of a unit cube from
small cubes:V D

P

iD1

P

j D1

P

kD1

.�x/3 D 1:

�29 Find the limit as�xÑ 0 of
3=�x
P

iD1

2=�x
P

j D1

j
P

kD1

.�x/3:

30 The midpoint rule for an integral over the unit cube chooses
the center valuef .1

2 ;
1
2 ;

1
2 /: Which functionsf D xmynzp are

integrated correctly ?

31 The trapezoidal rule estimates
r 1

0

r 1
0

r 1
0 f .x;y;z/ dx dy dz

as 1
8 times the sum off .x;y;z/ at 8 corners. This correctly

integratesxmynzp for whichm, n, p ?

32 Propose a27-point “Simpson’s Rule” for integration over
a cube. If many small cubes fill a large box, why are there
only 8 new points per cube ?
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14.4 Cylindrical and Spherical Coordinates

Cylindrical coordinates are good for describing solids that aresymmetric around
an axis. The solid is three-dimensional, so there are three coordinatesr;�;z:

r : out from the axis � : aroundthe axis z: alongthe axis.

This is a mixture of polar coordinatesr� in a plane, plusz upward. You will not find
r�z difficult to work with. Start with a cylinder centered on thez axis:

solid cylinderW 0¤ r¤ 1 flat bottom and topW 0¤ z¤ 3 half-cylinderW 0¤ �¤�
Integration over this half-cylinder is

r 3

0

r �

0

r 1

0
? dr d� dz. These limits onr;�;z

are especially simple. Two other axially symmetric solids are almost as convenient:

coneW integrate torCzD 1 sphereW integrate tor2 Cz2 DR2

I would not use cylindrical coordinates for a box. Or a tetrahedron.
The integral needs one thing more—the volumedV . The movementsdr andd�

anddz give a “curved box” inxyz space, drawn in Figure 14.15c. The base is a polar
rectangle, with arear dr d� . The new part is the heightdz. The volume of the
curved box isr dr d� dz. Thenr goes in the blank space in the triple integral—the
stretching factor isJ D r . There are six orders of integration (we give two):

volumeD

»
z

»
�

»
r

r dr d� dzD

»
�

»
z

»
r

r dr dz d�: (1)

Fig. 14.15 Cylindrical coordinates for a point and a half-cylinder. Smallvolumer dr d� dz:

EXAMPLE 1 (Volume of the half-cylinder). The integral ofr dr from0 to 1 is 1
2
:

The� integral is� and thez integral is3. The volume is3�=2.

EXAMPLE 2 The surfacer D 1�z encloses the cone in Figure 14.16. Find its
volume.

First solution Sincer goes out to1�z, the integral ofr dr is 1
2
.1�z/2. The�

integral is2� (a full rotation). Stop there for a moment.
We have reached

rr
r dr d� D 1

2
.1�z/2 2� . This is thearea of a slice at height

z. The slice is a circle, its radius is1�z, its area is�.1�z/2. Thez integral adds
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those slices to give�=3. That is correct, but it is not the only way to compute the
volume.

Second solution Do thez and� integrals first. Sincez goes up to1�r , and�
goes around to2� , those integrals produce

rr
r dz d� D r.1�r/2�. Stop again—

this must be the area of something.
After thez and� integrals we have ashell at radiusr . The height is1�r (the

outer shells are shorter). This height times2�r gives the area around the shell. The
choice between shells and slices is exactly as in Chapter8: Different orders of inte-
gration give different ways to cut up the solid.

The volume of the shell is area times thicknessdr . The volume of the complete

cone is the integral of shell volumes:
r 1

0
r.1�r/2� dr D�=3.

Third solution Do ther andz integrals first:
rr
r dr dzD 1

6
. Then the� integral

is
r

1
6
d� , which gives1

6
times2� . This is the volume�=3—but what is1

6
d� ?

