CHAPTER 10

Infinite Series

Infinite series can be a pleasure (sometimes). They throw aihgdight on sin x

and cosx. They give famous numbers like ande. Usually they produce totally
unknown functions—which might be good. But on the painful side is the fact that
an infinite series has infinitely many terms.

It is not easy to know the sum of those terms. More than that, it is not certain
that thereis a sum. We need tests, to decide if the series converges. We also need
ideas, to discover what the series convetgeslere are examples @bnvergence,
divergenceandoscillation:

1+14+3+=2 14+14+1+=0 I—-14+1-1---=2

The first series converges. Its next terml j&8, after that isl/16—and every step
brings us halfway t®. The second series (the sum B$§) obviously diverges to
infinity. The oscillating example (with’s and—1’s) also fails to converge.

All those and more are special cases of one infinite series which is absolutely the
most important of all:

1

The geometric series is4+x +x2 4+ x3+--- = —
— X

This is a series ofunctions It is a “power series.” When we substitute numbers for
x, the series on the left may converge to the sum on the right. We need to know when
it doesn’t. Chooser = 1 and x = 1 andx = —1:

1
1+ % + (%)2 + -+ is the convergent series. Its surn—'rs_—l =2
2

=0

1 1
14+1+1+---isdivergent. Its sum isi—1 = 0

1

1 f—
I=(-1) 2
The last sum bounces between one and zero, so at least its ave%agetisx =2
there is no way that +2 +4+ 8+ - - - agrees withl /(1 —2).

This behavior is typical of a power series—to converge in an intervalsoand to
diverge wherx is large. The geometric series is safefdretween—1 and1. Outside
that range it diverges.

14 (=1)+(=1)2+--- is the oscillating series. Its sum should
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432 10 Infinite Series

The next example showsrapeating decimall.111...:

10 10 10

The decimall.111... is also the fractionl/(1 — ), which is 10/9. Every
fraction leads to a repeating decimal. Every repeating decimal addgthpugh
the geometric serie$d a fraction.

To get3.333.. ., just multiply by3. Thisis10/3. To getl.0101..., setx = 1/100.

This is the fractionl /(1 — 135), which is100/99.

Here is an unusual decimal (which eventually repeats). | don't really understand it:

1 o 1 1> (1)
Setx = —. The geometric seriesis+ —+ | — | + To 4.

1
—— =.004 115 226 337 448....

243
Most numbers are not fractions (or repeating decimals). A gaachple isz:
1 4 1 5
7r=3+—+—+—+—=+

10 " 100 " 1000 " 10000 '

This is 3.1415..., a series that certainly converges. We happen to know the first
billion terms (the billionth is given below). Nobody knows tRBebillionth term.
Compare that series with this one, which also equals

_4 4+4 4+
TERT3TS T
Thatalternating seriess really remarkable. It is typical of this chapter, because its
pattern is clear. We know th2 billionth term (it has a minus sign). This is not a

geometric series, but in Section 10.1 it comes from a geometric series.

Question Does this series actually converge? What if all signsfafe
Answer The alternating series convergesitqSection 10.3). The positive series
diverges to infinity (Section 10.2). The terms go to zero, but their sum is infinite.

This example begins to show what the chapter is about. Part of the subject deals
with special series, adding tb0/9 or & or e*. The other part is about series in
general, adding to numbers or functions that nobody has heard of. The situation was
the same for integrals—they give famous answersllike or unknown answers like
[ x*dx. The sum ofl +1/8+1/27+--- is also unknown—although a lot of
mathematicians have tried.

The chapter is not long, but it is full. The last half studsver serieswWe begin
with a linear approximation likel + x. Next is a quadratic approximation like
1+ x+x2. In the end we matclall the derivatives off(x). This is the Taylor
series; a new way to create functions—not by formulas or integrals but by infinite
series.

No example can be better thap(1 — x), which dominates Section 10.1. Then we
define convergence and test for it. (Most tests are really comparisons with a geometric
series.) The second most important series in mathematics exhenential series
e* =14 x+4x? 4 L1x3+ .- Itincludes the series f@inx andcosx, because of
the formulae’* = cosx 4 i sinx. Finally a whole range of new and old functions
will come from Taylor series.

In the end, all the key functions of calculus appeariafifiite polynomials” (ex-
cept the step function). This is the ultimate voyage from the linear fungtien
mx+b.
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10.1 The Geometric Series

We begin by looking at both sides of the geometric series:

1
1—x

1)

How does the series on the left produce the function on the right? Howlddés-
x) produce the series ? Add up two terms of the series, then three terms, tévems:

l+x+x2+x>+--=

1—x2 1—x3 1 —x"

l+x+x%= T4 x" 1= .
1—x 1—x 1—x

I+x= (2)

For the first, | +x times 1 —x equalsl —x? by ordinary algebra. The second

begins to make the point:+ x + x2 times1 —x gives1 —x 4+ x — x4+ x2 — x3.

Betweenl at the start ang-x? at the end, everything cancels. The same happens in all
casesl +---+x"~! times] — x leavesl at the start ang-x" at the end. This proves

equation(2)—the sum of: terms of the series.

For the whole series we will pushtowards infinity. On a graph you can see what

is happening. Figure 10.1 shows= 1 andn = 2 andn = 3 andn = 0.

|+%+i+ e Y Fig. 10.1  Two terms, then three
3ty t-=]

tems, then full series:

l+x+x%+--=

1—x’

I+x+x24-

O
NN

The infinite sum gives a finite

answer, providedx is between
—1 and 1. Then x" goes to
zera

1—x" 1

— .
1—x 1—x

-12 0 U3 1

Now start with the function1/(1 — x). How does it produce the series? One

way is elementary but brutal, to do “long division” bf- x into 1 (next to the figure).

Another way is to look up the binomial formula fét —x)~!. That is cheating—
we want to discover the series, not just memorize it. The successful approach uses

calculus.Compute the derivatives of (x) = 1/(1 — x):

fl=(1_x)—2 fll=2(1_x)—3 flll=6(1_x)—4 (3)
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At x = 0 these derivatives arg, 2, 6, 24, .... Notice how—1 from the chain rule
keeps them positivalhenth derivative atc = 0 is n factorial:

fO=1 f'O=1 f'0=2 f"0)=6 - fP0)=n

Now comes the idedlo match the series with /(1 — x), match all those deriva-
tives atx = 0. Each powen™” gets one derivative right. Its derivatives,at= 0 are
zero, except theth derivative, which is:! By adding all powers we get every deriva-
tive right—so the geometric series matches the function:

1+x+x%+x>+---has the same derivatives at=0as 1/(1 —x).

The linear approximation i$ + x. Then comes%f”(O)x2 = x2. The third deriva-
tive is supposed to b&, andx? is just what we needlhrough its derivatives, the
function produces the series

With that example, you have seen a part of this subject. The geometric series
diverges if |x| > 1. Otherwise it adds up to the function it comes from (when
—1 < x < 1). To get familiar with other series, we now apply algebra or calculus—to
reach the square df/ (1 —x) or its derivative or its integral. The point is that these
operations are appligd the series

The best | know is to show you eight operations that produce something useful.
At the end we discover series ftm 2 and .

1. Multiply the geometric series by or ax:

a+ax+ax2+---:L ax+ax*+ax*+-.. = ar (4)
1—x 1—x
The first series fits the decimal333.... In that case: = 3. The geometric series for
X = 11—0 gavel.111...=10/9, and this series is just three times larger. Its subt)i3.

The second series fits other decimals that are fractions in disguise. T@ 39,
choosez = 12 andx = 1/100:
121217 — 12 n 12 L 12 - 12/100 12
' 100 1002 1003 T 1—1/100 99
Problem13 asks about8787... and.123123.... It is usual in precalculus to write
a+ar+ar?+---=a/(1—r). But we usex instead ofr to emphasize thahis is
a function—which we can now differentiate.

2. The derivative of the geometric serigstx +x2+--- is1/(1 —x)%

d 1 1
142 Zpaxd34 = — = . 5
+2x +3x"+4x° + dx(l—x) 122 (5)

At x:% the left side starts with 1.23456789. The right side is

1/(1—£5)% = 1/(9/10)%, which is 100/81. If you have a calculator, divide00 by
81.

The answer should also be n¢ar11111111)2, which is1.2345678987654321.

3. Subtractl +x +x2+--- from 1+2x +3x2+--- as you subtract functions
1 1 X
= 2 = = > (6)
(1—x) 1-x) (1—x)

Curiously, the same series comes from multiplyifgby x. It answers a question left
open in Section 8.4—the average number of coin tosses until the result is heads. This
is the suml (p1) +2(p2) + - - - from probability, withx = %:

x+2x2+3x3 4+



10.1 The Geometric Series

N[=

13)+2(3)+3() 4+ = 2y =2 "
(1-3)

The probability of waiting until therth toss isp, = (1)". The expected value isvo

tossesl suggested experiments, but now this mean value is exact.

4. Multiply series the geometric series times itself 19 (1 — x) squared
A+x+x24+--)A+x+x2+--)=14+2x+3x>+---. (8)

The series on the right is not new! In equati¢s) it was the derivative of
y=1/(1—x). Now it is thesquareof the samey. The geometric series satisfies

dy/dx = y?, so the function does too. We have stumbled onto a differential equation.

Notice how the series was squared. A typical term in equdB)is 3x2, coming
from 1 timesx? and x timesx andx? times1 on the left side. It is a lot quicker
to squarel /(1 — x)—but other series can be multiplied when we don’t know what
functions they add up to.

5. Solvedy /dx = y? from any starting value—a new application of series:

Suppose the starting value ys= 1 at x = 0. The equationy’ = y? gives1? for the
derivative. Now a key stepThe derivative of the equation giveg” =2yy’. At
x =0 thatis2-1-1. Continuing upwards, the derivative 8§y’ is 2yy” +2(y')2.
At x =0thatisy” =4+4+2=6.

All derivatives are factorialst, 2, 6,24, .... We are matching the derivatives of the
geometric serie$ + x + x2+x3 +.... Term by term, we rediscover the solution to
y’ = y2. The solution starting frony (0) = 1is y = 1/(1 — x).

A different starting value is-1. Theny’ = (—1)? =1 as before. The chain rule
gives y” =2yy’= —2 and theny” = 6. With alternating signs to match these
derivatives, the solution starting froml is

y=—l+x—x24x34=—1/(1+x). ©)

It is a small challenge to recognize the function on the right from the series on the

left. The series has x in place ofx; then multiply by—1. The sumy=—1/(1+x)
also satisfieg’ = y2. We can solve differential equations from all starting values

by infinite seriesEssentially we substitute an unknown series into the equation, and

calculate one term at a time.

6. The integrals ofl + x +x2+--- and 1 — x + x2—--- are logarithms
1 1 *d
x+_x2+_x3+...zf al =—In(l1—x) (10a)
A o I—x
1 , 1 4 * dx
[P S B [ I RS 10b
XXt X L1+x+(+\) (10b)

Thederivative of (10a) brings back the geometric series. For logarithms wd find
not 1/n! The first termx and second tern%x2 give linear and quadratic approxi-

mations. Now we have the whole series. | cannot fail to substittaad % to find
In(1—1) andin(1+1) andIn(1 — 1):

x=1: 1+%+%+%+...:_|n0:+oo (11a)
x:% % %+ﬁ+&+...:—ln%:|n2. (12)
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The first series diverges to infinity. THigrmonic seriesl + 1 +1 4 ... came into

the earliest discussion of limits (Section 2.6). The second series has alternating signs
and converges ttm 2. The third has plus signs and also convergda t2. These will
be examples for a major topic in infinite series— tests for convergence.

