
CHAPTER 10

Infinite Series

Infinite series can be a pleasure (sometimes). They throw a beautiful light on sinx
andcosx. They give famous numbers like� ande. Usually they produce totally
unknown functions—which might be good. But on the painful side is the fact that
an infinite series has infinitely many terms.

It is not easy to know the sum of those terms. More than that, it is not certain
that thereis a sum. We need tests, to decide if the series converges. We also need
ideas, to discover what the series convergesto. Here are examples ofconvergence,
divergence, andoscillation:

1C 1
2

C 1
4

C � � �D 2 1C1C1C � � �D8 1�1C1�1 � � �D‹

The first series converges. Its next term is1=8, after that is1=16—and every step
brings us halfway to2. The second series (the sum of1’s) obviously diverges to
infinity. The oscillating example (with1’s and�1’s) also fails to converge.

All those and more are special cases of one infinite series which is absolutely the
most important of all:

The geometric series is1CxCx2 Cx3 C � � �D 1

1�x :
This is a series offunctions. It is a “power series.” When we substitute numbers for
x, the series on the left may converge to the sum on the right. We need to know when
it doesn’t. ChoosexD 1

2
and xD 1 andxD�1:

1C 1
2

C
�

1
2

�2
C � � � is the convergent series. Its sum is

1

1� 1
2

D 2

1C1C1C � � � is divergent. Its sum is
1

1�1 D
1

0
D8

1C .�1/C .�1/2C � � � is the oscillating series. Its sum should be
1

1� .�1/ D
1

2
.

The last sum bounces between one and zero, so at least its average is1
2
. At xD 2

there is no way that1C2C4C8C � � � agrees with1=.1�2/.
This behavior is typical of a power series—to converge in an interval ofx’s and to

diverge whenx is large. The geometric series is safe forx between�1 and1. Outside
that range it diverges.
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432 10 Infinite Series

The next example shows arepeating decimal1:111 : : ::

SetxD
1

10
: The geometric series is1C

1

10
C

�

1

10

�2

C

�

1

10

�3

C � � �
The decimal1:111 : : : is also the fraction1=

�

1� 1
10

�

, which is 10=9. Every
fraction leads to a repeating decimal. Every repeating decimal adds up(through
the geometric series)to a fraction.

To get3:333 : : :; just multiply by3. This is10=3. To get1:0101 : : :; setxD 1=100.
This is the fraction1=

�

1� 1
100

�

, which is100=99.

Here is an unusual decimal (which eventually repeats). I don’t really understand it:

1

243
D :004 115 226 337 448 : : :

Most numbers are not fractions (or repeating decimals). A goodexample is� :

� D 3C
1

10
C

4

100
C

1

1000
C

5

10000
C � � � :

This is 3:1415 : : :, a series that certainly converges. We happen to know the first
billion terms (the billionth is given below). Nobody knows the2 billionth term.
Compare that series with this one, which also equals� :

� D 4� 4
3

C
4

5
� 4
7

C � � �
Thatalternating seriesis really remarkable. It is typical of this chapter, because its
pattern is clear. We know the2 billionth term (it has a minus sign). This is not a
geometric series, but in Section 10.1 it comes from a geometric series.

Question Does this series actually converge? What if all signs areC ?
Answer The alternating series converges to� (Section 10.3). The positive series
diverges to infinity (Section 10.2). The terms go to zero, but their sum is infinite.

This example begins to show what the chapter is about. Part of the subject deals
with special series, adding to10=9 or � or ex . The other part is about series in
general, adding to numbers or functions that nobody has heard of. The situation was
the same for integrals—they give famous answers likelnx or unknown answers liker
xx dx. The sum of1C1=8C1=27C � � � is also unknown—although a lot of

mathematicians have tried.
The chapter is not long, but it is full. The last half studiespower series. We begin

with a linear approximation like1Cx. Next is a quadratic approximation like
1CxCx2. In the end we matchall the derivatives off .x/. This is the “Taylor
series,” a new way to create functions—not by formulas or integrals but by infinite
series.

No example can be better than1=.1�x/, which dominates Section 10.1. Then we
define convergence and test for it. (Most tests are really comparisons with a geometric
series.) The second most important series in mathematics is theexponential series
ex D 1CxC 1

2
x2 C 1

6
x3 C � � � . It includes the series forsinx andcosx, because of

the formulaeix D cosxC i sinx. Finally a whole range of new and old functions
will come from Taylor series.

In the end, all the key functions of calculus appear as “infinite polynomials” (ex-
cept the step function). This is the ultimate voyage from the linear functionyD
mxCb.
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10.1 The Geometric Series

We begin by looking at both sides of the geometric series:

1CxCx2 Cx3 C � � �D 1

1�x : (1)

How does the series on the left produce the function on the right ? How does1=.1�
x/ produce the series ? Add up two terms of the series, then three terms, thenn terms:

1CxD
1�x2

1�x 1CxCx2 D
1�x3

1�x 1C � � �Cxn�1 D
1�xn

1�x : (2)

For the first, 1Cx times 1�x equals1�x2 by ordinary algebra. The second
begins to make the point:1CxCx2 times1�x gives1�xCx�x2Cx2�x3.
Between1 at the start and�x3 at the end, everything cancels. The same happens in all
cases:1C � � �Cxn�1 times1�x leaves1 at the start and�xn at the end. This proves
equation(2)—the sum ofn terms of the series.

For the whole series we will pushn towards infinity. On a graph you can see what
is happening. Figure 10.1 showsnD 1 andnD 2 andnD 3 andnD8.

Fig. 10.1 Two terms, then three
terms, then full series:

1CxCx2 C � � �D 1

1�x .

1CxCx2 C � � �
1�xb1

1�x
x

x�x2

x2

x2�x3� � �
The infinite sum gives a finite
answer, providedx is between�1 and 1. Then xn goes to
zero:

1�xn

1�x Ñ 1

1�x :
Now start with the function1=.1�x/. How does it produce the series ? One

way is elementary but brutal, to do “long division” of1�x into 1 (next to the figure).
Another way is to look up the binomial formula for.1�x/�1. That is cheating—
we want to discover the series, not just memorize it. The successful approach uses
calculus.Compute the derivatives off .x/D 1=.1�x/:

f 1 D .1�x/�2 f 2 D 2.1�x/�3 f 3 D 6.1�x/�4 � � � (3)
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At xD 0 these derivatives are1, 2, 6, 24, : : : : Notice how�1 from the chain rule
keeps them positive.Thenth derivative atxD 0 is n factorial:

f .0/D 1 f 1.0/D 1 f 2.0/D 2 f 3.0/D 6 � � � f .n/.0/D nŠ:

Now comes the idea.To match the series with1=.1�x/, match all those deriva-
tives atxD 0. Each powerxn gets one derivative right. Its derivatives atxD 0 are
zero, except thenth derivative, which isn! By adding all powers we get every deriva-
tive right—so the geometric series matches the function:

1CxCx2 Cx3 C � � �has the same derivatives atxD 0 as 1=.1�x/:
The linear approximation is1Cx. Then comes1

2
f 2.0/x2 D x2. The third deriva-

tive is supposed to be6, andx3 is just what we need.Through its derivatives, the
function produces the series.

With that example, you have seen a part of this subject. The geometric series
diverges if |x| ¥ 1. Otherwise it adds up to the function it comes from (when�1  x  1). To get familiar with other series, we now apply algebra or calculus—to
reach the square of1=.1�x/ or its derivative or its integral. The point is that these
operations are appliedto the series.

The best I know is to show you eight operations that produce something useful.
At the end we discover series forln 2 and� .

1. Multiply the geometric series bya or ax:

aCaxCax2 C � � �D a

1�x axCax2 Cax3 C � � �D ax

1�x : (4)

The first series fits the decimal3:333 : : :: In that caseaD 3. The geometric series for
xD 1

10
gave1:111 : : :D 10=9, and this series is just three times larger. Its sum is10=3.

The second series fits other decimals that are fractions in disguise. To get12=99,
chooseaD 12 andxD 1=100:

:121212 : : :D
12

100
C

12

1002
C

12

1003
C � � �D 12=100

1�1=100D
12

99
:

Problem13 asks about:8787 : : : and :123123 : : :: It is usual in precalculus to write
aCarCar2 C � � �D a=.1�r/. But we usex instead ofr to emphasize thatthis is
a function—which we can now differentiate.

2. The derivative of the geometric series1CxCx2 C � � � is 1=.1�x/2:

1C2xC3x2C4x3 C � � �D d

dx

�

1

1�x�D
1

.1�x/2 : (5)

At xD 1
10

the left side starts with 1:23456789. The right side is

1=.1� 1
10
/2 D 1=.9=10/2, which is100=81. If you have a calculator, divide100 by

81.

The answer should also be near.1:11111111/2, which is1:2345678987654321.

3. Subtract1CxCx2 C � � � from 1C2xC3x2 C � � � as you subtract functions:

xC2x2 C3x3 C � � �D 1

.1�x/2 D
1

.1�x/ D
x

.1�x/2 : (6)

Curiously, the same series comes from multiplying.5/ byx. It answers a question left
open in Section 8.4—the average number of coin tosses until the result is heads. This
is the sum1.p1/C2.p2/C � � � from probability, withxD 1

2
:
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1
�

1
2

�

C2
�

1
2

�2
C3

�

1
2

�3
C � � �D 1

2

.1� 1
2
/2

D 2: (7)

The probability of waiting until thenth toss ispn D
�

1
2

�n
. The expected value istwo

tosses. I suggested experiments, but now this mean value is exact.

4. Multiply series: the geometric series times itself is1=.1�x/ squared:

.1CxCx2 C � � �/.1CxCx2 C � � �/D 1C2xC3x2C � � � : (8)

The series on the right is not new! In equation(5) it was the derivative of
yD 1=.1�x/. Now it is thesquareof the samey. The geometric series satisfies
dy=dxD y2, so the function does too. We have stumbled onto a differential equation.

Notice how the series was squared. A typical term in equation(8) is 3x2, coming
from 1 timesx2 andx timesx andx2 times1 on the left side. It is a lot quicker
to square1=.1�x/—but other series can be multiplied when we don’t know what
functions they add up to.

5. Solvedy=dxD y2 from any starting value—a new application of series:

Suppose the starting value isyD 1 at xD 0. The equationy 1 D y2 gives12 for the
derivative. Now a key step:The derivative of the equation givesy2 D 2yy 1. At
xD 0 that is2 �1 �1. Continuing upwards, the derivative of2yy 1 is 2yy2C2.y1/2.
At xD 0 that isy3 D 4C2D 6.

All derivatives are factorials:1;2;6;24; : : : :We are matching the derivatives of the
geometric series1CxCx2 Cx3 C : : : : Term by term, we rediscover the solution to
y 1 D y2. The solution starting fromy.0/D 1 is yD 1=.1�x/.

A different starting value is�1. Theny 1 D .�1/2 D 1 as before. The chain rule
gives y2 D 2yy 1 D�2 and theny3 D 6. With alternating signs to match these
derivatives, the solution starting from�1 is

yD�1Cx�x2 Cx3 C � � �D�1=.1Cx/: (9)

It is a small challenge to recognize the function on the right from the series on the
left. The series has�x in place ofx; then multiply by�1. The sumyD�1=.1Cx/
also satisfiesy 1 D y2. We can solve differential equations from all starting values
by infinite series. Essentially we substitute an unknown series into the equation, and
calculate one term at a time.

6. The integrals of1CxCx2 C � � � and1�xCx2��� � are logarithms:

xC
1

2
x2 C

1

3
x3 C � � �D » x

0

dx

1�x D� ln .1�x/ (10a)

x� 1
2
x2 C

1

3
x3��� �D » x

0

dx

1Cx
D C ln .1Cx/ (10b)

Thederivative of (10a) brings back the geometric series. For logarithms we find1=n
not 1=n! The first termx and second term1

2
x2 give linear and quadratic approxi-

mations. Now we have the whole series. I cannot fail to substitute1 and 1
2
, to find

ln.1�1/ andln.1C1/ andln.1� 1
2
/:

xD 1 W 1 C 1
2

C 1
3

C 1
4

C � � �D� ln 0D C8 (11a)

xD 1 W 1 � 1
2

C 1
3
� 1

4
C � � �D ln 2D :693 (11b)

xD 1
2

W 1
2

C 1
8

C 1
24

C 1
64

C � � �D� ln 1
2

D ln 2: (12)
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The first series diverges to infinity. Thisharmonic series1C 1
2

C 1
3

C � � � came into
the earliest discussion of limits (Section 2.6). The second series has alternating signs
and converges toln 2. The third has plus signs and also converges toln 2. These will
be examples for a major topic in infinite series— tests for convergence.