The third cone is cut into wedges. The volume of a wedge is1
6
d� . It is quite

common to do the� integral last, especially when it just multiplies by2� . It is not so
common to think of wedges.

Question Is the volume1
6
d� equal to an area1

6
times a thicknessd� ?

Answer No! The triangle in the third cone has area1
2

not 1
6
. Thickness is never

d� .

Fig. 14.16 A cone cut three ways: slice at heightz, shell at radiusr , wedge at angle� .

This cone is typical of asolid of revolution. The axis is in thez direction. The
� integral yields2� , whether it comes first, second, or third. Ther integral goes
out to a radiusf .z/, which is 1 for the cylinder and1�z for the cone. The in-
tegral

rr
r dr d� is �.f .z//2 D area of circular slice. This leaves thez integralr

�.f .z//2dz. That is our old volume formula
r
�.f .x//2dx from Chapter8;where

the slices were cut through thex axis.

EXAMPLE 3 Themoment of inertiaaround thez axis is
rrr

r3dr d� dz. The
extrar2 is .distance to axis/2. For the cone this triple integral is�=10.

EXAMPLE 4 The momentaround thez axis is
rrr

r2 dr d� dz. For the cone
this is�=6. Theaverage distancer is .moment/=.volume/D .�=6/=.�=3/D 1

2
.

EXAMPLE 5 A sphere of radiusR hasthe boundaryr2 Cz2 DR2, in cylindrical
coordinates. The outer limit on ther integral is

?
R2�z2. That is not acceptable in
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difficult problems. To avoid it we now change to coordinates thatare natural for a
sphere.

SPHERICAL COORDINATES

The Earth is a solid sphere (or near enough). On its surface we use two coordinates—
latitude and longitude. To dig inward or fly outward, there is a third coordinate—the
distance� from the center. This Greek letterrho replacesr to avoid confusion with
cylindrical coordinates. Wherer is measured from thez axis,� is measured from the
origin. Thusr2 D x2 Cy2 and�2 D x2 Cy2 Cz2.

The angle� is the same as before. It goes from0 to 2� . It is the longitude, which
increases as you travel east around the Equator.

The angle� is new. It equals0 at the North Pole and� (not2�) at the South Pole.
It is thepolar angle, measured down from thez axis. The Equator has a latitude of0
but a polar angle of�=2 (halfway down). Here are some typical shapes:

solid sphere (or ball):0¤ �¤R surface of sphere:�DR

upper half-sphere:0¤�¤�=2 eastern half-sphere:0¤ �¤�

Fig. 14.17 Spherical coordinates��� . The volumedV D �2 sin � d� d� d� of a spherical
box.

The angle� is constant on a cone from the origin. It cuts the surface in a circle
(Figure 14.17b), but not a great circle. The angle� is constant along a half-circle
from pole to pole. The distance� is constant on each inner sphere, starting at the
center�D 0 and moving out to�DR.

In spherical coordinates the volume integral is
rrr

�2 sin � d� d� d� . To
explain that surprising factorJ D �2 sin�, start withxD r cos� andyD r sin� . In
spherical coordinatesr is � sin� andz is � cos�—see the triangle in the figure. So
substitute� sin� for r :

xD � sin� cos�; yD � sin� sin�; zD � cos�: (1)

Remember those two steps,��� to r�z to xyz. We check thatx2 Cy2 Cz2 D �2:

�2.sin2� cos2 �Csin2� sin2 �Ccos2�/D �2.sin2�Ccos2�/D �2:

The volume integral is explained by Figure 14.17c. That shows a “spherical box”
with right angles and curved edges. Two edges ared� and�d�. The third edge is
horizontal. The usualrd� becomes� sin� d�: Multiplying those lengths givesdV .
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The volume of the box isdV D �2 sin � d� d� d� . This is adistance cubed, from
�2d�.