For the first time in this book we are able to compute a logarithm! Something
remarkable is involvedThe sums of numbers i11) and (12) were discovered
from the sums of functions i{10). You might think it would be easier to deal only
with numbers, to compuia 2. But then we would never have integrated the series for
1/(1 — x) and detected10). It is better to work withx, and substitute special values
like 1 at the end.

There are two practical problems with these series.fF@rthey converge slowly.
For In e they blow up. The correct answer lis e = 1, but the series can't find it.
Both problems are solved by adding (10a) to (10b), which cancels the even powers:

5

X3 X
2| x+ 5+ 5+ ) =In(4+x) —In(l—x) =In

14+x
1—x’

(13)

At x = 1, the right side isn% —InZ =1In 2. Powers of1 are much smaller than

powers ofl or 1, soIn 2 is quickly computed. All logarithms can be found from the
improved serie$13).

7. Change variables in the geometric series (replacey x? or —x?2):
T+x2+x* + x84+ =1/(1-x?) (14)
1—x?+x*—xC4- =1/(1+x?). (15)

This produces new functions (always our goal). They involve even powersTiie
second series will soon be used to calcufat®ther changes are valuable:

X X X\2 1 2

Zinpl fx: 1+=4+(= = = 16

5 inplace ofx +2+(2) + — /2 2-x (16)
1

X

o= 1—(1/x) x—1

1 1 1
—inplaceofx: 14—+ — a7)
X X X

Equation(17) is a series ofiegative powers ~". It converges whefx| is greater
thanl1. Convergence iifl7) is for largex. Convergence iii16) is for |x| < 2.

8. The integral of 1 — x2 4+ x* —x® 4 --- yields the inverse tangent of:

1 , 1 5 15 dx 1
_ — — — = e — =tan . 18
X 3x +5x 7x+ fl—i—xz X (18)
We integrated’15) and got odd powers. The magical formula for(discovered by
Leibniz) comes wher = 1. The angle with tangeritis = /4:

1 1 1 b4
l——4+=-—=+- - =—. 19
3 + 5 7 + 4 (19
The first three terms give = 3.47 (not very close). Thé000th term is still of size
.0001, so the fourth decimal is still not settled. By changingite= 1/\/§, the
astronomer Halley and his assistant fouht correct digits ofzr/6 (while waiting
for the comet). That is one step in the long and amazing story of calculatifidne



10.1 The Geometric Series

Chudnovsky brothers recently took the latest step with a sopgrater—they have
found more thamne billion decimal places of (seeSciencelJunel 989). The dig-

its look completely random, as everyone expected. But so far we have no proof that
all ten digits occurll0 of the time.

Historical note Archimedes located above 3.14 and beIOV\B%. Variations of his
method (polygons in circles) reached as faB4sligits—but not forl 800 years. Then
Halley found71 digits of 7 /6 with equation(18). For faster convergence that series
was replaced by other inverse tangents, using smaller values of

z:tanfll-i—tanfll:4tan*11—tan*1L. (20)

4 2 3 5 239
A prodigy named Dase, who could multiplp0-digit numbers in his head ®1hours,
finally passed®00 digits of . The climax of hand calculation came when Shanks
published607 digits. | am sorry to say that onl§27 were correct. (With years of
calculation he went on t807 digits, but still only527 were correct.) The mistake
was not noticed until 945! Then Ferguson reach&@8 digits with a desk calculator.

Now comes the computer. Three days on an ENKA@49) gave2000 digits. A
hundred minutes on an IBM04 (1958) gave 10,000 digits. Shanks (no relation)
reached 00,000 digits. Finally a million digits were found in a day i973, with a
CDC7600. All these calculations used variations of equati2@).

The record after that went between Cray and Hitachi and now IBM. But the
method changed. The calculations rely on an incredibly accurate algorithm, based
on the “arithmetic-geometric mean iteration” of Gauss. It is also incredibly simple,
all things considered:

ap+b "
an+1 = n2 L bn+1: anbn ﬂnzzai-i-l/ (1_22k(a/%_b]%))'

k=0

The number of correct digits more than doubles at every stepr By we are far
beyond Shanks (the hand calculator). No end is in sight. Almost anyone can go past
a billion digits, since with the Chudnovsky method we don’t have to start over again.

It is time to stop. You may think (or hope) that nothing more could possibly be
done with geometric series. We have gone a long way frg(h — x), but some func-
tions can never be reached. One¥s(and its relativesin x, cosx, sinhx, coshy).
Another is4/1 —x (and its relatived /+/1 —x2, sin"!x, sec’' x, ...). The expo-
nentials are in 0.4, with series that converge for all The square-roots are ir).5,
closer to geometric series and convergingfdr< 1. Before that we have to say what
convergence means.

The series came fast, but | hope you see what can be done (subtract, multiply,
differentiate, integrate). Addition is easy, division is harder, all are legal. Some
unexpected numbers are the sums of infinite series.

Added in proof By e-mail | just learned that the record far is back in Japan:
239 digits which is more thar.07 billion. The elapsed time wal)0 hours (5 hours
of CPU time on an NEC machine). The billionth digit after the decimal poifit is
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438 10 Infinite Series

10.1 EXERCISES

Read-through questions

The geometric seried +x+x2+--- adds to__a . It con- power10Y =", Thusgc=10Y —10¥~" for somec and1/g has

verges provided|x|<__b . The sum ofn terms is __c . arepeating decimal:
The derivatives of the series match the derivativesl pfl — x) .

. R 1 c c 1
at the pointx =__d_, where thenth derivative is__e . The =

— 7 10N_1oN-n _ 10N 1—10-"
decimal 1.111... is the geometric series at=__f and equals g 10 10%-7 107 1-10

the fraction g . The decimal666... multiplies thisby _h . __¢ ( _{_L + 1 +)
The decimal999... isthe same as i . 10N 107 = 102"
The derivative of the geometric series isj =__k . This Conclusion: Every fraction equals a repeating decimal

aso comes from squaring the | _ series. By choosing = .01, . . . ) .
the decimal 1.02030405 is close to__m . The differential 8 Find the r.e.peatmg dgmmal fo% and read offc. What is the
numbern of digits before it repeats ?

equation dy/dx = y? is solved by the geometric series, going

term by term starting frop(0)=__ n . 9 From the fact that everyg goes evenly into a power
10¥ minus a smaller power, show that all primes except 5 go
The integral of the geometric seriesiso = p .Atx=1 evenlyinto9 or99or999or---.
this becomes the q series, which diverges. At=__r we . .
findIn2=__s . The change fromx to —x produces the series 10 Explain why.010010001 ... cannot be a fraction (the number of

1/(l+x)=_t_ andil+x)= u . zeros increases).

. . . . 11 Show that123456789101112... is not a fraction.
In the geometric series, changing te?> or —x2 gives

1/(1-x2)= v and 1/(1+x2)=__w . Integrating the 12 From the geometric series, the repeating decim@$5065...
last one vyields x — %x3 + %XS ...=_ x_. The angle whose €dquals what fraction? Explain why every repeating decimal equals
tangentisx=1istan '1= y .Then substituting: =1 gives & fraction.
the seriest =__z . 13 Write .878787... and .123123... as fractions and as geometric
series.
1 The geometric series id+x+x2+---=G. Another way 14 Find the square of.111... as an infinite series.

to discoverG is to multiply by x. Thenx +x2+x3+... =xG,
and this can be subtracted from the original series. What does ffiat the functions which equal the sums 15-24.
leave, and what i& ?

15 3454, 16 1— 2_ ...
2 A basketball is dropped0 feet and bounces back feet. AT 1=2x+4x

After every fall it recovers% of its height. What total distance7 X3 xC % 18 %x_%x2+%x3_...
does the ball travel, bouncing forever ?

19 Inx+(nx)2+(nx)3+--- 20 x—2x243x3_...
3 Find the sums Of%+%+%+--- andl—%+%—--- and | 1( )1 (Inx) X xx+ * .
10—1+4.1—.01... and3.040404.... ... —_—
21 x+x2+x3+ 22 x+1+x+(1+x)2+

4 Replacex by 1—x in the geometric series to find a serieg;
for 1/x. Integrate to find a series for ln These are power series
“around the poink = 1.” What is their sum at =07? 25 Multiply the series forl/(1—x) and 1/(1+x) to find the
coefficients ofx, x2, x3 andx”.

tanx — s tandx +1tandx —--- 24 ¥ 4 o2% 4 o3% 4.

5 What is theseond derivativeof the geometric series, and
what is its sum at = § ? 26 Compare the integral ol +x2+x*+-.- to equation (13)

) . ) ) ~andfindf dx/(1—x?2).
6 Multiply the serieq1+x +x“+---)(1 —x4+x~—---) and find )
the product by comparing with equation (14). 27 What fractions are close t@468 and.987654321 ?

7 Start with the fractionl. Divide 7 into 1.000... (by long 2% Find the first three terms in the series 1gi(1 —x)°.
division or calculator) until the numbers start repeating. Whic .
is the first number to repeat ? How do you know that the next 'Kldd up the series 29-34. Problem 34 comes from (18).

digits will be the same as the first ?
g 202,22 . 30 1+.024.003+ -
Note about the fractionsl/q, 10/q, 100/q, ... All remainders 1 1 1 1
: 1 .144( 1 32 1-1C 1(.001) —---
are less thany so eventually two remainders are the same. Bay 1+ 2(0D)+3(001) + =2 (0D + 3(.001)
subtraction,q goes evenly into a powelON minus a smaller 33 .1+%(.001)+%(_00001)+... 34 I_L_,_ 1
3.3 5.32
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35 Compute thenth derivative of 14+2x+3x2+--- at x=0. 43 Two tennis players move to the net as they volley the ball.
Compute also theth derivative of(1 —x) 2. Starting together they each go forwargd feet at 13 feet per
second. The ball travels back and forth2étfeet per second. How

36 The differential equationdy/dx = y? starts fromy(0) =b.
g v/ " Y far does it travel before the collision at the net? (Look for an easy

From the equation and its derivatives find, y”, y” at x =0, dal infini )
and construct the start of a series that matches those derivatives. ¥phand also an in inite series.)

you recognizey (x) ? 44 How many terms of the seried—1+1-14+... are

37 The equationdy/dx = y2 has the differential form/y/y2 = needed before the first decimal place doesn't change? Which
dx. Integrate both sides and choose the integration constafwer of} equals thel00th power of} ? Which powerl /a" equals

so that y=b at x=0. Solve for y(x) and compare with 1/2100?

Problem36.
45 If tany=1 and tanz=41, then the tangent ofy+:z

38 In a bridge game, what is the average numpemf deals ;g (tany +tanz)/(1 —tanytanz) = 1. If tany:% and tanz —
until you get the best hand? The probability on the first deal ; ; ;

. y_1g oS At e prot y on. , again tarfy+z)=1. Why is this not as good as
is p1=7. Then p»=(3)(z) = (probability of missing on the equation (20), to findr/4 ?

first) times (probability of winning on the second). Generally=

(3)"_1(l).The mean valug is py +2ps +3p3 + -+ = 46 Find one decimal ofr beyond 3.14 from the series for
N + L 4tan!1l and 4tan ! l. How many terms are needed in each
39 Show that(Xay)(Xb,) = Zay by, is ridiculous. series ,)2 3

40 Find a series for |I%— by choosingx in (10b). Find a series for

In3 by choosingx in (13). How is In% related to I3, and which
series converges faster ?