For the first time in this book we are able to compute a logarithm! Something
remarkable is involved.The sums of numbers in.11/ and .12/ were discovered
from the sums of functions in.10/. You might think it would be easier to deal only
with numbers, to computeln 2. But then we would never have integrated the series for
1=.1�x/ and detected.10/. It is better to work withx, and substitute special values
like 1

2
at the end.

There are two practical problems with these series. Forln 2 they converge slowly.
For ln e they blow up. The correct answer isln eD 1, but the series can’t find it.
Both problems are solved by adding (10a) to (10b), which cancels the even powers:

2

�

xC
x3

3
C
x5

5
C � � ��D ln.1Cx/� ln.1�x/D ln

1Cx

1�x : (13)

At xD 1
3
, the right side isln 4

3
� ln 2

3
D ln 2. Powers of1

3
are much smaller than

powers of1 or 1
2
, so ln 2 is quickly computed. All logarithms can be found from the

improved series.13/.

7. Change variables in the geometric series (replacex byx2 or �x2):

1Cx2 Cx4 Cx6 C � � �D 1=.1�x2/ (14)

1�x2 Cx4�x6 C � � �D 1=.1Cx2/: (15)

This produces new functions (always our goal). They involve even powers ofx. The
second series will soon be used to calculate� . Other changes are valuable:

x

2
in place ofx W 1C

x

2
C
�x

2

�2

C � � �D 1

1� .x=2/D
2

2�x (16)

1

x
in place ofx W 1C

1

x
C
1

x2
C � � �D 1

1� .1=x/ D
x

x�1: (17)

Equation(17) is a series ofnegative powersx�n. It converges when|x| is greater
than1. Convergence in.17/ is for largex. Convergence in.16/ is for |x|   2.
8. The integral of1�x2 Cx4�x6 C � � � yields the inverse tangent ofx:

x� 1
3
x3 C

1

5
x5� 1

7
x7 C � � �D » dx

1Cx2
D tan�1x: (18)

We integrated.15/ and got odd powers. The magical formula for� (discovered by
Leibniz) comes whenxD 1. The angle with tangent1 is�=4:

1� 1
3

C
1

5
� 1
7

C � � �D �

4
: (19)

The first three terms give� � 3:47 (not very close). The5000th term is still of size
:0001, so the fourth decimal is still not settled. By changing toxD 1=

?
3, the

astronomer Halley and his assistant found71 correct digits of�=6 (while waiting
for the comet). That is one step in the long and amazing story of calculating� . The
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Chudnovsky brothers recently took the latest step with a supercomputer—they have
found more thanone billion decimal places of� (seeScience, June1989). The dig-
its look completely random, as everyone expected. But so far we have no proof that
all ten digits occur1

10
of the time.

Historical note Archimedes located� above3:14 and below31
7
. Variations of his

method (polygons in circles) reached as far as34 digits—but not for1800 years. Then
Halley found71 digits of�=6 with equation(18). For faster convergence that series
was replaced by other inverse tangents, using smaller values ofx:

�

4
D tan�1 1

2
C tan�1 1

3
D 4 tan�1 1

5
� tan�1 1

239
: (20)

A prodigy named Dase, who could multiply100-digit numbers in his head in8 hours,
finally passed200 digits of � . The climax of hand calculation came when Shanks
published607 digits. I am sorry to say that only527 were correct. (With years of
calculation he went on to707 digits, but still only527 were correct.) The mistake
was not noticed until1945! Then Ferguson reached808 digits with a desk calculator.

Now comes the computer. Three days on an ENIAC.1949/ gave2000 digits. A
hundred minutes on an IBM704 .1958/ gave10;000 digits. Shanks (no relation)
reached100;000 digits. Finally a million digits were found in a day in1973, with a
CDC7600. All these calculations used variations of equation(20).

The record after that went between Cray and Hitachi and now IBM. But the
method changed. The calculations rely on an incredibly accurate algorithm, based
on the “arithmetic-geometric mean iteration” of Gauss. It is also incredibly simple,
all things considered:

anC1 D
an Cbn

2
bnC1 D

a
anbn �n D 2a2

nC1

, 

1� n
X

kD0

2k.a2
k�b2

k/

!

:

The number of correct digits more than doubles at every step. BynD 9 we are far
beyond Shanks (the hand calculator). No end is in sight. Almost anyone can go past
a billion digits, since with the Chudnovsky method we don’t have to start over again.

It is time to stop. You may think (or hope) that nothing more could possibly be
done with geometric series. We have gone a long way from1=.1�x/, but some func-
tions can never be reached. One isex (and its relativessinx, cosx, sinhx, coshx).
Another is

?
1�x (and its relatives1=

?
1�x2, sin�1x, sec�1x, : : :). The expo-

nentials are in10:4, with series that converge for allx. The square-roots are in10:5,
closer to geometric series and converging for|x|   1. Before that we have to say what
convergence means.

The series came fast, but I hope you see what can be done (subtract, multiply,
differentiate, integrate). Addition is easy, division is harder, all are legal. Some
unexpected numbers are the sums of infinite series.

Added in proof By e-mail I just learned that the record for� is back in Japan:
230 digits which is more than1:07 billion. The elapsed time was100 hours (75 hours
of CPU time on an NEC machine). The billionth digit after the decimal point is9.
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10.1 EXERCISES

Read-through questions

The geometric series1CxCx2 C � � � adds to a . It con-
verges provided|x|  b . The sum of n terms is c .
The derivatives of the series match the derivatives of1=.1�x/
at the pointxD d , where thenth derivative is e . The
decimal 1:111: : : is the geometric series atxD f and equals
the fraction g . The decimal:666: : : multiplies this by h .
The decimal:999: : : is the same as i .

The derivative of the geometric series is j D k . This
also comes from squaring the l series. By choosingxD :01,
the decimal 1:02030405 is close to m . The differential
equation dy=dxD y2 is solved by the geometric series, going
term by term starting fromy.0/D n .

The integral of the geometric series is o D p . At xD 1

this becomes the q series, which diverges. AtxD r we
find ln 2D s . The change fromx to �x produces the series
1=.1Cx/D t and ln.1Cx/D u .

In the geometric series, changing tox2 or �x2 gives
1=.1�x2/D v and 1=.1Cx2/D w . Integrating the
last one yields x� 1

3x
3 C 1

5x
5 � � �D x . The angle whose

tangent isxD 1 is tan�1 1D y . Then substitutingxD 1 gives
the series� D z .

1 The geometric series is1CxCx2 C � � �DG. Another way
to discoverG is to multiply by x. ThenxCx2 Cx3 C � � �DxG,
and this can be subtracted from the original series. What does that
leave, and what isG ?

2 A basketball is dropped10 feet and bounces back6 feet.
After every fall it recovers3

5 of its height. What total distance
does the ball travel, bouncing forever ?

3 Find the sums of13 C 1
9 C 1

27 C � � � and 1� 1
4 C 1

16��� � and
10�1C :1� :01: : : and3:040404: : : :

4 Replacex by 1�x in the geometric series to find a series
for 1=x. Integrate to find a series for lnx. These are power series
“around the pointxD 1.” What is their sum atxD 0 ?

5 What is thesecond derivativeof the geometric series, and
what is its sum atxD 1

2 ?

6 Multiply the series.1CxCx2 C � � � /.1�xCx2��� � / and find
the product by comparing with equation (14).

7 Start with the fraction1
7 . Divide 7 into 1:000: : : (by long

division or calculator) until the numbers start repeating. Which
is the first number to repeat ? How do you know that the next
digits will be the same as the first ?

Note about the fractions1=q, 10=q, 100=q, : : : All remainders
are less thanq so eventually two remainders are the same. By
subtraction,q goes evenly into a power10N minus a smaller

power10N�n. ThusqcD 10N �10N�n for somec and1=q has
a repeating decimal:

1

q
D

c

10N �10N�n
D

c

10N

1

1�10�n

D
c

10N

�

1C
1

10n
C

1

102n
C � � �� :

Conclusion: Every fraction equals a repeating decimal.

8 Find the repeating decimal for113 and read offc. What is the
numbern of digits before it repeats ?

9 From the fact that everyq goes evenly into a power
10N minus a smaller power, show that all primes except2 or 5 go
evenly into9 or 99 or 999 or � � � :
10 Explain why:010010001: : : cannot be a fraction (the number of
zeros increases).

11 Show that:123456789101112: : : is not a fraction.

12 From the geometric series, the repeating decimal1:065065: : :

equals what fraction ? Explain why every repeating decimal equals
a fraction.

13 Write :878787: : : and :123123: : : as fractions and as geometric
series.

14 Find the square of1:111: : : as an infinite series.

Find the functions which equal the sums 15–24.

15 xCx3 Cx5 C � � � 16 1�2xC4x2��� �
17 x3 Cx6 Cx9 C � � � 18 1

2x� 1
4x

2 C 1
8x

3��� �
19 ln xC.ln x/2 C.ln x/3 C � � � 20 x�2x2 C3x3��� �
21

1

x
C
1

x2
C
1

x3
C � � � 22 xC

x

1Cx
C

x

.1Cx/2
C � � �

23 tanx� 1
3 tan3xC 1

5 tan5x��� � 24 ex Ce2x Ce3x C � � �
25 Multiply the series for1=.1�x/ and 1=.1Cx/ to find the
coefficients ofx, x2, x3 andxn.

26 Compare the integral of1Cx2 Cx4 C � � � to equation (13)
and find

r
dx=.1�x2/.

27 What fractions are close to:2468 and:987654321 ?

28 Find the first three terms in the series for1=.1�x/3.

Add up the series 29–34. Problem 34 comes from (18).

29
2

3
C
2

32
C
2

33
C � � � 30 :1C :02C :003C � � �

31 :1C 1
2 .:01/C

1
3 .:001/C � � � 32 :1� 1

2 .:01/C
1
3 .:001/��� �

33 :1C 1
3 .:001/C

1
5 .:00001/C � � � 34 1� 1

3 �3 C
1

5 �32
��� �
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35 Compute thenth derivative of 1C2xC3x2 C � � � at xD 0.
Compute also thenth derivative of.1�x/�2.

36 The differential equationdy=dxD y2 starts fromy.0/D b.
From the equation and its derivatives findy1, y2, y3 at xD 0,
and construct the start of a series that matches those derivatives. Can
you recognizey.x/?

37 The equationdy=dxD y2 has the differential formdy=y2 D

dx. Integrate both sides and choose the integration constant
so that yD b at xD 0. Solve for y.x/ and compare with
Problem36.

38 In a bridge game, what is the average number� of deals
until you get the best hand ? The probability on the first deal
is p1 D 1

4 . Then p2 D
�

3
4

��

1
4

�

D (probability of missing on the
first) times (probability of winning on the second). Generallypn D
�

3
4

�n�1�1
4

�

. The mean value� isp1 C2p2 C3p3 C � � �D .

39 Show that.†an/.†bn/D†anbn is ridiculous.

40 Find a series for ln13 by choosingx in (10b). Find a series for
ln3 by choosingx in .13/. How is ln1

3 related to ln3, and which
series converges faster ?

41 Compute ln3 to its second decimal place without a calculator
(OK to check).

42 To four decimal places, find the angle whose tangent is
xD 1

10 .

43 Two tennis players move to the net as they volley the ball.
Starting together they each go forward39 feet at 13 feet per
second. The ball travels back and forth at26 feet per second. How
far does it travel before the collision at the net ? (Look for an easy
way and also an infinite series.)

44 How many terms of the series1� 1
2 C 1

3� 1
4 C � � � are

needed before the first decimal place doesn’t change ? Which
power of 1

4 equals the100th power of1
2 ? Which power1=an equals

1=2100 ?

45 If tanyD 1
2 and tanzD 1

3 , then the tangent ofyCz

is .tanyC tanz/=.1� tany tanz/D 1. If tanyD 1
5 and tanzD

, again tan.yCz/D 1. Why is this not as good as
equation (20), to find�=4 ?

46 Find one decimal of� beyond 3:14 from the series for
4 tan�1 1

2 and 4 tan�1 1
3 . How many terms are needed in each

series ?