EXAMPLE 6 A solid ball of radiusR has known volumeV D 4
3
�R3. Notice the

limits:» 2�

0

» �

0

» R

0

�2 sin� d� d� d� D
�

1
3
�3
�R

0

��cos�
��

0

�

�
�2�

0
D .1

3
R3/.2/.2�/:

Question What is the volume above the cone in Figure 14.17 ?

Answer The� integral stops atŒ�cos���=3
0 D 1

2
. The volume is.1

3
R3/.1

2
/.2�/.

EXAMPLE 7 Thesurface areaof a sphere isAD 4�R2. Forget the� integral:

AD

» 2�

0

» �

0

R2 sin� d� d� DR2
��cos�

��

0

�

�
�2�

0
DR2.2/.2�/:

After those examples from geometry, here is the real thing from science. I want
to compute one of the most important triple integrals in physics—“the gravitational
attraction of a solid sphere.” For some reason Isaac Newton had trouble with this
integral. He refused to publish his masterpiece on astronomy until he had solved it. I
think he didn’t use spherical coordinates—and the integral is not easy even now.

The answer that Newton finally found is beautiful.The sphere acts as if all its
mass were concentrated at the center. At an outside point.0;0;D/, the force of
gravity is proportional to1=D2. The force from a uniform solid sphere equals the
force from a point mass, at every outside pointP . That is exactly what Newton wanted
and needed, to explain the solar system and to prove Kepler’s laws.

Here is the difficulty. Some parts of the sphere are closer thanD, some parts are
farther away. The actual distanceq, from the outside pointP to a typical inside point,
is shown in Figure 14.18. Theaveragedistanceq to all points in the sphere is not
D. But what Newton needed was a different average, and by good luck or some
divine calculus it works perfectly:The average of1=q is 1=D. This gives the
potential energy:

potential at pointP D
rrr
sphere

1

q
dV D

Volume of sphere

D
: (2)

A small volumedV at the distanceq contributesdV=q to the potential (Section8:6;
with density 1). The integral adds the contributions from the whole sphere.
Equation(2) says that the potential atr DD is not changed when the sphere is
squeezed to the center. The potential equals the whole volume divided by the single
distanceD.

Important point: The average of1=q is 1=D and not1=q. The average of1
2

and
1
4

is not 1
3
. Smaller point: I wrote “sphere” where I should have written “ball.” The

sphere is solid:0¤ �¤R;0¤�¤�;0¤ �¤ 2� . What about the force ? For the

small volume it is proportional todV=q2 (this is the inverse square law). Butforce is
a vector, pulling the outside point towarddV—not toward the center of the sphere.
The figure shows the geometry and the symmetry.We want thez component of the
force. (By symmetry the overallx andy components are zero.) The angle between
the force vector and thez axis is˛, so for thez component we multiply bycos˛.
The total force comes from the integral that Newton discovered:
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force at pointP D
rrr
sphere

cos˛

q2
dV D

volume of sphere

D2
: (3)

I will compute the integral(2) and leave you the privilege of solving (3). I mean that
word seriously. If you have come this far, you deserve the pleasure of doing what at
one time only Isaac Newton could do. Problem26 offers a suggestion (just the law of
cosines) but the integral is yours.

Fig. 14.18 Distanceq from outside point to inside point. Distancesq andQ to surface.

The law of cosines also helps with(2). For the triangle in the figure it gives
q2 DD2�2�D cos�C�2. Call this whole quantityu. We do the surface integral
first .d� andd� with � fixed/. Thenq2 Du andqD

?
u andduD 2�D sin� d�:» 2�

0

» �

0

�2 sin� d� d�

q
D

»
2��2

2�D

du?
u

D

�

2��

D

?
u

��D�

�D0

: (4)

2� came from the� integral. The integral ofdu=
?
u is 2

?
u. Sincecos�D�1

at the upper limit,u is D2 C2�DC�2. The square root ofu is DC�. At the
lower limit cos�D C1 anduDD2�2�DC�2. This is another perfect square—
its square root isD��. The surface integral (4) with fixed� is» »

dA

q
D
2��

D

�

.DC�/� .D��/�D 4��2

D
: (5)

Last comes the� integral:
r R

0
4��2d�=DD 4

3
�R3=D. This proves formula(2):

potential equals volume of the sphere divided byD.