41 Compute I8 to its second decimal place without a calculatdt® From equation (10a) what Be'" /n ?

(OK to check). 49 Zeno's Paradox is that if you go half way, and then half
42 To four decimal places, find the angle whose tangent vsy, and then half way..., you will never get there. In your

x=15 opinion, does} + % + & +--- add tol or not?

47 (Calculator) In the same way find one decimal ofbeyond
3.14159. How many terms did you take ?
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B (0.2 convergence Tests: Positive Series || G

This is the third time we have stopped the calculations to deal with the definitions.
Chapter 2 said what a derivative is. Chapter 5 said what an integral is. Now we say
what the sum of a series is—if it exista all three casea limit is involved That

is the formal, careful, cautious part of mathematics, which decides if the active and
progressive parts make sense.

The series) +1 +1 + .. converges td. The seried +1 + 1 + ... diverges to
infinity. The series1 — % + % —--- converges toln2. When we speak about
convergence or divergence of a series, we are really speaking about convergence or
divergence of its partial sums’

DEFINITION 1  Thepartial sums,, of the seriest; +a, +az + --- stops auy,:
s, = sum of the firstn terms = a1 +a>+---+a,.
Thuss, is part of the total sum. The examp§e+— i + % + --- has partial sums

1 3 7 ) 1

= = s§3 == Sp=1——.

2 4 Ty o

Those add up larger and larger parts of the series—what is the sum of the whole
series? The answer i$he series% + % +... converges td because its partial
sumss, converge tol. The series; +as +as + ... converges ta when its partial
sums—going further and further out—approach this lismiAdd thea’s, not thes’s.

S1 = Sp =

DEFINITION 2 The sum of a series is the limit of its partial sumsg.

We repeatif the limit exists The numbers;,, may have no limit. When the partial
sums jump around, the whole serleas no sum. Then the series does not converge.
When the partial sums approachthe distant terma,, are approaching zero. More
than that, thesumof distant terms is approaching zero.

The new ided X a,, = 5) has been converted to the old idga — s).

EXAMPLE 1 The geometric serieg; + tag + 1ogg + - CONverges to = 3.

The partial sumsy, s5, 53, 54 are.1, .11, .111, .1111. They are approaching= %.
Note again the difference between the serieg'®and the sequence o6. The series
14+ 141+ --- diverges because the sequence®is 1,2,3, .... Asharper example
is the harmonic series:+ 3 + £ +-- - diverges because its partial surhd ., ...
eventually go past every numhenVe saw that ir2.6 and will see it again here.

Do not confuser,, — 0 with s,, — 5. You cannot be sure that a series converges, just
on the basis that,, — 0. The harmonic series is the best example= 1/n — 0 but
still s,, — 0. This makes infinite series into a delicate game, which mathematicians
enjoy. The line between divergence and convergence is hard to find and easy to cross.
A slight push will speed up,, — 0 and make the, converge. Even though, — 0
does not by itself guarantee convergence, it is the first requirement:

10A If a series convergds, — s) then its terms must approach zdrg, — 0).

Proof Supposes, approachess (as required by convergence). Then alsa
approaches, and the difference, — s, _; approaches zero. That differenceuis.
Soa, — 0.



10.2 Convergence Tests: Positive Series 441

EXAMPLE 1 (continued) For the geometric serieg- x 4+ x2 + - - -, the testz,, —
0 is the same as” — 0. The test is failed if x| > 1, because the powers efdon't
go to zero. Automatically the series diverges. The test is passed & x < 1. But
to prove convergenceye cannot rely o, — 0. It is the partial sums that must
converge:
n

al This is .

1
Sp=14x+-Fx""'= 1 and s, —

— X 1—x
For other series, first check that, — 0 (otherwise there is no chance of
convergence). The, will not have the special form”—so we need sharper tests.
The geometric series stays in our mind for this readdany convergence tests
are comparisons with that serieBhe right comparison gives enough information:

If |ai| < Jand|az| < }and..., thena; +as+... convergesfasterthap+ 5 +... .

More generally, the terms in; +a +az +... may be smaller thanx 4+ ax?+

ax3+.... Providedx < 1, the second series converges. TR€m, also converges.

We move now tacconvergence by comparisar divergence by comparison
Throughout the rest of this section, all numbeysare assumed positive.

COMPARISON TEST AND INTEGRAL TEST

In practice it is rare to compute the partial susps=a; + - - - +a,. Usually a simple
formula can’t be found. We may never know the exact limiBut it is still possible

to decide convergence—whether the&s@ sum—by comparison with another series
that is known to converge.

10B (Comparison tegtSuppose thab < a, < b, and)_ b, converges. The
> ay converges.

=)

The smaller terms,, add to a smaller sumy_a,, is below) b, and must converge.
On the other hand supposg, >c¢, and ) c, =00. This comparison forces
> a, = 0. A series diverges if it is above another divergent series

Note that a series of positive terms can only diverigeinhfinity.” It cannot oscil-
late, because each term moves it forward. Eithersthereep up ory, passing every
number below it, or they pass all numbers and divelfggn increasing sequencg
is bounded abovét must convergeThe line of real numbers is complete, and has
no holes.

The harmonic serieb+ % + % + % + ... diverges to infinity.

A comparison series i+ 3 + 3+ 5+ g+ 5+ 3 + 5 +.... The harmonic series

; ; ; e 1,11 —2_
I48 larger. But this comparison series is really+ 5 + 5 + 3 + ..., because% =4=

3
The comparison series diverges. The harmonic seaigsye it must also diverge.

To apply the comparison test, we need something to compare with. In Example 2,
we thought of another series. It was convenient because of %‘IesBut a different
series will need a different comparison, and where will it come from? There is an
automatic way to think of @omparison seriest comes from theéntegral test

Allow me to apply the integral test to the same exampteunderstand the in-
tegral test, look at the areas in Figure 10.Zhe test compares rectangles with
curved areas.
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e i U
yix) = = yix) = =

inttgmlj%—r = sum — e 50
; integral — =

sosumznl—m

Fig. 10.2  Integral test Sumns and integrals both diverde = 1) and both convergép > 1).

EXAMPLE 2 (again)Comparel + 5 + 3 +... with the areaunder the curve =1/ x.

Every terma, = 1/n is the area of a rectangle. We are comparing it with a curved
areac,. Both areas are between=n andx =n + 1, andthe rectangle is above
the curve Soa,, > c,:

1 n—+1 dx
rectangular area, = o exceeds curved areg = -
n

Here is the point. Those,'s look complicated, butve can add them ug@he sum
¢1+...+ ¢y, is the whole area, fronh to n + 1. It equalsin(z + 1)—we know the
integral of1 /x. We also know that the logarithm goes to infinity.

The rectangular areb+ 1/2+ ...+ 1/n is above the curved area. By comparison
of areas, the harmonic series diverges to infinity—a little faster litm@- 1).

Remark The integral ofl /x has another advantage over the series \&IEh First,
the integral test was automatic. Frdrfw in the series, we went tb/ x in the integral.
Second, the comparisondgtoser. Instead of adding onlg when the number of terms
is doubled, the true partial sums grow liker. To prove that, put rectanglesder
the curve.

Rectangle®elowthe curve give an ardaelowthe integral. Figure 10.2b omits the
first rectangle, to get under the curve. Then we have the opposite to the first
comparison—the sum is now smaller than the integral:

1+1+ +1<J"dx In
23 n 1 X

Adding 1 to both sidess, is below1 +Inn. From the previous tess,, is above
In(rn+1). That is a narrow space—we have an excellent estimatg.ofhe sum

of 1/n and the integral ofl /x diverge together. Problem3 will show that the
difference betweesy, andIn n approaches “Euler’s constant,” whichyis= .577....

Main point: Rectangular area is,. Curved area is close. We are using integrals to
help with sums (it used to be the opposite).

Question If a computer adds a million terms every second for a milliorrgglaow
large is the partial sum of the harmonic series ?

Answer  The number of terms ig = 602-24-365-10!2 < 3.2.10'°. Therefore
Innis less thain 3.2+ 19 In 10 < 45. By the integral test, < 1 4+ In n, the partial
sum after a million years has not reactid
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For other seriesl /x changes to a different functiop(x). At x = n this function
must equad,, . Also y(x) must be decreasing. Then a rectangle of heiglis above
the graph to the right af = n, and below the graph to the left f=n. The series
and the integral box each other inleft sum > integral > right sum. The rea-
soning is the same as it was fof = 1/n andy(x) = 1/x: There is finite area in the
rectangles when there is finite area under the curve.

When we can’t add the’s, we integratey (x) and compare areas:

10C (Integral tes) If y(x) is decreasing ang(n) agrees withz,,, then

o0
ai+az+as+--- and f y(x) dx both converge or both diverge
1

o1 1 1 ) 1
EXAMPLE 3 The*p-series 2—p+3—p+4—p+ -+ convergesip > 1. Integratey ="

In Figure 10.2c, the area is finite jf > 1. The integral equalgx'~?/(1—p)]; .
whichis1/(p —1). Finite area means convergent serig$ 1 /17 is the first term,
addl1 to the curved area:

1 1 1 1 1 p

1p—|—2p-|—3p—|- < +p—1 = ooT

The borderline casp =1 is the harmonic series (divergent). By the comparison

test, everyp < 1 also produces divergence. Thiisl /4/n diverges by comparison
with fdx/\/)? (and also by comparison witk 1/n). Section 7.5 on improper
integrals runs parallel to this section on “improper sums” (infinite series).

Notice the special casgs=2 and p = 3. The seriesl + % + % + -+ converges.
Euler found2/6 as its sum. The serieb+ % + 2—17 +--- also converges. That is
proved by comparing 1/n? with £ 1/n2 or with [ dx/x3. But the sum forp =3
is unknown.

Extra credit problem  The sum of thep-seaies leads to the most important problem
in pure mathematics. The “zeta function”Z&(p) = £ 1/n?, so Z(2) = n%/6 and
Z(3) is unknown. Riemann studied the complex numhemshereZ(p) =0 (there
are infinitely many). He conjectured thidue real part of those is always%. That
has been tested for the first billion zeros, but never proved.

COMPARISON WITH THE GEOMETRIC SERIES

We can compare any new series+a, + - -+ with 1 +x +---. Remember that the
first million terms have nothing to do with convergence. It is further ou; as oo,
that the comparison stands or falls. We still assumedhat 0.

10D (Ratio tes} If a,+1/a, approaches a limit. < 1, the series converges.

10E (Root tesy If thenth root(a,)'/" approacheé < 1, the series convergds.

Roughly speaking, these tests makecomparable withL.” —therefore convergent.
The tests also establish divergencelit> 1. They give no decision whed = 1.
Unfortunatelyl. = 1 is the most important and the hardest case.
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On the other hand, you will now see that the ratio test is fairgyea

EXAMPLE 4 The geometric series +x2 +--- has ratio exactlyc. Thenth root
is also exactly. SoL = x. There is convergenceif < 1 (known) and divergence if
x > 1 (also known). The divergence df+ 1+ - - - is too delicate (!) for the ratio test
and root test, becaude=1.

EXAMPLE 5 Thep-serieshas, = 1/n? anda, +1/a, =n?/(n+ 1)?. The limit
asn — w0 is L =1, for every p. The ratio test does not feel the difference between
p =2 (convergence) angt = 1 (divergence) or evep = —1 (extreme divergence).
Neither does the root test. So the integral test is sharper.

EXAMPLE 6 A combination ofp-saies and geometric series can now be decided:

* v 4+t s +--- has ratio L = ~ n? roachingl
17 2r nP an (n+1)P x» P

n+1

Itis |x| <1 that decides convergence, net The powersx” are stronger than
anyn?. The factorials:! will now prove stronger than any”.