47 (Calculator) In the same way find one decimal of� beyond
3:14159. How many terms did you take ?

48 From equation (10a) what is†ein=n ?

49 Zeno’s Paradox is that if you go half way, and then half
way, and then half way: : : ; you will never get there. In your
opinion, does1

2 C 1
4 C 1

8 C � � � add to1 or not ?
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10.2 Convergence Tests: Positive Series

This is the third time we have stopped the calculations to deal with the definitions.
Chapter 2 said what a derivative is. Chapter 5 said what an integral is. Now we say
what the sum of a series is—if it exists. In all three casesa limit is involved. That
is the formal, careful, cautious part of mathematics, which decides if the active and
progressive parts make sense.

The series1
2

C 1
4

C 1
8

C � � � converges to1. The series1C 1
2

C 1
3

C � � � diverges to

infinity. The series1� 1
2

C 1
3
��� � converges toln 2. When we speak about

convergence or divergence of a series, we are really speaking about convergence or
divergence of its “partial sums.”

DEFINITION 1 Thepartial sumsn of the seriesa1 Ca2 Ca3 C � � � stops atan:

sn D sum of the firstn terms D a1 Ca2 C � � �Can:

Thussn is part of the total sum. The example1
2

C 1
4

C 1
8

C � � � has partial sums

s1 D
1

2
s2 D

3

4
s3 D

7

8
sn D 1� 1

2n
:

Those add up larger and larger parts of the series—what is the sum of the whole
series ? The answer is:The series1

2
C 1

4
C : : : converges to1 because its partial

sumssn converge to1. The seriesa1 Ca2 Ca3 C : : : converges tos when its partial
sums—going further and further out—approach this limits. Add thea’s, not thes’s.

DEFINITION 2 The sum of a series is the limit of its partial sumssn.

We repeat:if the limit exists. The numberssn may have no limit. When the partial
sums jump around, the whole serieshas no sum. Then the series does not converge.
When the partial sums approachs, the distant termsan are approaching zero. More
than that, thesumof distant terms is approaching zero.

The new idea.† an D s/ has been converted to the old idea.snÑ s/.

EXAMPLE 1 The geometric series1
10

C 1
100

C 1
1000

C � � � converges tosD 1
9
.

The partial sumss1; s2; s3; s4 are:1; :11; :111; :1111. They are approachingsD 1
9
.

Note again the difference between the series ofa’s and the sequence ofs’s. The series
1C1C1C � � � diverges because the sequence ofs’s is 1;2;3; : : : : A sharper example
is the harmonic series:1C 1

2
C 1

3
C � � � diverges because its partial sums1;11

2
; : : :

eventually go past every numbers: We saw that in2:6 and will see it again here.
Do not confuseanÑ 0with snÑ s:You cannot be sure that a series converges, just

on the basis thatanÑ 0: The harmonic series is the best example:an D 1=nÑ 0 but
still snÑ8: This makes infinite series into a delicate game, which mathematicians
enjoy. The line between divergence and convergence is hard to find and easy to cross.
A slight push will speed upanÑ 0 and make thesn converge. Even thoughanÑ 0
does not by itself guarantee convergence, it is the first requirement:

10A If a series converges.snÑ s/ then its terms must approach zero.anÑ 0/:

Proof Supposesn approachess (as required by convergence). Then alsosn�1

approachess, and the differencesn�sn�1 approaches zero. That difference isan:
SoanÑ 0:
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EXAMPLE 1 (continued) For the geometric series1CxCx2 C � � � , the testanÑ
0 is the same asxnÑ 0: The test is failed if|x| ¥ 1, because the powers ofx don’t
go to zero. Automatically the series diverges. The test is passed if�1  x  1: But
to prove convergence,we cannot rely onanÑ 0. It is the partial sums that must
converge:

sn D 1CxC � � �Cxn�1 D
1�xn

1�x and snÑ 1

1�x : This is s:

For other series, first check thatanÑ 0 (otherwise there is no chance of
convergence). Thean will not have the special formxn—so we need sharper tests.

The geometric series stays in our mind for this reason.Many convergence tests
are comparisons with that series. The right comparison gives enough information:

If |a1|   1
2

and |a2|   1
4

and : : : ; thena1 Ca2 C : : : convergesfaster than1
2

C 1
4

C : : : :

More generally, the terms ina1 Ca2 Ca3 C : : : may be smaller thanaxCax2 C
ax3 C : : : : Providedx  1, the second series converges. Then

P

an also converges.
We move now toconvergence by comparisonor divergence by comparison.

Throughout the rest of this section, all numbersan are assumed positive.

COMPARISON TEST AND INTEGRAL TEST

In practice it is rare to compute the partial sumssn D a1 C � � �Can: Usually a simple
formula can’t be found. We may never know the exact limits: But it is still possible
to decide convergence—whether thereis a sum—by comparison with another series
that is known to converge.

10B (Comparison test) Suppose that0¤ an¤ bn and
P

bn converges. Then
P

an converges.

The smaller termsan add to a smaller sum:
P

an is below
P

bn and must converge.
On the other hand supposean¥ cn and

P

cn D8: This comparison forces
P

an D8: A series diverges if it is above another divergent series.
Note that a series of positive terms can only diverge “to infinity.” It cannot oscil-

late, because each term moves it forward. Either thesn creep up ons, passing every
number below it, or they pass all numbers and diverge.If an increasing sequencesn
is bounded above, it must converge. The line of real numbers is complete, and has
no holes.

The harmonic series1C 1
2

C 1
3

C 1
4

C : : : diverges to infinity.

A comparison series is1C 1
2

C 1
4

C 1
4

C 1
8

C 1
8

C 1
8

C 1
8

C : : : : The harmonic series
is larger. But this comparison series is really1C 1

2
C 1

2
C 1

2
C : : :, because1

2
D 2

4
D

4
8
:
The comparison series diverges. The harmonic series,above it, must also diverge.

To apply the comparison test, we need something to compare with. In Example 2,
we thought of another series. It was convenient because of those1

2
’s. But a different

series will need a different comparison, and where will it come from ? There is an
automatic way to think of acomparison series. It comes from theintegral test.

Allow me to apply the integral test to the same example.To understand the in-
tegral test, look at the areas in Figure 10.2. The test compares rectangles with
curved areas.
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Fig. 10.2 Integral test: Sums and integrals both diverge.pD 1/ and both converge.p¡ 1/:
EXAMPLE 2 (again)Compare1C 1

2
C 1

3
C : : :with the area under the curveyD1=x.

Every terman D 1=n is the area of a rectangle. We are comparing it with a curved
areacn: Both areas are betweenxD n andxD nC1, andthe rectangle is above
the curve. Soan¡ cn:

rectangular areaan D
1

n
exceeds curved areacn D

» nC1

n

dx

x
:

Here is the point. Thosecn’s look complicated, butwe can add them up. The sum
c1 C : : :Ccn is the whole area, from1 to nC1: It equalsln.nC1/—we know the
integral of1=x:We also know that the logarithm goes to infinity.

The rectangular area1C1=2C : : :C1=n is above the curved area. By comparison
of areas, the harmonic series diverges to infinity—a little faster thanln.nC1/:

Remark The integral of1=x has another advantage over the series with1
2
’s. First,

the integral test was automatic. From1=n in the series, we went to1=x in the integral.
Second, the comparison iscloser. Instead of adding only1

2
when the number of terms

is doubled, the true partial sums grow likeln n: To prove that, put rectanglesunder
the curve.

Rectanglesbelowthe curve give an areabelowthe integral. Figure 10.2b omits the
first rectangle, to get under the curve. Then we have the opposite to the first
comparison—the sum is now smaller than the integral:

1

2
C
1

3
C � � �C 1

n
  » n

1

dx

x
D lnn:

Adding 1 to both sides,sn is below1C ln n. From the previous test,sn is above
ln.nC1/. That is a narrow space—we have an excellent estimate ofsn: The sum

of 1=n and the integral of1=x diverge together. Problem43 will show that the
difference betweensn andln n approaches “Euler’s constant,” which is
 D :577 : : ::

Main point: Rectangular area issn: Curved area is close. We are using integrals to
help with sums (it used to be the opposite).

Question If a computer adds a million terms every second for a million years, how
large is the partial sum of the harmonic series ?
Answer The number of terms isnD 602 �24 �365 �1012  3:2 �1019: Therefore
ln n is less thanln 3:2C19 ln 10  45: By the integral testsn  1C ln n; the partial
sum after a million years has not reached46:
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For other series,1=x changes to a different functiony.x/: At xD n this function
must equalan: Also y.x/must be decreasing. Then a rectangle of heightan is above
the graph to the right ofxD n, and below the graph to the left ofxD n: The series
and the integral box each other in: left sum¥ integral ¥ right sum. The rea-
soning is the same as it was foran D 1=n andy.x/D 1=x: There is finite area in the
rectangles when there is finite area under the curve.

When we can’t add thea’s, we integratey.x/ and compare areas:

10C (Integral test) If y.x/ is decreasing andy.n/ agrees withan, then

a1 Ca2 Ca3 C � � � and

» 8
1

y.x/ dx both converge or both diverge:

EXAMPLE 3 The “p-series”
1

2p
C
1

3p
C
1

4p
C � � � converges ifp¡ 1: IntegrateyD

1

xp
W

1

np
  » n

n�1

dx

xp
so by addition

8
X

nD2

1

np
  » 8

1

dx

xp
:

In Figure 10.2c, the area is finite ifp¡ 1: The integral equals
�

x1�p=.1�p/�8
1
;

which is1=.p�1/: Finite area means convergent series. If 1=1p is the first term,
add1 to the curved area:

1

1p
C
1

2p
C
1

3p
C � � �   1C

1

p�1 D
p

p�1 :
The borderline casepD 1 is the harmonic series (divergent). By the comparison

test, everyp  1 also produces divergence. Thus†1=
?
n diverges by comparison

with
r
dx=

?
x (and also by comparison with†1=n). Section 7.5 on improper

integrals runs parallel to this section on “improper sums” (infinite series).
Notice the special casespD 2 andpD 3: The series1C 1

4
C 1

9
C � � � converges.

Euler found�2=6 as its sum. The series1C 1
8

C 1
27

C � � � also converges. That is
proved by comparing†1=n3 with †1=n2 or with

r
dx=x3: But the sum forpD 3

is unknown.

Extra credit problem The sum of thep-series leads to the most important problem
in pure mathematics. The “zeta function” isZ.p/D†1=np, soZ.2/D�2=6 and
Z.3/ is unknown. Riemann studied the complex numbersp whereZ.p/D 0 (there
are infinitely many). He conjectured thatthe real part of thosep is always1

2
. That

has been tested for the first billion zeros, but never proved.

COMPARISON WITH THE GEOMETRIC SERIES

We can compare any new seriesa1 Ca2 C � � � with 1CxC � � � : Remember that the
first million terms have nothing to do with convergence. It is further out, asnÑ8,
that the comparison stands or falls. We still assume thatan¡ 0:

10D (Ratio test) If anC1=an approaches a limitL  1, the series converges.

10E (Root test) If thenth root.an/
1=n approachesL  1, the series converges.

Roughly speaking, these tests makean comparable withLn—therefore convergent.
The tests also establish divergence ifL¡ 1: They give no decision whenLD 1:
UnfortunatelyLD 1 is the most important and the hardest case.
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On the other hand, you will now see that the ratio test is fairly easy.

EXAMPLE 4 The geometric seriesxCx2 C � � � has ratio exactlyx: Thenth root
is also exactlyx: SoLD x: There is convergence ifx  1 (known) and divergence if
x¡ 1 (also known). The divergence of1C1C � � � is too delicate (!) for the ratio test
and root test, becauseLD 1:

EXAMPLE 5 Thep-series hasan D 1=np andanC1=an D np=.nC1/p: The limit
asnÑ8 is LD 1, for everyp: The ratio test does not feel the difference between
pD 2 (convergence) andpD 1 (divergence) or evenpD�1 (extreme divergence).
Neither does the root test. So the integral test is sharper.