Note 1 Physicists are also happy about equation(5). The average of1=q is 1=D
not only over the solid sphere but over each spherical shell of area4��2. The shells
can have different densities, as they do in the Earth, and still Newton is correct. This
also applies to the force integral(3)—each separate shell acts as if its mass were
concentrated at the center. Then the final� integral yields this property for the solid
sphere.

Note 2 Physicists also know that force is minus the derivative of potential. The
derivative of(2) with respect toD produces the force integral(3). Problem27 ex-
plains this shortcut to Equation(3).
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EXAMPLE 8 Everywhere inside a hollow sphere the force of gravity is zero.

WhenD is smaller than�, the lower limit
?
u in the integral(4) changes fromD��

to ��D. That way the square root stays positive. This changes the answer in(5) to
4��2=�, so the potential no longer depends onD. The potential is constant inside
the hollow shell. Since the force comes from its derivative, the force is zero.

A more intuitive proof is in the second figure. The infinitesimal areas on the surface
are proportional toq2 andQ2. But the distances to those areas areq andQ, so the
forces involve1=q2 and1=Q2 (the inverse square law). Therefore the two areas exert
equal and opposite forces on the inside point, and they cancel each other. The total
force from the shell is zero.

I believe this zero integral is the reason that the inside of a car is safe from lightning.
Of course a car is not a sphere. But electric charge distributes itself to keep the surface
at constant potential. The potential stays constant inside—therefore no force. The tires
help to prevent conduction of current (and electrocution of driver).

P.S. Don’t just step out of the car. Let a metal chain conduct the charge to the
ground. Otherwise you could be the conductor.

CHANGE OF COORDINATES—STRETCHING FACTOR J

Once more we look to calculus for a formula. We need the volume ofa small curved
box in anyuvw coordinate system. Ther�z box and the��� box have right
angles, and their volumes were read off from the geometry (stretching factorsJ D r
andJ D �2 sin� in Figures 14.15 and 14.17). Now we change fromxyz to other
coordinatesuvw—which are chosen to fit the problem.

Going fromxy to uv, the areadAD J du dv was a2 by 2 determinant. In three
dimensions the determinant is3 by 3. The matrix is always the “Jacobian matrix,”
containing first derivatives. There were four derivatives fromxy to uv, now there are
nine fromxyz to uvw.

14C Supposex;y;z are given in terms ofu;v;w. Then a small box inuvw space
(sidesdu, dv, dw) comes from a volumedV D J du dv dw in xyz space:

J D

��������Bx=Bu Bx=Bv Bx=BwBy=Bu By=Bv By=BwBz=Bu Bz=Bv Bz=Bw ��������D stretching factor
B.x;y;z/B.u;v;w/ : (6)

The volume integral
rrr

dx dy dz becomes
rrr |J |du dv dw, with limits on

uvw.

Remember that a3 by 3 determinant is the sum of six terms (Section11:5). One
term inJ is .Bx=Bu/.By=Bv/.Bz=Bw/, along the main diagonal. This comes from
pure stretching, and the other five terms allow for rotation. The best way to exhibit
the formula is for spherical coordinates—where the nine derivatives are easy but the
determinant is not:
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EXAMPLE 9 Find the factorJ forxD � sin � cos�; yD � sin� sin�; zD � cos�.

J D
B.x;y;z/B.�;�;�/ D

��������sin� cos� � cos� cos� �� sin� sin�

sin� sin� � cos� sin� � sin� cos�

cos� �� sin� 0

�������� :
The determinant has six terms, but two are zero—because of the zero in the
corner. The other four terms are�2 sin� cos2� sin2 � and�2 sin� cos2� cos2 �
and�2 sin3� sin2 � and�2 sin3� cos2 � . Add the first two (notesin2 �Ccos2 � )
and separately add the second two. Then add the sums to reachJ D �2 sin�.