EXAMPLE 7 The exponential serieg” =1+x+2x?+2x3+--. converges
for all x.

The terms of this series ar¢ /n! The ratio between neighboring terms is

X"/ (n+1)!
x"/n! Cn+1

, which approaches = 0 asn — 0.

With x = 1, this ratio test gives convergencepf1/n! The sum ig. With x =4,
the larger seried_ 4" /n! also converges. We know this sum too—iefs Also the
sum ofx"n? /n! converges for any and p. Again L = 0—the ratio test is not even
close.The factorials take overand give convergence

Here is the proof of convergence when the ratios apprdaehl. Chooser halfway
from L to 1. Thenx < 1. Eventually the ratios go below and stay below:

anti1/an <x  ani2/any1 <X  anss/ani2 <X

Multiply the first two inequalities. Then multiply all three:
an+i/an <x  anta/any <x*>  anisfay <x’

Thereforeay 11 +ani2+aniz+--- is less thamuy (x +x2 4+ x3+---). Since
x < 1, comparison with the geometric series gives convergence.

EXAMPLE 8 The seriesy  1/n" is ideal for the root test. Theth rootis1/n. Its
limitis L = 0. Convergence is even faster thanéo= > " 1/n! The root test is easily
explained, sincéa,)'/” < x yieldsa, < x" andx is close tol. < 1. So we compare
with the geometric series.

SUMMARY FOR POSITIVE SERIES

The convergence of geometric series gndaies and exponential series is settled.
I will put theseay,’s in a line, going from most divergent to most convergent.
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The crossover to convergence is aftgn:

414 (et Llpsy A L&
P “nP n n?P P 2n2n pl pl pn
10A 10B and10C 10D and10E

(an+0)  (comparison and integral) (ratio and root)

You should know that this crossover is not as sharp as it looks. On the convergent
side,1/n(In n)? comes before all thosg-series. On the divergent side/n(In n)
and1/n(Inn)(Inln n) belong afterl /n. For any divergent (or convergent) series,
there is another that diverges (or converges) more slowly.

Thus there is no hope of an ultimate all-purpose comparison test. But comparison is
the best method available. Every series in that line can be compared with its neighbors,
and other series can be placed in between. It is a topic that is understood best by
examples.

1 1
EXAMPLE 9 —— diverges becaus — diverges. The comparison uses
| Xy veraes becausd - diver :
nn<n.

1 dx 1 dx
EXAMPLE 10 X x =
Zn(lnn)z fx(lnx)z =%® Zn(lnn) fx(lnx) x

The indefinite integrals are-1/1n x andIn(In x). The first goes to zero as— 0;

the integral and series both converge. The second intkyialx) goes to infinity—

very slowly but it gets there. So the second series diverges. These examples squeeze
new series into the line, closer to the crossover.

1 1 1 1 1 1 1
<— 0 =+=-+—+-<-+-+-4--- (cOnvergence

EXAMPLE 11
n2+1 n? 25 10 1 49

The constant in this denominator has no effect—and again in the next example.

>1 301—|—1—|—1—|— >1+1+1+
2n—1 2n 1 3 5 2 4 6 '

EXAMPLE 12

> 1/2nis1/2times)_ 1/n, so both series divergéwo series behave in the same
way if the ratiosa, /b, approachL > 0. Examplesl 1 — 12 haven?/(n?>+1) — 1
and2n/(2n — 1) — 1. That leads to our final test:

10F (Limit comparison test If the ratioa, /b, approaches a positive limik.,
then) a, and)_ b, either both diverge or both converge.

Reasona, is smaller thar2Lb,,, and larger thar%Lbn, at least whem is large.
So the two series behave in the same way. For exalpsen(7/n?) converges for
p> 1, notfor p < 1. It behaves liked_ 1/n? (hereL = 7). The tail end of a series
(largen) controls convergence. The front end (smglcontrols most of the sum.

There are many more series to be investigated by comparison.
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10.2 EXERCISES

Read-through questions

The convergence ofi; +ap +---
sp=__a .lIfthes, approachs,thenXa, =__ b
seriesl+x+--- the partial sums are, =__d . In that case
sn—1/(1—x) ifand only if __e . In all cases the limit, — s

requires thati, —__f . But the harmonic seriags, = 1/n shows

that we can have,, » g and still the series_h .

.Forthe__c

The comparison test says that f<a, <b, then__i . In
case a decreasing(x) agrees witha,, at x =n, we can apply
the j test. The sumZa, converges if and only if _k
By this test thep-seriesX1/n? converges if and only ifp is

| . For the harmonic seriegp=1), sp=14+---+1/n is

close to the integraf (n) =__m

The n test applies whena,4i/an — L. There is
convergence if _o

, divergence if p , and no decision if
g . The same is true for the r _test, When(an)l/” — L.
For a geometrigp-series combinationa, = x"/n?, the ratio
an+1/an equals __s Its limit is L=_t so there is
convergence if__u . For the exponential” = Zx"/n! the
limiting ratio a,41/a, is L=__v__. This series always w
because:! grows faster than any” or n?.

. But if b,
test thatXa,

There is no sharp line betweenx _and vy
converges and,, /b, — L, it follows from the__ z
also converges.

1 Here is a quick proof that a finite sum—{—%—i—%—l—--- =5
is impossible. Division by2 would give J+1+14...=1s
Subtraction would Ieavel+%+é+-~-: %s. Those last two
series cannot both add %x because .

2 Behind every decimals =.abc...

a/10+b/100+ +---. By a comparison
convergence.

test

3 From these partial sumg, find a, and alsos = £ ap:

1 2
@) sp=1—- (b) su=4n (©) sn=In—1.
n n+1

4 Find the partial sums, =aj +az +---+an:

@ an=1/3""1 (b) an=In—— (O) an=n

5 Suppose0<a, <b, and XZay, ”Ctﬁverges. What can be

deduced abouEh, ? Give examples.

6 (a) Supposé, +c, <ap (all positive) andXa, converges.
What can you say abotib,, andXcy, ?

(b) Supposea, <b, +cn (all positive) andXa, diverges.
What can you say aboib, andXc, ?

Decide convergence or divergence in 7-10 (and give a reason).

1 1 1 1 1 1
7 Toot 200t 300t 8 oo tT5 tTTIot

is decided by the partial sums 9

is a convergent series
prove

1 1 2 3
To1 T 104 T 105 0 ortrs 7t

Establish convergence or divergence in 11-20 by a comparison
test.

1 1
1 — 12 —_—
an—l—lO Z /n2—|—10
1 NG
13 14 v
Zn—l—\/ﬁ Znz—l—4
3 1 1
n
[ 16 — COS | —
5 3 > ()

Y 18 Y sim (l)
PET

1 1
T 20 ) S

For 21-28 find the limit L in the ratio test or root test.

3n 29 1
Z n! n

n n!

25 o 26 287
n—1\"" n!

27 Z( . ) 28 ) —=

29 3-H+E -H+(§-1) is“telescoping” becausé and 1

cancel —1 and —1. Add the infinite telescoping series

=11 = 1
s:;(ﬁ_nﬁ) :;(n(n+1))’
30 Compute the sum for other “telescoping series”:

o ()

() Inf+m3+in3+..

31 Inthe integral test, what sum is larger thﬁfhy(x) dx and what
sum is smaller ? Draw a figure to illustrate.

32 Comparing sums with integrals, find numbers larger and smaller

than

1+1+ + and 1+1+ +1
" 3 2n—1 " 8 n3

33 Which integral test shows th{? 1/¢" converges ? What is
the sum?

34 Which integral test shows th{ﬁlf"n/e” converges ? What is
the sum?
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Decide for or against convergence in 35-42, based ¢y (x) dx.
1 1
5 e 6
Z n2+1 Z 3n+5
n Inn Inx
7 38 —— | is—— decreasing ?|
)3 > (s 09
o0

n2+1
39 Zne/n”
41y e/n"

43

1
0 Z n(Inn)(Inin n)

2

42 X:n/e"2

1+ !
2
using rectangles as in Figure 10.2.

(&) ExplainwhyD, = +ot l) —In n is positive by
n

(b) Show thatD,, 4+ is less thanD,, by proving that

1 n+1 dx
<)

n+1 n X

(c) (Calculator) The decreasin,’s must approach a limit.
Compute them until they go below and below 58 (when ?).
The limit of the D,, is Euler’s constanty = .577....
44 In the harmonic series, use, ~.577+Inn to show that
1 1
sp=1+ 5 +---+ — needs more tharb00 terms to reachs, > 7.
n
How many terms fos, > 10?
1 1 1 1 1 1
45 (a) Show thatl — -+ - ——---— — = s —
(@) 2+3 4 2n n+1+ +2n

+o L) to both sides.
2n

by

24

(b) Why is the right side close to fn —In»n ? Deduce that
1-4+% -1+ approaches .

46 Every second a computer adds a million term$ 0t /(nIn n).

adding2 (l + !

By comparison with[ dx/(xIn x), estimate the partial sum after a5

million years (see Question in text).

1000
47 Estimate) ~ — by comparison with an integral.
100

48 If Za, converges (all, > 0) show thatZa2 converges.

447

49 If Xa, converges (alla, >0) show thatXsina, converges.
How could X sina;, converge wherta, diverges ?

50 Thenth prime numbep,, satisfiesp,/n Inn — 1. Prove that

Zi_l+l+l+l+i+ diverges
pn 2 3 5 7 11 J

Construct a series Xa, that converges faster thanXb, but

slower than Xc¢, (meaningay, /b, — 0, an /cp — ).
51 bp=1/n2cp=1/n3 52 bnzn(%)”,cnz(%)”

53 byp=1/n!,cp=1/n" 54 bp=1/n¢ cp=1/e"

In Problem53 use Stirling’s formulay/2zn n” /e n! — 1.

55 For the series; + 4 + 4+ %+ + 4 +--- show that the ratio
test fails. The root$an)1/” do approach a limiL. Find L from the
even termsi,; = 1/2%. Does the series converge ?

56 (For instructors) If the ratios, +1/a, approach a positive limit
L show that the rootéa,)!/" also approaci.

Decide convergence in 57-66 and name your test.

1 1
7Y s o Y
1 1
50 Y — 60 Y ——
T 2 Tniom
n+2 _1
61 Y In 62 /n
it 0

Inn
(test all p) 64 Zn—p (test all p)

1
63 Z (Inn)»
3"
Yo

67 Suppose, /b, — 0in the limit comparison test. Prove that,
converges if£h, converges.

p
66 Y (ZW (test allp,q)

68 Can you invent a series whose convergence you and your

instructor cannot decide ?
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I 10.3 Convergence Tests: All Series [

This section finally allows the numbets, to be negative. The geometric series
1-14+1-14...=1iscertainly allowed. So is the series=4—2% + 2 — 4 4
---. If we change all signs te-, the geometric series would still converge (to the
larger sun). This is the first test, to bring back a positive series by takingathe&o-
lute value|a,| of every term.

DEFINITION The series a, is “absolutely convergefiif X|a,| is convergent.

Changing a negative number from to |a,| increases the sum. Main point: The
smaller serieX a, is sure to converge iE |a, | converges.

10G If £|a,| converges theX a, converges (absolutely). Bt a, might con-
verge, as in the series far, even ifX|a,| diverges to infinity.

EXAMPLE 1  Start with the positive serieé + i + % +---. Change any signs to
minus Then the new series converges (absolutely). The right choice of signs will
make it converge to any number betweem and1.