EXAMPLE 6 A combination ofp-series and geometric series can now be decided:

x

1p
C
x2

2p
C � � �C xn

np
C � � � has ratio

anC1

an

D
xnC1

.nC1/p
np

xn
approachingLD x:

It is |x|   1 that decides convergence, notp. The powersxn are stronger than
anynp . The factorialsn! will now prove stronger than anyxn:

EXAMPLE 7 The exponential seriesex D 1CxC 1
2
x2 C 1

6
x3 C � � � converges

for all x:

The terms of this series arexn=n! The ratio between neighboring terms is

xnC1=.nC1/Š

xn=nŠ
D

x

nC1
; which approachesLD 0 asnÑ8:

With xD 1, this ratio test gives convergence of
P

1=nŠ The sum ise. With xD 4,
the larger series

P

4n=nŠ also converges. We know this sum too—it ise4: Also the
sum ofxnnp=nŠ converges for anyx andp: AgainLD 0—the ratio test is not even
close.The factorials take over; and give convergence.

Here is the proof of convergence when the ratios approachL  1. Choosex halfway
fromL to 1: Thenx  1: Eventually the ratios go belowx and stay below:

aN C1=aN   x aN C2=aN C1  x aN C3=aN C2  x � � �
Multiply the first two inequalities. Then multiply all three:

aN C1=aN   x aN C2=aN   x2 aN C3=aN   x3 � � �
ThereforeaN C1 CaN C2 CaN C3 C � � � is less thanaN .xCx2 Cx3 C � � �/: Since
x  1; comparison with the geometric series gives convergence.

EXAMPLE 8 The series
P

1=nn is ideal for the root test. Thenth root is1=n: Its
limit is LD 0: Convergence is even faster than foreD

P

1=nŠ The root test is easily
explained, since.an/

1=n  x yieldsan  xn andx is close toL  1: So we compare
with the geometric series.

SUMMARY FOR POSITIVE SERIES

The convergence of geometric series andp-series and exponential series is settled.
I will put these an’s in a line, going from most divergent to most convergent.
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The crossover to convergence is after1=n:

1C1C � � � .p  1/ 1
np

1

n

1

np
.p¡ 1/ n

2n

1

2n

4n

nŠ

1

nŠ

1

nn

10A 10B and10C 10D and10E

.an =Ñ 0/ (comparison and integral) (ratio and root)

You should know that this crossover is not as sharp as it looks. On the convergent
side,1=n.ln n/2 comes before all thosep-series. On the divergent side,1=n.ln n/
and1=n.ln n/.ln ln n/ belong after1=n: For any divergent (or convergent) series,
there is another that diverges (or converges) more slowly.

Thus there is no hope of an ultimate all-purpose comparison test. But comparison is
the best method available. Every series in that line can be compared with its neighbors,
and other series can be placed in between. It is a topic that is understood best by
examples.

EXAMPLE 9
X 1

ln n
diverges because

X 1

n
diverges. The comparison uses

ln n  n:
EXAMPLE 10

X 1

n.lnn/2
� » dx

x.ln x/2
 8 X 1

n.lnn/
� » dx

x.lnx/
D8:

The indefinite integrals are�1= ln x andln.ln x/: The first goes to zero asxÑ8;
the integral and series both converge. The second integralln.ln x/ goes to infinity—
very slowly but it gets there. So the second series diverges. These examples squeeze
new series into the line, closer to the crossover.

EXAMPLE 11
1

n2 C1
  1

n2
so

1

2
C
1

5
C
1

10
C � � �  1

1
C
1

4
C
1

9
C � � � (convergence).

The constant1 in this denominator has no effect—and again in the next example.

EXAMPLE 12
1

2n�1 ¡ 1

2n
so

1

1
C
1

3
C
1

5
C � � �¡ 1

2
C
1

4
C
1

6
C � � � :

P

1=2n is 1=2 times
P

1=n, so both series diverge.Two series behave in the same
way if the ratiosan=bn approachL¡ 0. Examples11�12 haven2=.n2 C1/Ñ 1
and2n=.2n�1/Ñ 1: That leads to our final test:

10F (Limit comparison test) If the ratioan=bn approaches a positive limitL,
then

P

an and
P

bn either both diverge or both converge.

Reason: an is smaller than2Lbn, and larger than1
2
Lbn, at least whenn is large.

So the two series behave in the same way. For example
P

sin.7=np/ converges for
p¡ 1, not forp¤ 1: It behaves like

P

1=np (hereLD 7). The tail end of a series
(largen) controls convergence. The front end (smalln) controls most of the sum.

There are many more series to be investigated by comparison.
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10.2 EXERCISES

Read-through questions

The convergence ofa1 Ca2 C � � � is decided by the partial sums
sn D a . If the sn approachs; then†an D b . For the c
series1CxC � � � the partial sums aresn D d . In that case
snÑ 1=.1�x/ if and only if e . In all cases the limitsnÑ s

requires thatanÑ f . But the harmonic seriesan D 1=n shows
that we can haveanÑ g and still the series h .

The comparison test says that if0¤an¤ bn then i . In
case a decreasingy.x/ agrees withan at xDn; we can apply
the j test. The sum†an converges if and only if k .
By this test thep-series†1=np converges if and only ifp is

l . For the harmonic series.pD 1/; sn D 1C � � �C1=n is
close to the integralf .n/D m .

The n test applies whenanC1=anÑL: There is
convergence if o , divergence if p , and no decision if

q . The same is true for the r test, when.an/
1=nÑL:

For a geometric-p-series combinationan D xn=np; the ratio
anC1=an equals s . Its limit is LD t so there is
convergence if u . For the exponentialex D†xn=nŠ the
limiting ratio anC1=an is LD v . This series always w
becausen! grows faster than anyxn or np :

There is no sharp line between x and y . But if †bn

converges andan=bnÑL; it follows from the z test that†an

also converges.

1 Here is a quick proof that a finite sum1C 1
2 C 1

3 C � � �D s

is impossible. Division by2 would give 1
2 C 1

4 C 1
6 C � � �D 1

2 s:

Subtraction would leave1C 1
3 C 1

5 C � � �D 1
2 s: Those last two

series cannot both add to12 s because :

2 Behind every decimalsD :abc : : : is a convergent series
a=10Cb=100C C � � � : By a comparison test prove
convergence.

3 From these partial sumssn; find an and alsosD†81 an:

(a) sn D 1� 1

n
(b) sn D 4n (c) sn D ln

2n

nC1
:

4 Find the partial sumssn D a1 Ca2 C � � �Can:

(a) an D 1=3n�1 (b) an D ln
n

nC1
(c) an Dn

5 Suppose 0 an  bn and †an converges. What can be
deduced about†bn ? Give examples.

6 (a) Supposebn Ccn an (all positive) and†an converges.
What can you say about†bn and†cn ?

(b) Supposean  bn Ccn (all positive) and†an diverges.
What can you say about†bn and†cn ?

Decide convergence or divergence in 7–10 (and give a reason).

7 1
100 C 1

200 C 1
300 C � � � 8 1

100 C 1
105 C 1

110 C � � �

9 1
101 C 1

104 C 1
109 C � � � 10 1

101 C 2
108 C 3

127 C � � �
Establish convergence or divergence in 11–20 by a comparison
test.

11
X 1

n2 C10
12

X 1?
n2 C10

13
X 1

nC
?
n

14
X

?
n

n2 C4

15
X n3

n2 Cn4
16

X 1

n2
cos

�

1

n

�

17
X 1

2n�1 18
X

sin2

�

1

n

�

19
X 1

3n�2n
20

X 1

en�ne

For 21–28 find the limit L in the ratio test or root test.

21
X 3n

nŠ
22

X 1

n2

23
X n22n

nŠ
24

X

�

n�1
n

�n

25
X n

2n
26

X nŠ

en2

27
X

�

n�1
n

�n2

28
X nŠ

nn

29 .1
1 � 1

2 /C.
1
2 � 1

3 /C.
1
3� 1

4 / is “telescoping” because12 and 1
3

cancel�1
2 and�1

3 : Add the infinite telescoping series

sD

8
X

1

�

1

n
� 1

nC1

�

D

8
X

1

�

1

n.nC1/

�

:

30 Compute the sums for other “telescoping series”:

(a)
�

1

1
� 1
3

�

C

�

1

2
� 1
4

�

C

�

1

3
� 1
5

� � � �
(b) ln 1

2 C ln 2
3 C ln 3

4 C � � �
31 In the integral test, what sum is larger than

r n
1 y.x/ dx and what

sum is smaller ? Draw a figure to illustrate.

32 Comparing sums with integrals, find numbers larger and smaller
than

sn D 1C
1

3
C � � �C 1

2n�1 andsn D 1C
1

8
C � � �C 1

n3
:

33 Which integral test shows that
X8

1
1=en converges ? What is

the sum ?

34 Which integral test shows that
X8

1
n=en converges ? What is

the sum ?
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Decide for or against convergence in 35–42, based on
r
y.x/ dx:

35
X 1

n2 C1
36

X 1

3nC5

37
X n

n2 C1
38

X lnn

n

�

is
ln x

x
decreasing ?

�

39
X

ne=n� 40
8
X

2

1

n.lnn/.ln ln n/

41
X

en=�n 42
X

n=en2

43 (a) Explain whyDn D

�

1C
1

2
C � � �C 1

n

�� ln n is positive by

using rectangles as in Figure 10.2.

(b) Show thatDnC1 is less thanDn by proving that

1

nC1
  » nC1

n

dx

x
:

(c) (Calculator) The decreasingDn ’s must approach a limit.
Compute them until they go below .6 and below .58 (when ? ).
The limit of theDn is Euler’s constant
 D :577: : : :

44 In the harmonic series, usesn� :577C ln n to show that

sn D 1C
1

2
C � � �C 1

n
needs more than600 terms to reachsn¡ 7:

How many terms forsn¡ 10 ?

45 (a) Show that1� 1
2

C
1

3
� 1
4
� � �� 1

2n
D

1

nC1
C � � �C 1

2n
by

adding2
�

1

2
C
1

4
C � � �C 1

2n

�

to both sides.

(b) Why is the right side close to ln2n� ln n? Deduce that
1� 1

2 C 1
3 � 1

4 C � � � approaches ln2:

46 Every second a computer adds a million terms of
P

1=.n ln n/:
By comparison with

r
dx=.x ln x/; estimate the partial sum after a

million years (see Question in text).

47 Estimate
1000
X

100

1

n2
by comparison with an integral.

48 If †an converges (allan¡ 0) show that†a2
n converges.

49 If †an converges (allan¡ 0) show that†sinan converges.
How could†sinan converge when†an diverges ?

50 Thenth prime numberpn satisfiespn=n ln nÑ 1: Prove that

X 1

pn
D
1

2
C
1

3
C
1

5
C
1

7
C
1

11
C � � � diverges:

Construct a series†an that converges faster than†bn but
slower than†cn(meaningan=bnÑ 0; an=cnÑ8).

51 bn D 1=n2; cn D 1=n3

53 bn D 1=nŠ; cn D 1=nn

52 bn Dn.1
2 /

n; cn D .1
2 /

n

54 bn D 1=ne ; cn D 1=en

In Problem53 use Stirling’s formula
?
2�n nn=ennŠÑ 1:

55 For the series12 C 1
2 C 1

4 C 1
4 C 1

8 C 1
8 C � � � show that the ratio

test fails. The roots.an/
1=n do approach a limitL: FindL from the

even termsa2k D 1=2k : Does the series converge ?

56 (For instructors) If the ratiosanC1=an approach a positive limit
L show that the roots.an/

1=n also approachL:

Decide convergence in 57–66 and name your test.

57
X 1

.lnn/n

59
X 1

10n

61
X

ln
nC2

nC1

63
X 1

.lnn/p
(test allp)

65
X 3n

4n�2n

58
X 1

nln n

60
X 1

ln.10n/

62
X

n�1=n

64
X ln n

np
(test allp)

66
X np

.nŠ/q
(test allp;q)

67 Supposean=bnÑ 0 in the limit comparison test. Prove that†an

converges if†bn converges.

68 Can you invent a series whose convergence you and your
instructor cannot decide ?
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10.3 Convergence Tests: All Series

This section finally allows the numbersan to be negative. The geometric series
1� 1

2
C 1

4
� 1

8
C � � �D 1

3
is certainly allowed. So is the series� D 4� 4

3
C 4

5
� 4

7
C� � � . If we change all signs toC, the geometric series would still converge (to the

larger sum2). This is the first test, to bring back a positive series by taking theabso-
lute value|an| of every term.

DEFINITION The series†an is “absolutely convergent” if †|an| is convergent.

Changing a negative number froman to |an| increases the sum. Main point: The
smaller series†an is sure to converge if† |an| converges.