Geometry already gave this answer. For mostuvw variables, use the determinant.

14.4 EXERCISES

Read-through questions

The three a coordinates arer�z. The point atxD yD zD

1 has r D b , � D c , zD d . The volume integral isrrr
e . The solid region1¤ r ¤ 2;0¤ � ¤ 2�, 0¤ z¤ 4 is a

f . Its volume is g . From ther and � integrals the area
of a h equals i . From thez and � integrals the area of
a j equals k . In r�z coordinates the shapes of l are
convenient, while m are not.

The three n coordinates are��� . The point atxD yD

zD 1 has �D o , �D p , � D q . The angle� is
measured from r . � is measured from s . � is the distance
to t , wherer was the distance to u . If ��� are known
thenxD v , yD w , zD x . The stretching factorJ is
a3 by 3 y , and volume is

rrr
z .

The solid region1¤ �¤ 2;0¤ �¤�;0¤ � ¤ 2� is a A . Its
volume is B . From the� and � integrals the area of a C
at radius� equals D . Newton discovered that the outside
gravitational attraction of a E is the same as for an equal mass
located at F .

Convert the xyz coordinates in 1–4 tor�z and ��� .

1 .D;0;0/

3 .0;0;D/.watch�/

2 .0;�D;0/
4 .3;4;5/

Convert the spherical coordinates in 5–7 toxyz and r�z.

5 �D 4, �D�=4, � D��=4
6 �D 2, �D�=3, � D�=6

7 �D 1, �D�, � D anything.

8 Where doesxD r andyD � ?

9 Find the polar angle� for the point with cylindrical coordinates
r�z.

10 What are x.t/;y.t/;z.t/ on the great circle from�D 1;

�D�=2;� D 0 with speed1 to �D 1;�D�=4;� D�=2 ?

From the limits of integration describe each region in 11–20 and
find its volume. The inner integral has the inner limits.

11
» 2�

�D0

» 1=
?

2

rD0

»?1�r2

zDr
r dz dr d�

12
» �

0

» 1

0

» 1Cr2

0
r dz dr d�

13
» 2�

�D0

» 1

zD0

» 2�z

rD0
r dr dz d�

14
» �

0

» �

0

» �

0
r d� dr dz

15
» �=2

0

» �=2

0

» 1

0
�2 sin� d� d� d�

16
» 2�

0

» �=3

0

» 2

sec�
�2 sin� d� d� d�

17
» �

0

» �

0

» sin�

0
�2 sin� d� d� d�

18
» 2�

0

» �=4

0

» 3

1
�2 sin� d� d� d�

19
» �

0

» �

0

» �

0
�2 sin� d� d� d�

20
» 1

0

» 1

0

» 1

0
�2 sin� d� d� d�

21 Example 5 gave the volume integral for a sphere inr�z
coordinates. What is the area of the circular slice at heightz ? What
is the area of the cylindrical shell at radiusr ? Integrate over slices
.dz/ and over shells.dr/ to reach4�R3=3.

22 Describe the solid with0¤ �¤ 1�cos� and find its volume.
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23 A cylindrical tree has radiusa. A saw cuts horizontally, ending
halfway in at thex axis. Then it cuts on a sloping plane (angle˛
with the horizontal), also ending at thex axis. What is the volume
of the wedge that falls out ?

24 Find the mass of a planet of radiusR, if its density at each
radius� is ıD .�C1/=�. Notice the infinite density at the center,
but finite massM D

rrr
ı dV . Here� is radius, not density.

25 For the cone out tor D 1�z, the average distance from thez
axis isr D 1

2 . For the triangle out tor D 1�z the average isr D 1
3 .