EXAMPLE 2 Startwith the alternating seriés- 1 +  — % -+ - - which converges

toln 2. Change to plus signs. The new seriesé + % + - -+ diverges to infinity. The
original alternating series was not absolutely convergent. It was @agditionally
convergent A series can converge (conditionally) by a careful choice of signs—even
if X|an|=o0.

If X|a,| converges thenta, convergesHere is a quick proof. The numbers
an + |an| are either zero (if1, is negative) o2|a,|. By comparison with® 2|a,|,
which convergesE (a, + |an|) must converge. Now subtract the convergent series
X|ay,|. The differenceX a, also converges, completing the proof. All tests for pos-
itive series (integral, ratio, comparison,) apply immediately to absolute conver-
gence, because we switch|to, |.

EXAMPLE 3  Start with the geometric seri%s—i— % + 2—17 + --- which converges to
%. Change any of those signs to mind$ien the new series must converge (abso-

lutely). But the sign changes cannot achieve all sums betw%land % This time
the sums belong to the famous (and very tid@ntor setof Section 3.7.

EXAMPLE 4 (looking ahead) Suppo<Ea,x” converges for a particular number
x. Then for everyx nearer to zero, it converges absolutely. This will be proved and
used in Section0.6 on power series, where it is the most important step in the theory.

EXAMPLE 5 SinceX 1/n? converges, so doek (cosn)/n?. That second series
has irregular signs, but it converges absolutely by comparison with the first series
(since|cosn| < 1). ProbablyX. (tann)/n? does not converge, because the tangent
does not stay bounded like the cosine.

ALTERNATING SERIES

The seried — % + % — i + --- converges tdn 2. That was stated without proof. This
is an example of aalternating seriesin which the signs alternate between plus and

minus. There is the additional property that the absolute vdlukst, 1. ... decrease
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to zero. Those two facts—decrease to zero with alternatingssigyuarantee
convergence.

10H An alternating seriea; —a, +as —aq4 --- converges (at least conditig
ally, maybe not absolutely) if every, +1 < a, anda, — 0.

=)
]

The best proof is in Figur@0.3. Look ata; —a, +as. It is belowa;, because:s
(with plus sign) is smaller tham, (with minus sign). The sum of five terms is less than
the

a,

—d,

r i
! |
I

i i
: |
I L]
i |
i I
" [
; |
; |
|

0 55 Sy 5 5 53 5

Fig. 10.3  Analternating series converges when the absolute valuesadecte zero.

sum of three terms, because is smaller tharu4. These partial sums, s3, 55, ...
with an odd number of terms adecreasing

Now look at two termsa; —a,, then four terms, then six terms. Adding on
as —ay increases the sum (because> a,4). Similarly s is greater than, (because
it includesas — ag Which is positive). So the sums, s4, 56, ... areincreasing

The difference betweesy,_; ands, is the single numbetta,. It is required by
10H to approach zero. Therefore the decreasing sequanss, ... approaches the
samdimit s as the increasing sequenges,, .... The series converges to which
always lies betweesry, | ands,.

This plus-minus pattern is special but important. The positive sé&rigs may not
convergeThe alternating series i& (—1)""a,,.

EXAMPLE 6 The alternating serieé— 3+ 2 — 5 -+ is conditionally convergent
(tor). The absolute values decrease to zero. Is this series absolutely convergent ?

With plus signs4(1 + % + é + ---) diverges like the harmonic series.

EXAMPLE 7 The alternating seriels— 1 4+ 1 — 1+ - - - is not convergent at aNVhich
requirement in10H is not me®? The partial sumsy,ss,ss, ... all equall and
52,854,586, . .. all equalo—but they don’t approach the same limit

MULTIPLYING AND REARRANGING SERIES

In Section10.1 weadded and subtracted and multiplied series. Certainly addition and
subtraction are safe. If one series has partial syms s and the other has partial
sumst,, — t, then addition gives partial sumg + ¢, — s +¢. But multiplication is
more dangerous, because trder of the multiplication can make a difference. More
exactly, the order of terms is important when the series are conditionally

convergentFor absolutely convergent series, the order makes no difference. We can

449
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rearrange their terms and multiply them in any order, and theawrproduct comes

outright:

10!l SupposeXa, converges absolutely. 14, A>

, ... is any reordering of th
a’'s,thenX A, = X a,. In the new orde® A4, also converges absolutely.

10J SupposeXa, =s ard X b, =t converges absolutely. Then the infinitg
many termsz; b in their product add (in any order) 5a.

1%

4

y

Rather than proving0l and 10J, we show what happens when there is only con-
ditional convergence. Our favorite Is— % + % — i + - -+, converging conditionally
to In 2. By rearranging, it will converge conditionally #nything Suppose the de-
sired sum isl000. Take positive termg + % + - -+ until they passl000. Then add

1_1_

negative terms- 372

--- until the subtotal drops beloh000. Then new positive

terms bring it abové 000, and so on. All terms are eventually used, since at least one
new term is needed at each step. The limitis 1000.
We also get strange products, when series fail to converge absolutely:

(35 ()|

1

o) i)

On the left the series converge (conditionally). The alternating terms go to zero. On
the right the series diverges. Its terms in parentheses don't even approach zero, and

the product is completely wrong.

| close by emphasizing that it is absolute convergence that mafthes.most
important series are power serigsa, x". Like the geometric series (with al}, =
1) there is absolute convergence over an intervat’sf They givefunctionsof x,

which is what calculus needs and wants.

We go next to the series fer*, which is absolutely convergent everywhere. From
the viewpoint of convergence tests it is too easy—the danger is gone. But from the
viewpoint of calculus and its applications’, is unconditionally the best.

10.3 EXERCISES

Read-through questions

The seriesXa, is absolutely convergent if the series a Do the series 1-12 convergabsolutelyor conditionally?

is convergent. Then the original seri€Sa, is also__b

But the seriesXa, can converge without converging absolutely. nt1 N n-l, —=
That is called__c  convergence, and the seriesd is an ! Z(_l) n+3 2 Z(_l) [Vn+3
example. 1 3n
3 -1 n+1_~ 4 1 n+1°_
For alternating series, the sign of eaghy; is__e to the Z( ) n! Z( ) n!

sign of a,. With the extra conditions that f and g |,
the series converges (at least conditionally). The partial sums

5 Y (=)"T13yn/(n+1) 6 Y (=1)"*lsirn

s1,53,... are__h __ and the partial sums,, sq4,... are __i . n+1 1 sirtn
. R . ; — — - 1
The difference between, and s, ; is j . Therefore the ' 2= N n 8 Y (="t "
two series converge to the same number An alternating
: . 1,2 4 151
series that converges absolutely [conditionally] (not at allf Y (—1)""'n?/(14n%) 10 Y (—1yrtiat/n
is__k [ I 1(_m ). With absolute [conditional] conver-

gence a reordering (can or cannot ?) change the sum. 11 Z(—l)”“nl/” 12 Y (="t —nt/m)
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13 Suopose X a, converges absolutely. Explain why keepin@0 Prove that this series converges. Its sum j.
the positivea’s gives another convergent series.

) ) sinx 27 sinx © sinx
14 CanXa, converge absolutely if alt,, are negatlve ? —~ dx + - dx+---= ~ dx.
0 kL4 0
15 Show that the alternating serids— 1 + 5—7 + % - % +---
does not converge, by computing the partlal SUKASS4, .. .. . . I 1

31 The cosine of =1 radan is 1——'+E—~-~.

Which requirement ofOH is not met ? ) . ! !
Compute cod to five correct decimals (how many terms ?).

16 Show that 2 5—3 + 7—39 3 +... does not converge. Which 3 5
requirement OﬂOH 'S not met’> 32 The sine ofd =x radans isz — n—' + ﬂ—' —.... Compute

17 (a) For an alternating series with terms decreasing to zesinx to eight correct decimals (how many terms ?).

why does the sum always lie between, 1 ands;, ? .
y Y n—1 Sn 33 If a2 and b2 are convergent show thaBanb, is

(b) Iss—sn positive or negative if, stops ata positive, ?  gpsolutely convergent.
18 Use Problem17 to give a bound on the difference betweehlint: (a +5)* >0 yields2|ab| <a?+b>.

ss=1—-3+3—3+3 ad the sums=In2 of the infinite 5, Verlfy the Sclwarz inequality (Za,bn)? < (Za2)(Zh2) if
series. o an = (3)" and by = (3)".

19 Findthe suml — — + — — — +..- =s. The partial suny4 N »

. 2! 31 4 35 Under what condition does) (an+1—an) converge and
is (aboves)(belows) by less than 0

] ) what is its sum ?
20 Give a bound on the difference betweenigo=

! ! LU ands =Y (—=1)"t1/n2,

36 For a conditionally convergent series, explain how the
Z 23 T 002

tems could be rearranged so that the sum+iso. All terms
1 2 must eventually be included, even negative terms.

1 1 T . .
21 Starting from12 += %) + = V) +-- 6 —, with plus signs, show 37 Describe the terms in the produt+ % +%+...)(1 +%+

that the alternating series in Probl@hhass = 2 /12. %4_ ---) and find their sum.

22 Does the alternating series20 or the positive series il give 33 True or false

72 more quickly ? Compar&/1012 —1/1022 + - .- with 1/1012 + _ _

1/1022 4. (a) Every alternating series converges.

(b) Xay converges conditionally iE|a, | diverges.

(c) A convergent series with positive terms is absolutely
convergent.

24 Find conditions which guarantee that+a; —as +aq +as — (d) If a, and= b, both converge, so do&s(a, +bn)-

ae +--- will converge (negative term follows two positive terms).
39 Every numberx between 0 and 2 equalsl+ + + -

25 If the terms of Il2=1— 5 + 3= 7 + - are rearranged into with suitable terms deleted. Why ?
-4t 1 14 show that this series now adds to,

23 If Xa, does not converge show thaE|a,| does not
converge.

20 Every numbers beween—1 and 1 equals+4 +1+1+
1In2. (Combine each positive term with the following negative y q _21 48—
term) with a suitable choice of signs. (Adtl= 1 5+z+g+--- toget
Problem39.) Which signs give = —1 ands =0 ands = %’?
26 Show that the seried + 373 1y % + 7 -7 L ... converges
to 2In2, 41 Show that no choice of signs will make-1 +4+L +...
equal to zero.
27 Whatisthesumof + 4 —2+1 -2 +1-14...

42 The sums in Problemdl form a Cantor setcentered at
zero. What is the smallest positive number in the set? Choose

1
28 Combine 1+---+——Inn—> and 1—-1+1_...5In2 =
v 273 signs to show tha}. isin the set.
toprove1+ +§_7_Z_g+ ~=In2.

. . *43 Show that the tangent of = 1 (7 —1) is sinl1/(1—cosl).
29 (a) Prove that this alternating series converges: 9 20r =1 / )

This is the imaginary part of s=—In(1—¢’). From
24 1 (3dx 1 [*dx s = X' /n deduce the remarkable sufi(sinn)/n = %(n— 1).
1 x 2 Jx 3 J3x 44 Suppose Za, converges and|x|<1. Show that Za,x"

(b) Show that its sum is Euler’s constant converges absolutely.
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I 10.2 The Taylor Series for e*, sin x, and cosx [ EGczEGEGNG

This section goes back from numbers to functions. Insteddaf = s it deals with
Ya,x"™ = f(x). The sum is a function ofx. The geometric series has alj = 1
(includingay, the constant term) and its sum jgx) = 1/(1 — x). The derivatives
of 1 4+ x 4+ x2 4 --- match the derivatives of. Now we choose the,, differently, to
match a different function.