10G If †|an| converges then†an converges (absolutely). But†an might con-
verge, as in the series for� , even if†|an| diverges to infinity.

EXAMPLE 1 Start with the positive series1
2

C 1
4

C 1
8

C � � � . Change any signs to
minus. Then the new series converges (absolutely). The right choice of signs will
make it converge to any number between�1 and1.

EXAMPLE 2 Start with the alternating series1� 1
2

C 1
3
� 1

4
C � � � which converges

to ln 2. Change to plus signs. The new series1C 1
2

C 1
3

C � � � diverges to infinity. The
original alternating series was not absolutely convergent. It was only “conditionally
convergent.” A series can converge (conditionally) by a careful choice of signs—even
if †|an|D8.

If †|an| converges then†an converges. Here is a quick proof. The numbers
an C |an| are either zero (ifan is negative) or2|an|. By comparison with†2|an|,
which converges,†.an C |an|/ must converge. Now subtract the convergent series
†|an|. The difference†an also converges, completing the proof. All tests for pos-
itive series (integral, ratio, comparison,: : :) apply immediately to absolute conver-
gence, because we switch to|an|.
EXAMPLE 3 Start with the geometric series1

3
C 1

9
C 1

27
C � � � which converges to

1
2
. Change any of those signs to minus. Then the new series must converge (abso-

lutely). But the sign changes cannot achieve all sums between�1
2

and 1
2
. This time

the sums belong to the famous (and very thin)Cantor setof Section 3.7.

EXAMPLE 4 (looking ahead) Suppose†anx
n converges for a particular number

x. Then for everyx nearer to zero, it converges absolutely. This will be proved and
used in Section10:6 on power series, where it is the most important step in the theory.

EXAMPLE 5 Since†1=n2 converges, so does†.cosn/=n2. That second series
has irregular signs, but it converges absolutely by comparison with the first series
(since|cosn|   1). Probably†.tann/=n2 does not converge, because the tangent
does not stay bounded like the cosine.

ALTERNATING SERIES

The series1� 1
2

C 1
3
� 1

4
C � � � converges toln 2. That was stated without proof. This

is an example of analternating series, in which the signs alternate between plus and
minus. There is the additional property that the absolute values1; 1

2
; 1

3
; 1

4
; : : : decrease
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to zero. Those two facts—decrease to zero with alternating signs—guarantee
convergence.

10H An alternating seriesa1�a2 Ca3�a4 � � � converges (at least condition-
ally, maybe not absolutely) if everyanC1¤ an andanÑ 0.

The best proof is in Figure10.3. Look ata1�a2 Ca3. It is belowa1, becausea3

(with plus sign) is smaller thana2 (with minus sign). The sum of five terms is less than
the

Fig. 10.3 An alternating series converges when the absolute values decrease to zero.

sum of three terms, becausea5 is smaller thana4. These partial sumss1; s3; s5; : : :
with an odd number of terms aredecreasing.

Now look at two termsa1�a2, then four terms, then six terms. Adding on
a3�a4 increases the sum (becausea3¥ a4). Similarly s6 is greater thans4 (because
it includesa5�a6 which is positive). So the sumss2; s4; s6; : : : areincreasing.

The difference betweensn�1 andsn is the single number�an. It is required by
10H to approach zero. Therefore the decreasing sequences1; s3; : : : approaches the
samelimit s as the increasing sequences2; s4; : : : : The series converges tos, which
always lies betweensn�1 andsn.

This plus-minus pattern is special but important. The positive series†an may not
converge.The alternating series is†.�1/nC1an.

EXAMPLE 6 The alternating series4� 4
3

C 4
5
� 4

7
� � � is conditionally convergent

(to�). The absolute values decrease to zero. Is this series absolutely convergent?No.
With plus signs,4.1C 1

3
C 1

5
C � � � / diverges like the harmonic series.

EXAMPLE 7 The alternating series1�1C1�1C � � � is not convergent at all.Which
requirement in10H is not met? The partial sumss1; s3; s5; : : : all equal1 and
s2; s4; s6; : : : all equal0—but they don’t approach the same limits.

MULTIPLYING AND REARRANGING SERIES

In Section10:1weadded and subtracted and multiplied series. Certainly addition and
subtraction are safe. If one series has partial sumssnÑ s and the other has partial
sumstnÑ t , then addition gives partial sumssn C tnÑ sC t . But multiplication is
more dangerous, because theorderof the multiplication can make a difference. More
exactly, the order of terms is important when the series are conditionally
convergent. For absolutely convergent series, the order makes no difference. We can
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rearrange their terms and multiply them in any order, and the sumand product comes
out right:

10I Suppose†an converges absolutely. IfA1;A2; : : : is any reordering of the
a’s, then†An D†an. In the new order†An also converges absolutely.

10J Suppose†an D s and †bn D t converges absolutely. Then the infinitely
many termsaibj in their product add (in any order) tost .

Rather than proving10I and10J, we show what happens when there is only con-
ditional convergence. Our favorite is1� 1

2
C 1

3
� 1

4
C � � � , converging conditionally

to ln 2. By rearranging, it will converge conditionally toanything! Suppose the de-
sired sum is1000. Take positive terms1C 1

3
C � � � until they pass1000. Then add

negative terms�1
2
� 1

4
��� � until the subtotal drops below1000. Then new positive

terms bring it above1000, and so on. All terms are eventually used, since at least one
new term is needed at each step. The limit issD 1000.

We also get strange products, when series fail to converge absolutely:
�

1� 1?
2

C
1?
3
� � ���1� 1?

2
C

1?
3
� � ��D 1�� 1?

2
C

1?
2

�

C

�

1?
3

C
1?
4

C
1?
3

� � � � :
On the left the series converge (conditionally). The alternating terms go to zero. On
the right the series diverges. Its terms in parentheses don’t even approach zero, and
the product is completely wrong.

I close by emphasizing that it is absolute convergence that matters.The most
important series are power series†anx

n. Like the geometric series (with allan D
1) there is absolute convergence over an interval ofx’s. They givefunctionsof x,
which is what calculus needs and wants.

We go next to the series forex , which is absolutely convergent everywhere. From
the viewpoint of convergence tests it is too easy—the danger is gone. But from the
viewpoint of calculus and its applications,ex is unconditionally the best.

10.3 EXERCISES

Read-through questions

The series†an is absolutely convergent if the series a
is convergent. Then the original series†an is also b .
But the series†an can converge without converging absolutely.
That is called c convergence, and the series d is an
example.

For alternating series, the sign of eachanC1 is e to the
sign of an. With the extra conditions that f and g ,
the series converges (at least conditionally). The partial sums
s1; s3; : : : are h and the partial sumss2; s4; : : : are i .
The difference betweensn and sn�1 is j . Therefore the
two series converge to the same numbers. An alternating
series that converges absolutely [conditionally] (not at all)
is k [ l ] ( m ). With absolute [conditional] conver-
gence a reordering (can or cannot ? ) change the sum.

Do the series 1–12 convergeabsolutelyor conditionally?

1
X

.�1/nC1 n

nC3
2
X

.�1/n�1=
?
nC3

3
X

.�1/nC1 1

nŠ

5
X

.�1/nC13
?
n=.nC1/

7
X

.�1/nC1 ln

�

1

n

�

9
X

.�1/nC1n2=.1Cn4/

4
X

.�1/nC1 3
n

nŠ

6
X

.�1/nC1sin2n

8
X

.�1/nC1 sin2n

n

10
X

.�1/nC121=n

11
X

.�1/nC1n1=n 12
X

.�1/nC1.1�n1=n/
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13 Suppose †an converges absolutely. Explain why keeping
the positivea’s gives another convergent series.

14 Can†an converge absolutely if allan are negative ?

15 Show that the alternating series1� 1
2 C 1

2 � 1
4 C 1

3� 1
6 C � � �

does not converge, by computing the partial sumss2; s4; : : :.
Which requirement of10H is not met ?

16 Show that 2
3� 3

5 C 4
7� 5

9 C � � � does not converge. Which
requirement of10H is not met ?

17 (a) For an alternating series with terms decreasing to zero,
why does the sums always lie betweensn�1 andsn ?

(b) Is s�sn positive or negative ifsn stops at a positivean ?

18 Use Problem17 to give a bound on the difference between
s5 D 1� 1

2 C 1
3� 1

4 C 1
5 and the sum sD ln 2 of the infinite

series.

19 Find the sum1� 1

2Š
C
1

3Š
� 1

4Š
C � � �D s. The partial sums4

is (aboves)(belows) by less than .

20 Give a bound on the difference betweens100 D
1

12
� 1

22
C
1

32
� � �� 1

1002
and sD

P

.�1/nC1=n2.

21 Starting from
1

12
C
1

22
C
1

32
C � � �D �2

6
, with plus signs, show

that the alternating series in Problem20 hassD�2=12.

22 Does the alternating series in20 or the positive series in21 give
�2 more quickly ? Compare1=1012�1=1022 C � � � with 1=1012 C

1=1022 C � � � .
23 If †an does not converge show that†|an| does not
converge.

24 Find conditions which guarantee thata1 Ca2�a3 Ca4 Ca5�
a6 C � � � will converge (negative term follows two positive terms).

25 If the terms of ln2D 1� 1
2 C 1

3� 1
4 C � � � are rearranged into

1� 1
2 � 1

4 C 1
3� 1

6� 1
8 C � � � , show that this series now adds to

1
2 ln 2. (Combine each positive term with the following negative
term.)

26 Show that the series1C 1
3� 1

2 C 1
5 C 1

7 � 1
4 C � � � converges

to 3
2 ln 2.

27 What is the sum of1C 1
3� 1

2 C 1
5� 1

4 C 1
7 � 1

6 C � � � ?

28 Combine 1C � � �C 1

n
� ln nÑ 
 and 1� 1

2 C 1
3 ��� �Ñ ln 2

to prove1C 1
3 C 1

5 � 1
2� 1

4� 1
6 C � � �D ln 2.

29 (a) Prove that this alternating series converges:

1�» 2

1

dx

x
C
1

2
�» 3

2

dx

x
C
1

3
�» 4

3

dx

x
C � � �

(b) Show that its sum is Euler’s constant
 .

30 Prove that this series converges. Its sum is�=2.» �

0

sinx

x
dxC

» 2�

�

sinx

x
dxC � � �D » 8

0

sinx

x
dx:

31 The cosine of � D 1 radian is 1� 1

2Š
C
1

4Š
��� � .

Compute cos1 to five correct decimals (how many terms ? ).

32 The sine of� D� radians is �� �3

3Š
C
�5

5Š
��� � . Compute

sin� to eight correct decimals (how many terms ? ).

33 If †a2
n and †b2

n are convergent show that†anbn is
absolutely convergent.
Hint: .a�b/2¥ 0 yields2|ab|¤a2 Cb2.

34 Verify the Schwarz inequality .†anbn/
2¤ .†a2

n/.†b
2
n/ if

an D
�

1
2

�n and bn D
�

1
3

�n.

35 Under what condition does
8
P

0

.anC1�an/ converge and

what is its sum ?

36 For a conditionally convergent series, explain how the
terms could be rearranged so that the sum isC8. All terms
must eventually be included, even negative terms.

37 Describe the terms in the product.1C 1
2 C 1

4 C � � � /.1C 1
3 C

1
9 C � � � / and find their sum.

38 True or false:

(a) Every alternating series converges.

(b) †an converges conditionally if†|an| diverges.

(c) A convergent series with positive terms is absolutely
convergent.

(d) If †an and†bn both converge, so does†.an Cbn/.

39 Every numberx between 0 and 2 equals 1C 1
2 C 1

4 C � � �
with suitable terms deleted. Why ?

40 Every numbers between�1 and 1 equals�1
2� 1

4� 1
8 ��� �

with a suitable choice of signs. (Add1D 1
2 C 1

4 C 1
8 C � � � to get

Problem39.) Which signs givesD�1 andsD 0 andsD 1
3 ?

41 Show that no choice of signs will make�1
3� 1

9� 1
27 ��� �

equal to zero.