How can they be different when rotating the triangle produces the
cone ?

Problems 26–32, on the attraction of a sphere, use Figure 14.18
and the law of cosinesq2 DD2�2�D cos�C�2 Du.

26 Newton’s achievementShow that
rrr

.cos˛/dV=q2 equals
volume=D2. One hint only: Find cos̨ from a second law of cosines
�2 DD2�2qD cos˛Cq2. The� integral should involve1=q and
1=q3. Equation (2) integrates1=q, leaving

rrr
dV=q3 still to do.

27 Compute Bq=BD in the first cosine law and show from
Figure 14.18 that it equals cos̨. Then the derivative of
equation (2) with respect toD is a shortcut to Newton’s
equation (3).

28 The lines of lengthD and q meet at the anglę . Move the
meeting point up by�D. Explain why the other line stretches by
�q��D cos˛. SoBq=BDD cos˛ as before.

29 Show that the average distance isqD 4R=3, from the North
Pole .DDR/ to points on the Earth’s surface.�DR/. To
compute: qD

rr
qR2 sin� d� d�=.area 4�R2). Use the same

substitutionu.

30 Show as in Problem29 that the average distance isqDDC
1
3�

2=D, from the outside point.0;0;D/ to points on the shell of ra-
dius�. Then integrate

rrr
q dV and divide by4�R3=3 to findq for

the solid sphere.

31 In Figure 14.18b, it is not true that the areas on the surface are
exactly proportional toq2 andQ2. Why not ? What happens to the
second proof in Example 8 ?

32 For two solid spheres attracting each other (sun and planet), can
we concentratebothspheres into point masses at their centers ?�33 Compute

rrr
cos˛ dV=q3 to find the force of gravity at

.0;0;D/ from a cylinder x2 Cy2¤a2;0¤ z¤h. Show from a
figure whyq2 D r2 C.D�z/2 and cos̨ D .D�z/=q.

34 A linear change of variables hasxD auCbvCcw;y D duC

evCf w, andzDguChvC iw. Write down the six terms in the
determinantJ . Three terms have minus signs.

35 A pure stretching hasxDau;yD bv, andzD cw. Find the3
by 3 matrix and its determinantJ . What is special about thexyz
box in this case ?

36 (a) The matrix in Example 9 has three columns. Find the
lengths of those three vectors (sum of squares, then square root).
Compare with the edges of the box in Figure 14.17.

(b) Take the dot product of every column inJ with every other
column. Zero dot products mean right angles in the box. SoJ is
the product of the column lengths.

37 Find the stretching factorJ for cylindrical coordinates from the
matrix of first derivatives.

38 Follow Problem36 for cylindrical coordinates—find the length
of each column inJ and compare with the box in Figure 14.15.

39 Find the moment of inertia around thez axis of a spherical shell
(radius�, density1). The distance from the axis to a point on the
shell isr D . Substitute forr to find

I.�/D
r 2�
0

r �
0 r2�2 sin� d� d�:

Divide bymr2 (which is4��4) to compute the numberJ for a hol-
low ball in the rolling experiment of Section8:5:

40 The moment of inertia of a solid sphere (radiusR,
density 1) adds up the hollow spheres of Problem39 W

I D
r R

0 I.�/d�D . Divide bymR2 (which is 4
3�R

5) to find
J in the rolling experiment. A solid ball rolls faster than a hollow
ball because .

41 Inside the Earth, the force of gravity is proportional to the
distance� from the center. Reason: The inner ball of radius� has
mass proportional to (assume constant density). The force is
proportional to that mass divided by . The rest of the Earth
(sphere with hole) exerts no force because .

42 Dig a tunnel through the center to Australia. Drop a ball in the
tunnel atyDR; Australia isyD�R. The force of gravity is�cy
by Problem41: Newton’s law ismy2 D�cy. What does the ball do
when it reaches Australia ?
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