The new function i2*. All its derivatives aree*. At x = 0, this function and its
derivatives equal. To match thesé’s, we move factorials into the denominators.
Term by term the series is

x2 X3

X J J
)x f— —_— — — DR
c—l+”+2!+3!+ . (1)
x™"/n! has the correatth derivative(= 1). From the derivatives ak = 0, we have
built back the functiort At x =1 the right side isl + 1+ 4 + ¢ +--- and the left

side ise =2.71828.... At x = —1 the series gived — 143 — ¢ +---, which is
-1

e .
The same term-by-term idea works for differential equations, as follows.

EXAMPLE 1 Solvedy/dx = —y starting fromy =1 atx =0.

Solution  The zeroth derivative at = 0 is the function itself y = 1. Then the
equationy’ = —y givesy’ = —1 and y” = —y’ = +1. The alternating derivatives
1,—1,1,—1, ... are matched by the alternating seriesdor :

y=1-—x+31x*—1x>+...=¢ ¥ (the correct solution tg’ = —y).

EXAMPLE 2 Solved?y/dx? = —y starting fromy =1 and y’ = 0 (the answer
is COSXx).

Solution The equation givey” = —1 (again atx = 0). The derivative of the
equation givesy” = —y’=0. Then y"” = —y” = +1. The even derivatives are
alternately+1 and —1, the odd derivatives are zero. This is matched by a series
of even powers, which construatesx:

The first termdl — %xz came earlier in the book. Now we have the whole alternating
series. It converges absolutely for all by comparison with the series fet (odd
powers are dropped). The partial sums in Figure 10.4 reach further and further before
they lose touch witltosx.

2 ¥ 12
37X g% ) )

\" . \!

\ \ 'l,l
21 _(x6) (10 !

1.2
I—T,l

Fig. 104 The partial sumd —x2/2+x*/24— .. of the cosine series.
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If we wanted plus signs instead of plus-minus, we could avegdgead e —*. The
differential equation focoshx is d?y/dx? = +y, to give plus signs:

1 X —X\ __ 1 2 1 4 1 6 . .
E(e +e )—1+2—!x +4—!x +ax + --- (which is coshx).

TAYLOR SERIES

The idea ofmatching derivatives by powelis becoming central to this chapter. The
derivatives are given at a basepoint (say 0). They are numberg'(0), /7 (0), ....
The derivative f ™ (0) will be the nth derivative ofa,x”, if we choosea, to be
£ (0)/n! Then the serie¥ a, x” has the same derivatives at the basepoint@s:

10K TheTaylor serieshat matches/(x) and all its derivatives at = 0 is

L rm)
O+ O+ 2SO+ 70 = 3 LD

n=0

The first terms give the linear and quadratic approximations that we know well. The

x3 term was mentioned earlier (but not used). Now we raVéhe terms—an “infinite
approximation” that is intended to equAl(x).

Two things are needed. First, the series must converge. Second, the function must

do what the series predicts, away from= 0. Those are true foe* andcosx and
sin x; the series equals the function. We proceed on that basis.

The Taylor series with special basepaint 0 is also called the “Maclaurin se-
ries.”

EXAMPLE 3  Find the Taylor series fof'(x) = sinx aroundx = 0.

Solution  The numbersf ™ (0) are the values off =sinx, f'=cosx, f" =
—sinx, ... atx =0. Those values are, 1,0, —1,0, 1, .... All even derivatives are
zero. To find the coefficients in the Taylor series, divide by the factorials:

o 1.3, 1 5
SINX =X —¢X™ + X  — . (2)

EXAMPLE 4  Find the Taylor series fof'(x) = (1 + x)> aroundx = 0.

Solution  This function starts af'(0) = 1. Its derivative is5(1 4+ x)*, so f/(0) =
5. The second derivative -4 - (1 +x)3, so f”(0) = 5-4. The next three derivatives
are5-4-3,5-4-3-2,5-4-3-2- 1, After that all derivatives are zer@herefore the
Taylor seriestopsafter thex> term:
54, 543 ; 5.4.3.2 , 5.4.3.2.1 ¢
1—|—5x—|—2—!x + 3l X7+ 1 x*+ 5 x>,

®)

You may recognizé, 5, 10, 10, 5, 1. They are thébinomial coefficients which ap-
pearin Pascal’s triangle (Section 2.2). By matching derivatives, we se@wHy?2!, ...
are needed in the denominators.

There is no doubt thakt =0 is the nicest basepoint. But Taylor series can be

constructed around other points= a. The principle is the same—match derivatives
by powers—but now the powers to use &xe—a)”. The derivativesf ™ (a) are
computed at the new basepaint= a.

453
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The Taylor series begins withf(a)+ f'(a)(x —a). This is the tangent
approximation atx =a. The whole “infinite approximation” is centered at—
at that point it has the same derivativesfds).

10L TheTaylor seriedfor f(x) around the basepoint=a is

e A U]
)= @+ f@ -0+ 3 f @ —ay 4 =3 L

n=0

(x__a)m

(4)

EXAMPLE 5 Find the Taylor series fof'(x) = (1 +x)> aroundx =a = 1.

Solution At x = 1, the function is(1 + 1) = 32. Its first derivative5(1 + x)* is
5-16 = 80. We compute therth derivative, divide by:!, and multiply by(x — 1)":

324+80(x — 1) +80(x —1)2+40(x — 1)3+10(x — D*+(x—1)°.  (5)

That Taylor series (which stops at=5) should agree with(1 + x)>. It does. We
could rewritel 4+ x as2 4+ (x — 1), and take its fifth power directly. Thé¥2, 16,8, 4,

2, 1 will multiply the usual coefficient$, 5,10, 10, 5, 1 to give our Taylor coefficients
32,80,80,40,10, 1. The series stops as it will stop for any polynomial—because the
high derivatives are zero.

EXAMPLE 6 Find the Taylor series fof (x) = e¢* around the basepoint= 1.

Solution At x = 1 the function and all its derivatives equalTherefore the Taylor
series has that constant factor (note the powens-efl, notx):

ex:e+e(x—1)+%(x—1)2+%(x—1)3+---. (6)

DEFINING THE FUNCTION BY ITS SERIES

Usually, we definesin x and cosx from the sides of a triangle. But we could start
instead with the series. Defirsén x by equation(2). The logic goes backward, but it
is still correct:

First, prove that the series converges.
Second, prove properties liksin x)’ = cosx.
Third, connect the definitions by series to the sides of a triangle.

We don't plan to do all this. The usual definition was good enough. But note first:
There is no problem with convergence. The seriesiiox andcosx ande” all have
terms+ x" /n!. The factorials make the series converge forallThe general rule

for e* timese” can be based on the series. Equafi®)is typical:e is multiplied by
powers of(x — 1). Those powers add ©°~!. So the series proves that = ee* 1.

That is just one example of the multiplicati¢en®) (e?) = e*T7:

X2 y2 X2 y2
l+x4+—+4.. ) [1+y+=+.. ) =1+x+y+—Fxy+—+....
2 2 2 2

)

Term by term, multiplication gives the series &> . Term by term, differentiating
the series foe* givese”*. Term by term, the derivative &fin x is cosx:

d 3 5 2 4
__G_L+L_m}ﬂ—i+i—m. (®)



» ¥ sin ©

e®=cos 0+isin@

x=rcos

Fig. 10.5

1
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We don’t need the famous limitsinx)/x — 1, by which geometry gave us the
derivative. The identities of trigonometry become identities of infinite series. We
could even definag as the first positiver at whichx — %x3 + --- equals zero. Butitis
certainly not obvious that this sine series returns to zero—much less that the point of
return is neaB.14.

The function thawill be defined by infinite seriesd&’ . This is the exponential
of theimaginary numberi# (a multiple ofi = 4/—1). The result’? is acomplex
number, and our goal is to identify it. (We will be confirming Section 9.4.) The
technique is to treatd like all other numbers, real or complex, and simply put it into
the series:

. 1 I
DEFINITION  ¢'% is the sum ofl + (i6) + 5(1‘9)2+ 5(1‘6)3 e (9)

Now usei? = —1. The even powers arg = +1,i°=—1,i8=+1,.... We are
just multiplying —1 by —1 to get1. The odd powers aré® = —i, i° =+i,....
Thereforee!? splits into areal part(with noi’s) and arimaginary part(multiplying

i):
et = (1-Lo2p Lga ) yi(o-LorpLos_.. (10)
B 2! 41 ’ 3! 5! '
You recognize those series. They asf andsin 6. Therefore:
i0

Euler's formulais ¢'? = cos6 +i sin6. Note thate?™ =1,

The real part isx = cosé and the imaginary part iy = siné. Those coordinates
pick out the point’? in the “complex plane.” Its distance from the orig(if, 0) is

r =1, becausécost))? + (sinf)? = 1. Its angle isf), as shown in Figure 10.5. The
number—1 is ¢/, at the distance = 1 and the angler. It is on the real axis to
the left of zero. Ife’® is multiplied byr =2 or r =1 or anyr >0, the result is a
complex number at a distancdrom the origin:

Complex numbers re'® = r(cosf +isinf) =rcosf +irsing =x+iy.

With ¢’?, a negative number has a logarithfihe logarithm of —1 is imaginary
(itis i r, sincee!™ = —1). A negative number also has fractional powers. The fourth
root of —1 is (—1)1/4 = ¢/™/# . More important for calculusthe derivative of>/*
is 2x1/4. That sounds old and familiar, butat= —1 it was never allowed.

Complex numbers tie up the loose ends left by the limitations of real num-
bers

The formulae’® = cosf + i sin § has been called “one of the greatest mysteries of
undergraduate mathematics.” Writers have used desperate methods to avoid infinite
series. That proof iff10) may be the clearest (I remember sending it to a prisoner
studying calculus) but here is a way to start frdpfdx (e'*) = i e'~.

A different proof of Euler’s formula Any complex number ig"* = r(cosf +
i sinf) for somer andé. Take thex derivative of both sides, and substitute fef*:

(cosf+isinB)dr/dx+r(—sind +icosd)df/dx =ir(cosd +isinb).

Comparing the real parts and also the imaginary parts, we deg¢dx =0 and
df/dx = 1. The starting values = 1 andd =0 are known frome’® = 1. There-
fore r is alwaysl andf is x. Substituting into the first sentence of the proof, we
have Euler's formula’® = 1(cosf +i sind).
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10.4 EXERCISES

Read-through questions

The __a _ series is chosen to matcli(x) and all its__b 12 Find the infinite series that solve$ = y starting fromy =1 at
at the basepoint. Aroundx =0 the series begins with x =3 (use powers of — 3). Identify y as a known function.

> - i
JO)+_c x4+ __d _x7 The coefficient o™ is__e . For ;5 pring the infinite series (powers af) that solvesy” = 2y’ — y

— pX 1 1 1 — 1 1
f(x)=e* this series is__f . For f(x)=cosx the series is starting fromy = 0 andy’ = 1 atx = 0.

g . For f(x)=sinx the seriesis _h . If the signs were " _ _ ,
al positive in those series, the functions would be cosand 14 Solvey” =y by a series withy =1 and y’ =0 atx =0 and

i .Addition gives costv +sinhx= | . identify y as a known function.
. . _ 2 _ _

In the Taylor series forf(x) around x =a, the coefficient 15 Findthe Taylor series fof (x) = (1 +x)= aroundx = a =0 and

of (x—a)" is by =_ K . Thenbu(x —a)" has the same | aroundx =a =1 (powers ofx —1). Check that both series add to
—_ - 2

as f a the basepoint. In the exampl¢(x)=x2, the Taylor (I4x)".
coefficients arhp=_m__, by =_n_,bp=__0 . The series 16 Find all derivatives off (x) = x3 atx = a and write out the Tay-
bo+b1(x —a)+bo(x —a)? agrees with the original p . The [or series around that point. Verify that it addsad.
series fore* aroundx =a hasb, = q . Then the Taylor series

. . N5 1o
reproduces the identity* = (__r_J(_s_). 17 What is the series fofl — x)> with basepointt =17

18 Write down the Taylor series fof = cosx aroundx =27 and

. X . 10 . .
We define e*, sinx, cosx, and alsoe'” by their series. ... for f = cos(x —27) aroundx = 0.