42 The sums in Problem41 form a Cantor set centered at
zero. What is the smallest positive number in the set ? Choose
signs to show that14 is in the set.�43 Show that the tangent of� D 1

2 .��1/ is sin1=.1�cos1/.
This is the imaginary part of sD� ln.1�ei /. From
sD†ein=n deduce the remarkable sum†.sinn/=nD 1

2 .��1/.
44 Suppose†an converges and|x|  1. Show that †anx

n

converges absolutely.
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10.4 The Taylor Series for ex, sin x, and cosx

This section goes back from numbers to functions. Instead of†an D s it deals with
†anx

n D f .x/: The sum is a function ofx. The geometric series has allan D 1
(includinga0, the constant term) and its sum isf .x/D 1=.1�x/: The derivatives
of 1CxCx2 C � � � match the derivatives off: Now we choose thean differently, to
match a different function.

The new function isex : All its derivatives areex : At xD 0, this function and its
derivatives equal1: To match these1’s, we move factorials into the denominators.
Term by term the series is

ex D 1C
x

1Š
C
x2

2Š
C
x3

3Š
C � � � : (1)

xn=nŠ has the correctnth derivative.D 1/: From the derivatives atxD 0;we have
built back the function! At xD 1 the right side is1C1C 1

2
C 1

6
C � � � and the left

side iseD 2:71828 : : :: At xD�1 the series gives1�1C 1
2
� 1

6
C � � � , which is

e�1:
The same term-by-term idea works for differential equations, as follows.

EXAMPLE 1 Solvedy=dxD�y starting fromyD 1 atxD 0:

Solution The zeroth derivative atxD 0 is the function itself: yD 1: Then the
equationy 1 D�y givesy 1 D�1 andy2 D�y 1 D C1: The alternating derivatives
1;�1;1;�1; : : : are matched by the alternating series fore�x :

yD 1�xC 1
2
x2� 1

6
x3 C � � �D e�x (the correct solution toy 1 D�y):

EXAMPLE 2 Solved2y=dx2 D�y starting fromyD 1 andy 1 D 0 (the answer
is cosx).

Solution The equation givesy2 D�1 (again atxD 0). The derivative of the
equation givesy3 D�y 1 D 0: Then y22 D�y2 D C1: The even derivatives are
alternatelyC1 and�1, the odd derivatives are zero. This is matched by a series
of even powers, which constructscosx:

yD 1� 1

2Š
x2 C

1

4Š
x4� 1

6Š
x6 C � � �D cosx:

The first terms1� 1
2
x2 came earlier in the book. Now we have the whole alternating

series. It converges absolutely for allx, by comparison with the series forex (odd
powers are dropped). The partial sums in Figure 10.4 reach further and further before
they lose touch withcosx:

Fig. 10.4 The partial sums1�x2=2Cx4=24��� � of the cosine series.
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If we wanted plus signs instead of plus-minus, we could averageex and e�x : The
differential equation forcoshx is d2y=dx2 D Cy, to give plus signs:

1

2
.ex Ce�x/D 1C

1

2Š
x2 C

1

4Š
x4 C

1

6Š
x6 C � � � (which is coshx).

TAYLOR SERIES

The idea ofmatching derivatives by powersis becoming central to this chapter. The
derivatives are given at a basepoint (sayxD 0). They are numbersf .0/;f 1.0/; : : : :
The derivativef .n/.0/ will be the nth derivative ofanx

n, if we choosean to be
f .n/.0/=nŠThen the series†anx

n has the same derivatives at the basepoint asf .x/:

10K TheTaylor seriesthat matchesf .x/ and all its derivatives atxD 0 is

f .0/Cf 1.0/xC
1

2
f 2.0/x2 C

1

6
f 3.0/x3 C � � �D 8

X

nD0

f .n/.0/

nŠ
xn:

The first terms give the linear and quadratic approximations that we know well. The
x3 term was mentioned earlier (but not used). Now we haveall the terms—an “infinite
approximation” that is intended to equalf .x/:

Two things are needed. First, the series must converge. Second, the function must
do what the series predicts, away fromxD 0: Those are true forex andcosx and
sinx; the series equals the function. We proceed on that basis.

The Taylor series with special basepointxD 0 is also called the “Maclaurin se-
ries.”

EXAMPLE 3 Find the Taylor series forf .x/D sinx aroundxD 0:

Solution The numbersf .n/.0/ are the values off D sinx, f 1 D cosx, f 2 D�sinx; : : : at xD 0: Those values are0;1;0;�1;0;1; : : : : All even derivatives are
zero. To find the coefficients in the Taylor series, divide by the factorials:

sinxD x� 1
6
x3 C 1

120
x5��� � : (2)

EXAMPLE 4 Find the Taylor series forf .x/D .1Cx/5 aroundxD 0:

Solution This function starts atf .0/D 1: Its derivative is5.1Cx/4, sof 1.0/D
5: The second derivative is5 �4 � .1Cx/3, sof 2.0/D 5 �4:The next three derivatives
are5 �4 �3, 5 �4 �3 �2, 5 �4 �3 �2 �1:After that all derivatives are zero. Therefore the
Taylor seriesstopsafter thex5 term:

1C5xC
5 �4
2Š
x2 C

5 �4 �3
3Š

x3 C
5 �4 �3 �2
4Š

x4 C
5 �4 �3 �2 �1

5Š
x5: (3)

You may recognize1, 5, 10, 10, 5, 1: They are thebinomial coefficients, which ap-
pear in Pascal’s triangle (Section 2.2). By matching derivatives, we see why0Š;1Š;2Š; : : :
are needed in the denominators.

There is no doubt thatxD 0 is the nicest basepoint. But Taylor series can be
constructed around other pointsxD a: The principle is the same—match derivatives
by powers—but now the powers to use are.x�a/n: The derivativesf .n/.a/ are
computed at the new basepointxD a:
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The Taylor series begins withf .a/Cf 1.a/.x�a/: This is the tangent
approximation atxD a: The whole “infinite approximation” is centered ata—
at that point it has the same derivatives asf .x/:

10L TheTaylor seriesfor f .x/ around the basepointxD a is

f .x/Df .a/Cf 1.a/.x�a/C 1

2
f 2.a/.x�a/2C � � �D 8

X

nD0

f .n/.a/

nŠ
.x�a/n:

(4)

EXAMPLE 5 Find the Taylor series forf .x/D .1Cx/5 aroundxD aD 1:

Solution At xD 1, the function is.1C1/5 D 32: Its first derivative5.1Cx/4 is
5 �16D 80:We compute thenth derivative, divide bynŠ, and multiply by.x�1/n:

32C80.x�1/C80.x�1/2C40.x�1/3C10.x�1/4C .x�1/5: (5)

That Taylor series (which stops atnD 5) should agree with.1Cx/5: It does. We
could rewrite1Cx as2C .x�1/, and take its fifth power directly. Then32;16;8;4;
2;1will multiply the usual coefficients1;5;10;10;5;1 to give our Taylor coefficients
32;80;80;40;10;1: The series stops as it will stop for any polynomial—because the
high derivatives are zero.

EXAMPLE 6 Find the Taylor series forf .x/D ex around the basepointxD 1:

Solution At xD 1 the function and all its derivatives equale: Therefore the Taylor
series has that constant factor (note the powers ofx�1, notx):

ex D eCe.x�1/C e

2Š
.x�1/2 C

e

3Š
.x�1/3 C � � � : (6)

DEFINING THE FUNCTION BY ITS SERIES

Usually, we definesinx and cosx from the sides of a triangle. But we could start
instead with the series. Definesinx by equation(2). The logic goes backward, but it
is still correct:

First, prove that the series converges.
Second, prove properties like.sinx/1 D cosx:
Third, connect the definitions by series to the sides of a triangle.

We don’t plan to do all this. The usual definition was good enough. But note first:
There is no problem with convergence. The series forsinx andcosx andex all have
terms�xn=nŠ: The factorials make the series converge for allx: The general rule
for ex timesey can be based on the series. Equation(6) is typical:e is multiplied by
powers of.x�1/: Those powers add toex�1: So the series proves thatex D eex�1:
That is just one example of the multiplication.ex/.ey/D exCy :
�

1CxC
x2

2
C : : :

��

1CyC
y2

2
C : : :

�

D 1CxCyC
x2

2
CxyC

y2

2
C : : : :

(7)
Term by term, multiplication gives the series forexCy : Term by term, differentiating
the series forex givesex : Term by term, the derivative ofsinx is cosx:

d

dx

�

x� x3

3Š
C
x5

5Š
� : : :�D 1� x2

2Š
C
x4

4Š
� : : : : (8)
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We don’t need the famous limit.sinx/=xÑ 1, by which geometry gave us the
derivative. The identities of trigonometry become identities of infinite series. We
could even define� as the first positivex at whichx� 1

6
x3 C � � � equals zero. But it is

certainly not obvious that this sine series returns to zero—much less that the point of
return is near3:14:

The function thatwill be defined by infinite series isei� . This is the exponential
of the imaginary numberi� (a multiple ofi D

?�1). The resultei� is acomplex
number, and our goal is to identify it. (We will be confirming Section 9.4.) The
technique is to treati� like all other numbers, real or complex, and simply put it into
the series:

DEFINITION ei� is the sum of1C .i�/C
1

2Š
.i�/2 C

1

3Š
.i�/3 C � � � : (9)

Now usei2 D�1: The even powers arei4 D C1, i6 D�1, i8 D C1; : : : : We are
just multiplying�1 by �1 to get 1: The odd powers arei3 D�i , i5 D Ci; : : : :
Thereforeei� splits into areal part (with no i ’s) and animaginary part(multiplying
i ):

ei� D

�

1� 1

2Š
�2 C

1

4Š
�4��� ��C i

�

�� 1

3Š
�3 C

1

5Š
�5��� �� : (10)

You recognize those series. They arecos� andsin�: Therefore:

Fig. 10.5

Euler’s formula is ei� D cos�C i sin�: Note thate2�i D 1.

The real part isxD cos� and the imaginary part isyD sin�: Those coordinates
pick out the pointei� in the “complex plane.” Its distance from the origin.0;0/ is
r D 1, because.cos�/2 C .sin�/2 D 1: Its angle is� , as shown in Figure 10.5. The
number�1 is ei� ; at the distancer D 1 and the angle�: It is on the real axis to
the left of zero. Ifei� is multiplied byr D 2 or r D 1

2
or any r ¥ 0, the result is a

complex number at a distancer from the origin:

Complex numbers: rei� D r.cos�C i sin�/D r cos�C ir sin� D xC iy:

With ei� , a negative number has a logarithm.The logarithm of�1 is imaginary
(it is i� , sinceei� D�1). A negative number also has fractional powers. The fourth
root of�1 is .�1/1=4 D ei�=4:More important for calculus:The derivative ofx5=4

is 5
4
x1=4. That sounds old and familiar, but atxD�1 it was never allowed.

Complex numbers tie up the loose ends left by the limitations of real num-
bers.

The formulaei� D cos�C i sin� has been called “one of the greatest mysteries of
undergraduate mathematics.” Writers have used desperate methods to avoid infinite
series. That proof in(10) may be the clearest (I remember sending it to a prisoner
studying calculus) but here is a way to start fromd=dx.eix/D ieix:

A different proof of Euler’s formula Any complex number iseix D r.cos�C
i sin�/ for somer and�: Take thex derivative of both sides, and substitute forieix :

.cos�C i sin�/dr=dxCr.�sin�C i cos�/d�=dxD ir.cos�C i sin�/:

Comparing the real parts and also the imaginary parts, we needdr=dxD 0 and
d�=dxD 1: The starting valuesr D 1 and� D 0 are known fromei0 D 1: There-
fore r is always1 and� is x: Substituting into the first sentence of the proof, we
have Euler’s formulaei� D 1.cos�C i sin�/:
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10.4 EXERCISES

Read-through questions

The a series is chosen to matchf .x/ and all its b
at the basepoint. AroundxD 0 the series begins with
f .0/C c xC d x2: The coefficient ofxn is e . For
f .x/D ex this series is f . For f .x/D cosx the series is

g . For f .x/D sin x the series is h . If the signs were
all positive in those series, the functions would be coshx and

i . Addition gives coshxCsinhxD j .

In the Taylor series forf .x/ around xD a, the coefficient
of .x�a/n is bn D k . Thenbn.x�a/n has the same l
as f at the basepoint. In the examplef .x/D x2, the Taylor
coefficients areb0 D m , b1 D n , b2 D o . The series
b0 Cb1.x�a/Cb2.x�a/2 agrees with the original p . The
series forex aroundxD a hasbn D q . Then the Taylor series
reproduces the identityex D . r /. s /:

We define ex , sinx, cosx, and also ei� by their series.
The derivative d=dx.1CxC 1

2x
2 C � � � /D 1CxC � � � translates

to t . The derivative of 1� 1
2x

2 C � � � is u . Using

i2 D�1 the series1C i�C 1
2 .i�/

2 C � � � splits into ei� D v :

Its square givese2i� D w . Its reciprocal ise�i� D x .
Multiplying by r gives rei� D y C i z ; which con-
nects the polar and rectangular forms of a A number.
The logarithm ofei� is B .

1 Write down the series fore2x and compute all derivatives at
xD 0: Give a series of numbers that adds toe2:

2 Write down the series for sin2x and check the third derivative
atxD 0: Give a series of numbers that adds to sin2� D 0:

In 3�8 find the derivatives off .x/ at xD 0 and the Taylor series
(powers ofx) with those derivatives.

3 f .x/D eix 4 f .x/D 1=.1Cx/

5 f .x/D 1=.1�2x/ 6 f .x/D coshx

7 f .x/D ln.1�x/ 8 f .x/D ln.1Cx/

Problems 9�14 solve differential equations by series.

9 From the equationdy=dxD y�2 find all the derivatives ofy
at xD 0 starting fromy.0/D 1: Construct the infinite series fory,
identify it as a known function, and verify that the function satisfies
y1 D y�2:
10 Differentiate the equationy1 D cyCs (c and s constant) to
find all derivatives ofy at xD 0: If the starting value isy0 D 0,
construct the Taylor series fory and identify it with the solution
of y1 D cyCs in Section 6.3.

11 Find the infinite series that solvesy2 D�y starting fromyD 0

andy1 D 1 atxD 0:

12 Find the infinite series that solvesy1 D y starting fromyD 1 at
xD 3 (use powers ofx�3). Identify y as a known function.

13 Find the infinite series (powers ofx) that solvesy2 D 2y1�y
starting fromyD 0 andy1 D 1 atxD 0:

14 Solvey2 D y by a series withyD 1 andy1 D 0 at xD 0 and
identify y as a known function.

15 Find the Taylor series forf .x/D .1Cx/2 aroundxD aD 0 and
aroundxD aD 1 (powers ofx�1). Check that both series add to
.1Cx/2:

16 Find all derivatives off .x/D x3 atxD a and write out the Tay-
lor series around that point. Verify that it adds tox3:

17 What is the series for.1�x/5 with basepointaD 1?

18 Write down the Taylor series forf D cosx aroundxD 2� and
also forf D cos.x�2�/ aroundxD 0:

In 19�24 compute the derivatives off and its Taylor series
around xD 1:

19 f .x/D 1=x 20 f .x/D 1=.2�x/
21 f .x/D ln x 22 f .x/D x4

23 f .x/D e�x 24 f .x/D e2x

In 25�33 write down the first three nonzero terms of the Taylor
series aroundxD 0; from the series for ex ;cosx; and sinx:

25 xe2x

28
sin x

x

31 ex2

26 cos
?
x

29
» x

0

sinx

x
dx

32 bx D ex lnb

27 .1�cosx/=x2

30 sinx2

33 ex cosx�34 Forx  0 the derivative ofxn is still nxn�1:

d

dx
.xn/D

d

dx
.|x|nein�/Dn|x|n�1ein� d |x|

dx
:

What isd |x|=dx ? Rewrite this answer asnxn�1:

35 Why doesn’tf .x/D
?
x have a Taylor series aroundxD 0?

Find the first two terms aroundxD 1:

36 Find the Taylor series for2x aroundxD 0:

In 37�44 find the first three terms of the Taylor series around
xD 0:

37 f .x/D tan�1 x 38 f .x/D sin�1x

39 f .x/D tanx 40 f .x/D ln.cosx/

41 f .x/D esinx 42 f .x/D tanh�1x

43 f .x/D cos2x 44 f .x/D sec2x
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45 From ei� D cos�C i sin� ande�i� D cos�� i sin� , add and
subtract to find cos� and sin�:

46 Does.ei� /2 equal cos2 �C i sin2 � or cos�2 C i sin�2 ?

47 Find the real and imaginary parts and the99th power of
ei� , ei�=2, ei�=4 ande�i�=6:

48 The three cube roots of1 are1; e2�i=3; e4�i=3:

(a) Find the real and imaginary parts ofe2�i=3:

(b) Explain why.e2�i=3/3 D 1:

(c) Check this statement in rectangular coordinates.

49 The cube roots of�1D ei� areei�=3 and and :

Find their sum and their product.

50 Find the squares of 2ei�=3 D 1C
?
3i and 4ei�=4 D

2
?
2C i2

?
2 in both polar and rectangular coordinates.

51 Multiply eis D cossC i sins timesei t D costC i sin t to find
formulas for cos.sC t/ and sin.sC t/:

52 Multiply eis timese�i t to find formulas for cos.s� t/ and
sin.s� t/:
53 Find the logarithm ofi: Then find another logarithm ofi: (What
can you add to the exponent ofeln i without changing the result ? )

54 (Proof thate is irrational) If eDp=q then

N DpŠ

�

1

e
��1� 1

1Š
C
1

2Š
��� �� 1

pŠ

��

would be an integer. (Why ? ) The number in brackets—the
distance from the alternating series to its sum1=e—is less than
the last term which is1=pŠ Deduce that|N |  1 and reach a
contradiction, which proves thate cannot equalp=q:

55 Solvedy=dxD y by infinite series starting fromyD 2 atxD 0:
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10.5 Power Series

This section studies the properties of a power series. When the basepoint is zero, the
powers arexn. The series is†anx

n. When the basepoint isxD a, the powers are
.x�a/n. We want to know when and where (and how quickly) the series converges
to the underlying function. Forex andcosx andsinx there is convergence for all
x—but that is certainly not true for1=.1�x/. The convergence is best when the
function is smooth.

First I emphasize that power series are not the only series. For many applications
they are not the best choice. An alternative is a sum of sines,f .x/D†bn sinnx.
That is a “Fourier sine series”, which treats allx’s equally instead of picking on a
basepoint. A Fourier series allows jumps and corners in the graph—it takes the rough
with the smooth. By contrast a power series is terrific near its basepoint, and gets
worse as you move away. The Taylor coefficientsan are totally determinedat the
basepoint—where all derivatives are computed. Remember the rule for Taylor series:

an D .nth derivative at the basepoint/=nŠD f .n/.a/=nŠ (1)

A remarkable fact is the convergence in asymmetric interval aroundxD a.

10M A power series†anx
n either converges for allx, or it converges only at

the basepointxD 0, or else it has aradius of convergencer :

†anx
n converges absolutely if|x|   r and diverges if|x| ¡ r:

The series†xn=nŠ converges for allx (the sum isex). The series†nŠxn converges
for no x (exceptxD 0). The geometric series†xn converges absolutely for|x|  
1 and diverges for|x| ¡ 1. Its radius of convergence isr D 1. Note that its sum
1=.1�x/ is perfectly good for|x| ¡ 1—the function is all right but the series has
given up. If something goes wrong at the distancer , a power series can’t get past that
point.

When the basepoint isxD a, the interval of convergence shifts over to|x�a|   r:
The series converges forx betweena�r andaCr (symmetric arounda). We cannot
say in advance whether the endpointsa�r give divergence or convergence (absolute
or conditional).Insidethe interval, an easy comparison test will now prove conver-
gence.

PROOF OF 10M Suppose†anX
n converges at a particular pointX . The proof will

show that†anx
n converges when|x| is less than the number|X |. Thus convergence

atX gives convergence at all closer pointsx (I mean closer to the basepoint0). Proof:
Since†anX

n converges, its terms approach zero. Eventually|anX
n|   1 and then|anx

n|D |anX
n||x=X |n  |x=X |n:

Our series†anx
n is absolutely convergent by comparison with the geometric series

for |x=X |, which converges since|x=X |   1.
EXAMPLE 1 The series†nxn=4n has radius of convergencer D 4.

The ratio test and root test are best for power series. The ratios between terms
approachx=4 (and so does thenth root ofnxn=4n):

.nC1/xnC1

4nC1

�

nxn

4n
D
x

4

nC1

n
approachesLD

x

4
:
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The ratio test gives convergence ifL  1, which means|x|   4.
EXAMPLE 2 The sine seriesx� x3

3Š
C
x5

5Š
��� � hasr D8 (it converges every-

where).

The ratio ofxnC2=.nC2/Š to xn=nŠ is x2=.nC2/.nC1/. This approachesLD 0.

EXAMPLE 3 The series†.x�5/n=n2 has radiusr D 1 around its basepointaD
5.

The ratios between terms approachLD x�5. (The fractionsn2=.nC1/2 go toward
1.) There is absolute convergence if|x�5|   1. This is the interval4  x  6, sym-
metric around the basepoint. This series happens to converge at the endpoints4 and6,
because of the factor1=n2. That factor decides the delicate question—convergence at
the endpoints—but all powers ofn give the sameinterval of convergence4  x  6.

CONVERGENCE TO THE FUNCTION: REMAINDER TERM AND RADIUS r

Remember that a Taylor series starts with a functionf .x/. The derivatives at the
basepoint produce the series. Suppose the series converges:Does it converge to the
function ? This is a question about theremainderRn.x/D f .x/�sn.x/, which
is the difference betweenf and the partial sumsn D a0 C � � �Can.x�a/n. The
remainderRn is the error if we stop the series, ending with thenth derivative term
an.x�a/n.

10N Supposef hasan.nC1/st derivative from the basepointa out tox. Then
for some pointc in between (position not known) the remainder atx equals

Rn.x/D f .x/�sn.x/D f .nC1/.c/.x�a/nC1=.nC1/Š (2)

The error in stopping at thenth derivative is controlled by the.nC1/st derivative.

You will guess, correctly, that the unknown pointc comes from the Mean Value
Theorem. FornD 1 the proof is at the end of Section 3.8. That was the errore.x/ in
linear approximation:

R1.x/D f .x/�f .a/�f 1.a/.x�a/D 1
2
f 2.c/.x�a/2:

For everyn, the proof comparesRn with .x�a/nC1. Their .nC1/st derivatives
aref .nC1/ and.nC1/Š The generalized Mean Value Theorem says that the ratio of
Rn to .x�a/nC1 equals the ratio of those derivatives, at the right pointc. That is
equation(2). The details can stay in Section 3.8 and Problem23, because the main
point is what we want.The error is exactly like the next termanC1.x�a/nC1,
except that the.nC1/st derivative is atc instead of the basepointa.

EXAMPLE 4 Whenf is ex , the.nC1/st derivative isex . Therefore the error is

Rn D ex��1CxC � � �C xn

nŠ

�

D ec xnC1

.nC1/Š
: (3)

At xD 1 and nD 2, the error ise� .1C1C 1
2
/� :218. The right side isec=6.

The unknown point iscD ln.:218 �6/D :27. Thusc lies between the basepointaD 0
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and the error pointxD 1, asrequired. The series converges to the function, because
RnÑ 0.

In practice,n is the number of derivatives to be calculated. We may aim for an
error|Rn| below10�6. Unfortunately, the high derivative in formula.2/ is awkward
to estimate (except forex). And high derivatives in formula.1/ are difficult to
compute. Most real calculations use only afew termsof a Taylor series. For more
accuracy we move the basepoint closer, or switch to another series.

There is a direct connection between the function and the convergence radiusr . A
hint came forf .x/D 1=.1�x/. The function blows up atxD 1—which also ends
the convergence interval for the series. Another hint comes forf D 1=x, if we expand
aroundxD aD 1:

1

x
D

1

1� .1�x/D 1C .1�x/C .1�x/2C � � � : (4)

This geometric series converges for|1�x| 1. Convergence stops at the end
point xD 0—exactly where1=x blows up.The failure of the function stops the
convergence of the series. But note that1=.1Cx2/, which never seems to fail, also
has convergence radiusr D 1:

1=.1Cx2/D 1�x2 Cx4�x6 C � � � converges only for|x|   1:
When you see the reason, you will know whyr is a “radius.” There is a circle, and
the function fails at the edge of the circle. The circle contains complex numbers as
well as real numbers. The imaginary pointsi and�i are at the edge of the circle.The
function fails at those points because1=.1C i2/D8.