The derivative d/dx(1+x+ 3x2+---)=1+x+--- translates

ivati —Ll20 i
to _t . The derivative of1—zx”+ s __u_. Using In 19—-24 compute the derivatives of f and its Taylor series

i2=—1 the seriesl +i6 + +(i0)2+--- splits intoe’® =_ v . Joindr=1.
Its square givex?? =__ w . Its reciprocal ise ¢ =_ x .

L . ; . 19 =1 20 =1/2—
Multiplying by r gives re’®= 'y +i_z , which con- Jx)=1/x fx)=1/2—x)
nects the polar and rectangular forms of aA  number. 21 f(x)=Inx 22 f(x)=x*

The logarithm ofe’? is__ B

. _ _— 23 flx)=e* 24 f(x)=e>*
1 Write down the series foe?* ard compute all derivatives at

x =0. Give a series of numbers that addsfo

In 25—33 write down the first three nonzero terms of the Taylor

2 Write down the series for sitw ard check the third derivative series aroundx = 0, from the series fore*, cosx, and sin.x.

atx = 0. Give a series of numbers that adds toZin= 0.

25 xe?* 26 COSy/x 27 (1—cosx)/x?
In 3—8 find the derivatives of f(x) at x = 0 and the Taylor series 2g _sin X * sinx iny2
. LT - 29 dx 30 sinx
(powers of x) with those derivatives. X 0o X
. x2 x _ ,xInb x
3 ](‘(x) =elx 4 f(.x) — 1/(1 +X) 31 e 32 b¥=e 33 e* cosx

*34 Forx <0 the derivative ofc” is still nx”—1:

5 f(x)=1/(1-2x) 6 f(x)=coshx
d n d n inm n—1 innd|x|
—— (") =—(|x["e""") =n|x|" ! ——.
7 f(x)=In(1-x) 8 f(x)=In(1+x) dx dx dx
What isd|x|/dx ? Rewrite this answer asc” 1.
Problems 9-14 solve differential equations by series. 35 Why doesn't f(x) = +/x have a Taylor series around=07?
Find the first two terms around = 1.
9 From the equatiorly /dx = y —2 find all the derivatives of Find the Tavi ies far* dx =0
at x = 0 starting fromy (0) = 1. Construct the infinite series for, 36 Findthe Taylor series araund.x = 9.
identify it as a known function, and verify that the function satisfies . . )
Y =y—2. In 37—44 find the first three terms of the Taylor series around
10 Differentiate the equation’ =c¢ - and s constant) to o
d Vi=cyts (¢ s ) 37 f(x)=tan lx 38 f(x)=sinlx

find all derivatives ofy at x =0. If the starting value isyg =0,
construct the Taylor series for and identify it with the solution 39 r(y) = tanx 40 f(x) =In(cosx)
of y/ =cy +s in Section 6.3. ’

_ ,Sinx _ —1
11 Find the infinite series that solved = —y starting fromy =0 4 fx)=e 42 flx)=tanf"x

andy’=1atx=0. 43 f(x)=cofx 44 f(x)=se@x



10.4 The Taylor Series for e*, sin x, and cosx 457

45 Frome'® =cosf +isind ande=? = cosd —i sin6, add and
subtract to find co8 and sinf.

46 Does(e'?)? equal cog 6 +i sin? 6 or cosh? +i sinH2 ?

47 Find the real and imaginary parts and théth power of
ein, ein/Z' ein/4 ande‘i”/G.

48 The three cube roots dfarel, e2%i/3, ¢47i/3,

(a) Find the real and imaginary partse3f*i/3.
(b) Explain why(e27/3)3 =1,
(c) Check this statement in rectangular coordinates.

49 The cube roots of-1 = ¢!* aree!*/3 and and
Find their sum and their product.

50 Find the squares of2e/™/3=1++/3i and 4e!™/4=
24/2+i2+/2 in both polar and rectangular coordinates.

51 Multiply efS =coss+i sins timese'! =cost +i sint to find
formulas for cogs +¢) and sir(s +1).

52 Multiply ¢’* timese—'? to find formulas for cogs —¢) and
sin(s —1).

53 Find the logarithm of. Then find another logarithm af (What
can you add to the exponent &P without changing the result ?)

54 (Proof thate is irrational) Ife = p/q then

Nep| oot oL
P TR TR

would be an integer. (Why?) The number in brackets—the
distance from the alternating series to its sufie—is less than
the last term which isl/p! Deduce that|N|<1 and reach a
contradiction, which proves thatcannot equap/qg.

55 Solvedy/dx = y by infinite series starting from =2 atx = 0.
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I 10.5 Power Series NN

This section studies the properties of a power series. When the basepoint is zero, the
powers arex”. The series i£ a,x". When the basepoint is = a, the powers are
(x —a)". We want to know when and where (and how quickly) the series converges
to the underlying function. Far® andcosx andsinx there is convergence for all
x—but that is certainly not true fot/(1 —x). The convergence is best when the
function is smooth.

First | emphasize that power series are not the only series. For many applications
they are not the best choice. An alternative is a sum of sifiés) = X b, Sinnx.
That is a ‘Fourier sine seri€’s which treats allx’s equally instead of picking on a
basepoint. A Fourier series allows jumps and corners in the graph—it takes the rough
with the smooth. By contrast a power series is terrific near its basepoint, and gets
worse as you move away. The Taylor coefficiemisare totally determinedt the
basepoint—where all derivatives are computed. Remember the rule for Taylor series:

an = (nth derivative at the basepojit! = 1™ (a)/n! (1)

A remarkable fact is the convergence isyanmetric interval aroung = a.

10M A power seriesxa,x" either converges for alt, or it converges only gt
the basepoint = 0, or else it has @adius of convergence:

Y a,x" converges absolutely ifx| < r and diverges if|x| > r.

The seriesZ x" /n! converges for alk (the sum is*). The serie n!x" converges
for no x (exceptx =0). The geometric serieE x” converges absolutely fdi | <

1 and diverges fofx| > 1. Its radius of convergence is = 1. Note that its sum
1/(1—x) is perfectly good forlx| > 1—the function is all right but the series has
given up. If something goes wrong at the distance power series can’t get past that
point.

When the basepoint is= a, the interval of convergence shifts overfto—a| <r.
The series converges forbetweer: — r anda + r (symmetric around). We cannot
say in advance whether the endpoints r give divergence or convergence (absolute
or conditional).Insidethe interval, an easy comparison test will now prove conver-
gence.

PROOF OF 10M Suppose a, X" converges at a particular poiat. The proof will
show thatZ a, x" converges whefx| is less than the numbék |. Thus convergence
at X gives convergence at all closer point§l mean closer to the basepoit Proof:
SinceX a, X" converges, its terms approach zero. EventyalyX ”| < 1 and then

lanx"| = |an X" ||x/X|" <|x/X|".
Our seriesx a, x" is absolutely convergent by comparison with the geometric series
for |x/ X |, which converges singer/ X | < 1.
EXAMPLE 1 The serienx" /4" has radius of convergenee= 4.

The ratio test and root test are best for power serighe ratios between terms
approactx /4 (and so does theth root ofnx” /4"):

(n+Dx"tt fnx™  xn+1 x
A =_ roached. = —.
-+ g 4 o P 4
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The ratio test gives convergencdif< 1, which meansx| < 4.

x3 x°

EXAMPLE 2 The sine seriegz — 3 + 5 hasr = oo (it converges every-
where). ’ ’

The ratio ofx” ™2 /(n 4 2)! to x™ /n'is x?/(n +2)(n + 1). This approaches = 0.

EXAMPLE 3 The serie (x —5)"/n? has radiug = 1 around its basepoint =
5.

The ratios between terms approdck= x — 5. (The fractions:?/(n + 1)? go toward

1.) There is absolute convergencegif— 5| < 1. This is the interva#t < x < 6, sym-
metric around the basepoint. This series happens to converge at the endlpoidés
because of the factdr/n2. That factor decides the delicate question—convergence at
the endpoints—but all powers afgive the saménterval of convergencd < x < 6.

CONVERGENCE TO THE FUNCTION: REMAINDER TERM AND RADIUS r

Remember that a Taylor series starts with a functfdr). The derivatives at the
basepoint produce the series. Suppose the series con@agEsit converge to the
function? This is a question about themainderR, (x) = f(x) —s,(x), which
is the difference betweeif and the partial sum,, =ag+---+a,(x —a)". The
remainderR,, is the error if we stop the serieending with the:th derivative term
an(x —a)".

10N Supposef hasan (n + 1)st derivative from the basepoiatout to x. Then
for some point in between (position not known) the remaindexatquals

Ru(x) = f(x) =sn(x) = f"F V() (x =)/ (n + 1)! ()

The error in stopping at theth derivative is controlled by thé: + 1)st derivative.

You will guess, correctly, that the unknown pointcomes from the Mean Value
Theorem. Fon = 1 the proof is at the end of Section 3.8. That was the er(®) in
linear approximation:

Ri(x) = f(x) = f(a)— fl(@)(x —a) =3 f"(c)(x —a)*.

For everyn, the proof compare®, with (x —a)"*!. Their (n + 1)st derivatives
aref("+1) and(n + 1)! The generalized Mean Value Theorem says that the ratio of
R, to (x —a)"*! equals the ratio of those derivatives, at the right peinthat is
equation(2). The details can stay in Section 3.8 and Prob2mbecause the main
point is what we wantThe error is exactly like the next terna, (x —a)" ™!,
except that thén + 1)st derivative is at instead of the basepoiat

EXAMPLE 4 When f is e*, the(n + 1)st derivative i*. Therefore the error is

xn+1

(n+1)

At x =1 andn =2, the error ise — (1 +1 +%) ~ .218. The right side ise€/6.
The unknown pointis =In(.218 -6) = .27. Thusc lies between the basepoint= 0

n
Rn=ex—(1+x—|—---—|—):l—')=ec (3

459



460 10 Infinite Series

and the error point = 1, asrequired. The series converges to the function, because
R, — 0.
In practice,n is the number of derivatives to be calculated. We may aim for an
error| R, | below 10~6. Unfortunately, the high derivative in formu(@) is awkward
to estimate (except foe*). And high derivatives in formulg1) are difficult to
compute. Most real calculations use onlyeav termsof a Taylor series. For more
accuracy we move the basepoint closer, or switch to another series.
There is a direct connection between the function and the convergenceradius
hint came forf(x) = 1/(1 —x). The function blows up at = 1—which also ends
the convergence interval for the series. Another hint comeg ferl/ x, if we expand
aroundx =a =1:
1 1 5
—=——=14+1-x)+0=x)"+--. (4)
x 1-(1-x)
This geometric series converges fpf—x|<1. Convergence stops at the end
point x = 0—exactly wherel /x blows up.The failure of the function stops the
convergence of the serieBut note thatl /(1 + x2), which never seems to fail, also
has convergence radius= 1:

1/(1+x*) =1-x?+x*—x%+--- converges only fofx| < 1.

When you see the reason, you will know whys a “radius.” There is a circle, and

the function fails at the edge of the circle. The circle contains complex numbers as
well as real numbers. The imaginary poinsnd—i are at the edge of the circléhe
function fails at those points becausk/ (1 +i?) = .