Complex numbers are pulling the strings, out of sight. The circle of convergence
reaches out to the nearest “singularity” off .x/, real or imaginary or complex. For
1=.1Cx2/, the singularities ati and�i maker D 1. If we expand aroundaD 3,
the distance toi and�i is r D

?
10. If we change toln.1Cx/, which blows up at

xD�1, the radius of convergence ofx� 1
2
x2 C 1

3
x3��� � is r D 1.

Fig. 10.6 Convergence radiusr is distance from basepointa to nearest singularity.

THE BINOMIAL SERIES

We close this chapter with one more series. It is the Taylor series for.1Cx/p, around
the basepointxD 0. A typical power ispD 1

2
, where we want the terms in?

1CxD 1C 1
2
xCa2x

2 C � � � :
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The slow way is to square both sides, which gives1CxC .2a2 C 1
4
/x2 on the right.

Since1Cx is on the left,a2 D�1
8

is needed to remove thex2 term. Eventuallya3

can be found. The fast way is to match the derivatives off D .1Cx/1=2:

f 1 D 1
2
.1Cx/�1=2 f 2 D

�

1
2

��� 1
2

�

.1Cx/�3=2 f 3 D
�

1
2

��� 1
2

��� 3
2

�

.1Cx/�5=2:

At xD 0 those derivatives are1
2
;�1

4
; 3

8
. Dividing by 1Š;2Š;3Š gives

a1 D
1

2
a2 D�1

8
a3 D

1

16
an D

1

nŠ

�

1

2

��

1

2
�1� � � ��1

2
�nC1

�

:

These are thebinomial coefficientswhen the power ispD 1
2
.

Notice the difference from the binomials in Chapter 2. For those, the powerp was
a positive integer. The series.1Cx/2 D 1C2xCx2 stopped atx2. The coefficients
for pD 2 were1;2;1;0;0;0; : : : : For fractionalp or negativep those later coeffi-
cients arenot zero, and we find them from the derivatives of.1Cx/p:

.1Cx/p p.1Cx/p�1 p.p�1/.1Cx/p�2 f .n/ Dp.p�1/ � � �.p�nC1/.1Cx/p�n:

Dividing by 0Š;1Š;2Š; : : : ; nŠ atxD 0, the binomial coefficients are

1 p
p.p�1/

2
� � � f .n/.0/

nŠ
D
p.p�1/ � � �.p�nC1/

nŠ
: (5)

For pD n that last binomial coefficient isnŠ=nŠD 1. It gives the finalxn at the end
of .1Cx/n. For other values ofp, the binomial series never stops.It converges for|x| 1:
.1Cx/p D 1CpxC

p.p�1/
2

x2 C � � �D 8
X

nD0

p.p�1/ � � �.p�nC1/

nŠ
xn: (6)

When pD 1;2;3; : : : the binomial coefficientpŠ=nŠ.n�p/Š counts the number
of ways to select a group ofn friends out of a group ofp friends. If you have20
friends, you can choose2 of them in.20/.19/=2D 190ways.

Supposep is not a positive integer. What goes wrong with.1Cx/p, to stop the
convergence at|x|D 1 ? The failure is atxD�1. If p is negative,.1Cx/p blow
up. If p is positive, as in

?
1Cx, the higher derivatives blow up. Only for a positive

integerpD n does the convergence radius move out tor D8. In that case the series
for .1Cx/n stops atxn, andf never fails.

A power series is a function in a new form. It is not a simple form, but sometimes
it is the only form. To computef we have to sum the series. To squaref we have to
multiply series. But the operations of calculus—derivative and integral—are easier.
That explains why power series help to solve differential equations, which are a rich
source of new functions. (Numerically the series are not always so good.) I should
have said that the derivative and integral are easyfor each separate termanx

n—and
fortunately the convergence radius of the whole series is not changed.

If f .x/D†anx
n has convergence radiusr , so do its derivative and its integral:

df=dxD†nanx
n�1 and

r
f .x/dxD†anx

nC1=.nC1/ also converge for|x|   r .
EXAMPLE 5 The series for1=.1�x/ and its derivative1=.1�x/2 and its integral� ln.1�x/ all haver D 1 (because they all have trouble atxD 1). The series are
†xn and†nxn�1 and†xnC1=.nC1/.
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EXAMPLE 6 We can integrateex2
(previously impossible) by integrating every

term in its series:»
ex2

dxD

» �
1Cx2 C

1

2Š
x4 C � � ��dxD xC

x3

3
C
1

2Š

�

x5

5

�

C
1

3Š

�

x7

7

�

C � � � :
This always converges.r D8/. The derivative ofex2

was never a problem.

10.5 EXERCISES

Read-through questions

If |x|  |X | and†anX
n converges, then the series†anx

n also
a . There is convergence in a b interval around the
c . For †.2x/n the convergence radius isr D d . For

†xn=nŠ the radius isr D e . For †.x�3/n there is con-
vergence for |x�3|  f . Then x is between g and

h .

Starting with f .x/, its Taylor series†anx
n has an D i .

With basepointa, the coefficient of .x�a/n is j . The
error after thexn term is called the k Rn.x/. It is equal
to l where the unknown pointc is between m . Thus
the error is controlled by the n derivative.

The circle of convergence reaches out to the first point
where f .x/ fails. For f D 4=.2�x/, that point is xD o .
Around the basepointaD 5, the convergence radius would be
r D p . For sinx and cosx the radius isr D q .

The series for
?
1Cx is the r series withpD 1

2 . Its
coefficients arean D s . Its convergence radius is t . Its
square is the very short series1Cx.

In 1–6 find the Taylor series for f .x/ around xD 0 and its
radius of convergencer . At what point doesf .x/ blow up ?

1 f .x/D 1=.1�4x/
3 f .x/D e1�x

5 f .x/D ln.eCx/

2 f .x/D 1=.1�4x2/

4 f .x/D tanx (throughx3)

6 f .x/D 1=.1C4x2/

Find the interval of convergence and the function in 7–10.

7 f .x/D

8
X

0

�

x�1
2

�n

8 f .x/D

8
X

0

n.x�a/n�1

9 f .x/D

8
X

0

1

nC1
.x�a/nC1

10 f .x/D .x�2�/� .x�2�/3
3Š

C � � �
11 Write down the Taylor series for.ex�1/=x, based on the
series forex . At xD 0 the function is0=0. Evaluate the series at
xD 0. Check by l’Hôpital’s Rule on.ex�1/=x.

12 Write down the Taylor series forxex aroundxD 0. Integrate
and substitutexD 1 to find the sum of1=nŠ.nC2/.

13 If f .x/ is an even function, sof .�x/D f .x/, what can you say
about its Taylor coefficients inf D†anx

n ?

14 Puzzle out the sums of the following series:

(a) xCx2�x3 Cx4 Cx5�x6 C � � �
(b) 1C

x4

4Š
C
x8

8Š
C � � �

(c) .x�1/� 1
2 .x�1/2 C 1

3 .x�1/3��� �
15 From the series for.1�cosx/=x2 find the limit asxÑ 0 faster
than l’Hôpital’s rule.

16 Construct a power series that converges for0 x  2�.

17–24 are about remainders and 25–36 are about binomials.

17 If the cosine series stops beforex8=8Š show from .2/ that the
remainderR7 is less thanx8=8Š Does this also follow because
the series is alternating ?

18 If the sine series aroundxD 2� stops after the terms in
problem10, estimate the remainder from equation (2).

19 Estimate by.2/ the remainderRn D xnC1 CxnC2 C � � � in the
geometric series. Then computeRn exactly and find the unknown
point c for nD 2 andxD 1

2 .

20 For � ln.1�x/DxC 1
2x

2 C 1
3x

3 CR3, use equation (2) to
show thatR3¤ 1

8 at xD 1
2 .

21 FindRn in Problem20 and show that the series converges to the
function atxD 1

2 (prove thatRnÑ 0).

22 By estimatingRn prove that the Taylor series forex around
xD 1 converges toex asnÑ8.

23 (Proof of the remainder formula whennD 2)

(a) At xDa findR2;R
1
2;R

2
2;R

3
2 .

(b) At xD a evaluateg.x/D .x�a/3 andg1;g2;g3.

(c) What rule gives
R2.x/�R2.a/

g.x/�g.a/ D
R12.c1/
g1.c1/ ?
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(d) In
R12.c1/�R12.a/
g1.c1/�g1.a/ D

R22.c2/
g2.c2/ and

R22.c2/�R22.a/
g2.c2/�g2.a/ D

R32 .c/
g3.c/ where arec1 andc2 andc ?

(e) Combine (a-b-c-d) into the remainder formula.2/.

24 All derivatives of f .x/D e�1=x2
are zero atxD 0, includ-

ing f .0/D 0. What is f .:1/? What is the Taylor series around
xD 0? What is the radius of convergence ? Where does the
series converge tof .x/? For xD 1 and nD 1 what is the
remainder estimate in.2/?

25 (a) Find the first three terms in the binomial series for
1=
a
1�x2.

(b) Integrate to find the first three terms in the Taylor series for
sin�1x.

26 Show that the binomial coefficients in1=
?
1�xD

P

anx
n are

an D 1 �3 �5 � � � .2n�1/=2nnŠ

27 ForpD�1 andpD�2 find nice formulas for the binomial co-
efficients.

28 Change the dummy variable and add lower limits to make
P8 nxn�1 D

P8.nC1/xn.

29 In .1�x/�1 D†xn the coefficient ofxn is the number of
groups ofn friends that can be formed from1 friend (not binomial—
repetition is allowed!). The coefficient is1 and there is only one
group—the same friendn times.

(a) Describe all groups ofn friends that can be formed from2
friends. (There arenC1 groups.)

(b) How many groups of5 friends can be formed from3
friends ?

30 (a) What is the coefficient ofxn when 1CxCx2 C � � �
multiplies1CxCx2 C � � � ? Write the first three terms.

(b) What is the coefficient ofx5 in .†xk/3 ?

31 Show that the binomial series for
?
1C4x has integer

coefficients. (Note thatxn changes to.4x/n. These coefficients are
important in counting trees, paths, parentheses. . . )

32 In the series for1=
?
1C4x, show that the coefficient ofxn is

.2n/Š divided by.nŠ/2.

Use the binomial series to compute 33–36 with error less than
1=1000.

33 .15/1=4 34 .1001/1=3

35 .1:1/1:1 36 e1=1000

37 From secxD 1=Œ1�.1�cosx/� find the Taylor series of
secx up to x6. What is the radius of convergencer (distance to
blowup point) ?

38 From sec2xD 1=Œ1�sin2x� find the Taylor series up tox2.
Check by squaring the secant series in Problem37. Check by
differentiating the tangent series in Problem39.

39 (Division of series) Find tanx by long division of sinx=cosx:

 

x� x3

6
C
x5

120
� � �!, 

1� x2

2
C
x4

24
� � �!D xC

x3

3
C
2x5

15
C � � � :

40 (Composition of series) Iff D a0 Ca1xCa2x
2 C � � � and

gD b1xCb2x
2 C � � � find the1;x;x2 coefficients off .g.x//.

Test onf D 1=.1Cx/;gD x=.1�x/, with f .g.x//D 1�x.

41 (Multiplication of series) From the series for sinx and
1=.1�x/ find the first four terms forf D sinx=.1�x/.
42 (Inversion of series) Iff D a1xCa2x

2 C � � � find coefficients
b1;b2 in gD b1xCb2x

2 C � � � so that f .g.x//Dx. Compute
b1;b2 for f D ex�1; gD f �1 D ln.1Cx/.

43 From the multiplication.sinx/.sinx/ or the derivatives of
f .x/D sin2x find the first three terms of the series. Find the
first four terms for cos2x by an easy trick.

44 Somehow find the first six nonzero terms forf D .1�x/=
.1�x3/.

45 Find four terms of the series for1=
?
1�x. Then square the se-

ries to reach a geometric series.

46 Compute
r 1

0 e
�x2

dx to 3 decimals by integrating the power se-
ries.

47 Compute
r 1

0 sin2 t dt to 4 decimals by power series.

48 Show that †xn=n converges atxD�1, even though its
derivative †xn�1 diverges. How can they have the same
convergence radius ?

49 Compute lim
xÑ0

.sinx� tanx/=x3 from the series.

50 If the nth root of an approachesL¡0, explain why†anx
n

has convergence radiusr D 1=L.

51 Find the convergence radiusr around basepointsaD 0 and
aD 1 from the blowup points of.1C tanx/=.1Cx2/.
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