Complex numbers are pulling the strings, out of sight. The circle of convergence
reaches out to the nearest “singularity” 6x), real or imaginary or complex. For
1/(1+ x?), the singularities at and —i maker = 1. If we expand around = 3,
the distance té and—i is r = /10. If we change tdn(1 + x), which blows up at
x = —1, the radius of convergence of— 1x2 + Ix3—---isr =1.

/(1 +i2)=co

InDand 0" at x =—1

a={

In(1 +x)and (1 +x)”

1/(1 +x2) =0 also at —i

Fig. 10.6  Convergence radiusis distance from basepointto nearest singularity.

THE BINOMIAL SERIES

We close this chapter with one more series. Itis the Tayloesést (1 + x)?, around
the basepoint = 0. A typical power isp = % where we want the terms in

VItx=1+3x+ax>+---.
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The slow way is to square both sides, which givesx + (2a, + i)x2 on the right.
Sincel + x is on the lefta, = —% isneeded to remove the? term. Eventuallyzs
can be found. The fast way is to match the derivativeg ef (1 + x)'/2:

f1=30+0712 0 =G (=) 0+ = (5)(=3)(= 3 +0) 7

At x =0 those derivatives arg, — 1, 2. Dividing by 1!,2!,3! gives

1
4°

R _ (1, Lo
a=5 =73 BT “Toa\2)\2 ")

These are thbinomial coefficientsvhen the power ip = %

Notice the difference from the binomials in Chapter 2. For those, the ppweas
a positive integer. The seri¢s + x)2 = 1 + 2x + x2 stopped at2. The coefficients
for p =2 werel,2,1,0,0,0, .... For fractionalp or negativep those later coeffi-
cients arenotzero, and we find them from the derivatives df+ x)?:

(1+x0)7 p(+x0)?"" p(p=DA+x)P72 [P =p(p—1)---(p—n+ DI +x)"".
Dividing by 0!, 1!,2!, ..., n! atx = 0, the binomial coefficients are

p(p=1)  fPO _plp=D-(p—n+1)
2 n! n! '

1 ©)

For p = n that last binomial coefficient is!/n! = 1. It gives the finalk” at the end

of (14 x)". For other values op, the binomial series never stopsconverges for
|x|<1:

(I+x)P=1+4+px+

pip—=1) , =~ pp—D-(p—n+1) ,

= +..._Z pr x". (6)
n=0

When p =1,2,3, ... the binomial coefficientp!/n!(n — p)! counts the number

of ways to select a group of friends out of a group ofp friends. If you have20

friends, you can chooskof them in(20)(19)/2 = 190 ways.

Supposep is not a positive integer. What goes wrong with+ x)?, to stop the
convergence atx| = 17? The failure is att = —1. If p is negative(1 + x)? blow
up. If p is positive, as iny/1 + x, the higher derivatives blow up. Only for a positive
integerp = n does the convergence radius move out to co. In that case the series
for (1+ x)” stops atx”, and f never fails.

A power series is a function in a new form. It is not a simple form, but sometimes
it is the only form. To computg’ we have to sum the series. To squgreve have to
multiply series. But the operations of calculus—derivative and integral—are easier.
That explains why power series help to solve differential equations, which are a rich
source of new functions. (Numerically the series are not always so good.) | should
have said that the derivative and integral are dasgach separate term, x"—and
fortunately the convergence radius of the whole series is not changed.

If f(x)=Xa,x™ has convergence radius, so do its derivative and its integral
df/dx =%na,x"~' and [ f(x)dx=ZXa,x""!/(n+1) also converge fojx| <r.
EXAMPLE 5 The series foi /(1 — x) and its derivativd /(1 — x)? and its integral

—In(1—x) all haver =1 (because they all have troubleat= 1). The series are
TLx"andZnx""tandZ x" !/ (n+1).
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EXAMPLE 6 We can integratee"2 (previously impossible) by integrating every
termin its series:

1 x3 1 (x® 1 /x7
x2 _ 2, AL, — = — | —
fe dx—f(l-i—x +2!x+ )dx—x+3+2!(5)+3!(7)+ .

This always convergds = 00). The derivative ob*” was never a problem.

10.5 EXERCISES

Read-through questions

If |x|<|X| and Xa, X" converges, then the seriésa,x™ also 12 Write down the Taylor series fare* around x = 0. Integrate
a . There is convergence in a b interval around the and substituter = 1 to find the sum ofl /n!(n + 2).
¢ . For £(2x)" the convergence radius is=__d . For
Y x"/n! the radius isr=__e . For X(x—3)" there is con-
vergence for|x—3|<_f . Then x is between g and

13 If f(x)isan even function, sg(—x) = f(x), what can you say
about its Taylor coefficients iff = X a,x" ?

h . 14 Puzzle out the sums of the following series:
Starting with f(x), its Taylor seriesXa,x" hasa, =__i . @) x+x2—x3fat xS x4

With basepointa, the coefficient of (x —a)” is j . The 4 8

error after thex” term is called the__k R, (x). It is equal (b) 1+x—+x—+---

to __ | where the unknown point is between__m . Thus a8l

1 2.1 3
the error is controlled by the n__ derivative. © G=D=z@=D"+3x=1)" =

The circle of convergence reaches out to the first poiis From the series fofl —cosx)/x? find the limit asx — 0 faster
where f(x) fails. For f =4/(2—x), that point isx=__0o . thanI'Hépital's rule.

Around the basepoink =5, the convergence radius would be .
16 Construct a power series that convergedferx < 2x.

r= p .Forsinx and cosx theradiusis = ¢

Th? _Series forvl+x is the _r  series W'th P=72- 115 17 24 are about remainders and 25-36 are about binomials.
coefficients areu, =__s . Its convergence radius is t . Its
square is the very short serigst x. 17 If the cosine series stops befar&/8! show from (2) that the

remainderR; is less thanx8/8! Does this also follow because

In 1-6 find the Taylor series for f(x) around x =0 and its the series is alternating ?

radius of convergencer. At what point does f(x) blow up ?
> 18 If the sine series around =2 stops after the terms in
L f()=1/(1-4x) 2 f)=1/1-4x7) problem10, estimate the remainder from equation (2).

. - _ 3
3 f)=eF 4 flx)=tanx (throughx”) 15 Egtimate by(2) the remainde®, = x"t1 +x"+t2 ... in the
5 f(x)=In(e+x) 6 f(x)=1/(1+4x2) geometric series. Then compulg, exactly and find the unknown

; _ _1
pointc forn =2 andx = 5.

Find the interval of convergence and the function in 7-10. 20 For —In(1—x)=x+ %XZ + %x3 + R3, use equation (2) to
Lo 0 showthatR3$%atx:%.
7 = 8 = —a)"1
S Xo:( 2 ) /() onn(x @) 21 Find R, in Problem20 and show that the series converges to the
function atx = 3 (prove thatR, — 0).
*0 . . .
9 f(x)= Z 1 (x —a)"+! 22 By estimatingR, prove that the Taylor series far* around
+1 x =1 converges te* asn — oo.
3 23 (Proof of the remainder formula when= 2)
10 £ =(x—2m)— 207
X)=x—-27)——7—+--- .
3! (@) Atx=afind Ry, RS, RY. RY.
11 Write down the Taylor series fofe* —1)/x, based on the (b) Atx=a evaluateg(x) = (x —a)3 andg’,g",g".
series fore*. At x =0 the function is0/0. Evaluate the series at Ry (x) — Ra(a) R'2(61) R

x = 0. Check by 'H6pital’s Rule orfe* —1)/x. (c) Whatrule give ) —g@ g
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) R} (c1) — Ry (a) _ R3(c2) d 37 From secx =1/[1—(1—cosx)] find the Taylor series of
g'(c1)—g'(a)  g"(c2) secx up to x®. What is the radius of convergenee(distance to

Ry (c2)—Rj(a) Ry (c) blowup point) ?

g"(c2)—g"(@)  g"(c)

(e) Combine (a-b-c-d) into the remainder formyta.

where arer; andcy andce ?
38 From seéx =1/[1 —sin?x] find the Taylor series up taZ2.
, Check by squaring the secant series in Prob&m Check by
24 All derivatives of f(x)=e¢~1/*" are zero atx =0, includ- differentiating the tangent series in Problég

ing f(0)=0. What is f(.1)? What is the Taylor series around . . . L .

Xx=0? What is the radius of convergence? Where does the (Division of series) Find tam by long division of sinx/cosx:
series converge tof(x)? For x=1 and n=1 what is the

remainder estimate if2) ? x3 X xZz  x* x3 2x5
SIRETT O VA L TV hat A S TR
25 (a) Find the first three terms in the binomial series fo

1/A/1—x2.

(b) Integrate to find the first three terms in the Taylor series f - . _ 2
sin1y. % (Composition of series) Iff =ag+aj1x+azx=+--- and

g=b1x+byx?+--- find thel, x, x2 coefficients off (g (x)).
26 Show that the binomial coefficients ifv/1 —x =) "a,x" are Testonf =1/(1+x),g =x/(1—x), with f(g(x))=1—x.
an=1-3-5---2n—1)/2"n! o . . .

) ) ) ) 41 (Multiplication of series) From the series for sinand
27 For p=—1andp = —2find nice formulas for the binomial co- 1/(1—x) find the first four terms forf =sinx /(1 —x).

efficients.
. . _ s , -

28 Change the dummy variable and add lower limits to malge2 b(ln\(ersm_n of Sel’les)zlff_alx—f—azx te f'id coefficients

o n-1 o n 1.2 In g=bix+byx*+--- so that f(g(x))=x. Compute
L= e Dt bi.byfor f=e*—1,g=f—=In(1+x).
29 In (1—x)~!=%x" the coefficient ofx” is the number of o . . o
groups of friends that can be formed froirfriend (not binomia— 43 From the multiplication(sinx)(sinx) or the derivatives of
repetition is allowed!). The coefficient is and there is only one f(x)=sinx find the first three terms of the series. Find the

group—the same friend times. first four terms for cox by an easy trick.
(a) Describe all groups of friends that can be formed frol 44 Somehow find the first six nonzero terms fgr=(1—x)/
friends. (There are + 1 groups.) (1—x3).
(b) How many groups of friends can be formed fron3

45 Find four terms of the series fdr/y/1 — x. Then square the se-

friends ? . . .
ries to reach a geometric series.

30 (a) What is the coefficient ofx” when 1+x+x2+--- ) )
multiplies 1 4 x +x2 +--- ? Write the first three terms. 46 Computef, e~ dx to 3 decimals by integrating the power se-

(b) Whatis the coefficient of3 in (Sx¥)3 ? ries.

1 . .
31 Show that the binomial series for/T+4x has integer 47 Computef, sin® dt to 4 decimals by power series.
coefficients. (Note that” changes tq4x)". These coefficients are

. : ; 48 Show that ©x"/n converges atx =—1, even though its
important in counting trees, paths, parentheses...)

derivative Tx"~! diverges. How can they have the same
32 In the series forl /+/1+4x, show that the coefficient of” is convergence radius ?

(2n)! divided by (n!)2. o 3 )
49 Compute lim(sinx —tanx)/x~ from the series.

Use the binomial series to compute 33-36 with error less than x>0

1/1000. 50 If the nth root of a, approachesL >0, explain why Za, x"
has convergence radius=1/L.

1/4 4 1/3
3.5 34 (1001) 51 Find the convergence radius araund basepoints: =0 and

35 (1.1)11 36 ¢1/1000 a = 1 from the blowup points of1 +tanx)/(1 +x2).
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