
CHAPTER 7

Techniques of Integration

Chapter 5 introduced the integral as a limit of sums. The calculation of areas was
started—by hand or computer. Chapter 6 opened a different door. Its new functions
ex and lnx led to differential equations. You might say that all along we have been
solving the special differential equationdf=dxD v.x/. The solution isf D

r
v.x/ dx.

But the step tody=dxD cy was a breakthrough.
The truth is that we are able to do remarkable things.Mathematics has a lan-

guage, and you are learning to speak it. A short time ago the symbolsdy=dx andr
v.x/ dx were a mystery. (My own class was not too sure aboutv.x/ itself—the

symbol for a function.) It is easy to forget how far we have come, in looking ahead to
what is next.

I do want to look ahead. For integrals there are two steps to take—more functions
and more applications.By using mathematics we make it live. The applications are
most complete when we know the integral. This short chapter will widen (very much)
the range of functions we can integrate. A computer with symbolic algebra widens it
more.

Up to now, integration depended on recognizing derivatives. Ifv.x/D sec2x then
f .x/D tanx. To integratetanx we use a substitution:»

sin x

cosx
dxD�» du

u
D� ln uD� ln cosx:

What we need now aretechniques for other integrals, to change them around until
we can attack them. Two examples are

r
x cosx dx and

r ?
1�x2 dx, which are

not immediately recognizable. With integration by parts, and a new substitution, they
become simple.

Those examples indicate where this chapter starts and stops. With reasonable
effort (and the help of tables, which is fair) you can integrate important functions.
With intense effort you could integrate even more functions. In older books that
extra exertion was made—it tended to dominate the course. They had integrals liker
.xC1/ dx=

?
2x2�6xC4, which we could work on if we had to.Our time is

too valuable for that! Like long division, the ideas are for us and their intricate
elaboration is for the computer.

Integration by parts comes first. Then we do new substitutions. Partial fractions
is a useful idea (already applied to the logistic equationy 1 D cy�by2/. In the last
sectionx goes to infinity ory.x/ goes to infinity—but the area stays finite. These
improper integrals are quite common. Chapter 8 brings the applications.
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342 7 Techniques of Integration

7.1 Integration by Parts

There are two major ways to manipulate integrals (with the hope of making them
easier). Substitutions are based on the chain rule, and more are ahead. Here we present
the other method, based on theproduct rule. The reverse of the product rule, to find
integrals not derivatives, isintegration by parts.

We have mentioned
r

cos2x dx and
r

lnx dx. Now is the right time to compute
them (plus more examples). You will see how

r
lnx dx is exchanged for

r
1 dx—

a definite improvement. Also
r
xex dx is exchanged for

r
ex dx. The difference

between the harder integral and the easier integral is a known term—that is the point.
One note before starting: Integration by parts isnot just a trickwith no meaning.

On the contrary, it expresses basic physical laws of equilibrium and force balance.
It is a foundation for the theory of differential equations (and even delta functions).
The final paragraphs, which are completely optional, illustrate those points too.

We begin with the product rule for the derivative ofu.x/ timesv.x/:

u.x/
dv

dx
Cv.x/

du

dx
D
d

dx
.u.x/v.x//: (1)

Integrate both sides. On the right, integration brings backu.x/v.x/. On the left are
two integrals, and one of them moves to the other side (with a minus sign):»

u.x/
dv

dx
dxDu.x/v.x/�» v.x/du

dx
dx: (2)

That is the key to this section—not too impressive at first, but very powerful. It is
integration by parts(u andv are the parts). In practice we write it withoutx’s:

7A The integration by parts formula is
r
u dvDuv�r

v du: (3)

The problem of integratingu dv=dx is changed into the problem of integrating
vdu=dx. There is a minus sign to remember, and there is the “integrated term”
u.x/v.x/. In the definite integral, that productu.x/v.x/ is evaluated at the end-
pointsa andb: » b

a

u
dv

dx
dxDu.b/v.b/�u.a/v.a/�» b

a

v
du

dx
dx: (4)

The key is in choosingu and v. The goal of that choice is to make
r
v du easier

than
r
u dv. This is best seen by examples.

EXAMPLE 1 For
r

ln x dx chooseuD ln x anddvD dx (sovD x):»
ln x dxDuv�» v duD x ln x�» x 1

x
dx:

I used the basic formula(3). Instead of working withln x (searching for an
antiderivative), we now work with the right hand side. Therex times1=x is 1. The
integral of1 is x. Including the minus sign and the integrated termuvD x ln x and
the constantC , the answer isr

ln x dxD x ln x�xCC: (5)

For safety,take the derivative. The product rule givesln xCx.1=x/�1, which is
ln x. The area underyD ln x from 2 to 3 is 3 ln 3�3�2 ln 2C2.
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To repeat: We exchanged the integral ofln x for the integral of1.

EXAMPLE 2 For
r
x cosx dx chooseuD x anddvD cosx dx (sov.x/D sinx):

r
x cosx dxDuv�r

v duD x sinx�r
sin x dx: (6)

Again the right side has a simple integral, which completes the solution:
r
x cosx dxD x sinxCcosxCC: (7)

Note The new integral is not always simpler. We could have chosenuD cosx and
dvD x dx. ThenvD 1

2
x2. Integration using those parts give the true but useless

result r
x cosx dxDuv�r

v duD 1
2
x2 cos xC

r
1
2
x2 sin x dx:

The last integral is harder instead of easier (x2 is worse thanx). In the forward
direction this is no help. But in the opposite direction it simplifies

r
1
2
x2 sin x dx.

The idea in choosingu andv is this:Try to giveu a nice derivative anddv a nice
integral.

EXAMPLE 3 For
r
.cosx/2 dx chooseuD cosx anddvD cosx dx (sovD sin x):

r
.cosx/2 dxDuv�r

v duD cosx sin xC
r
.sinx/2 dx:

The integral of.sinx/2 is no better and no worse than the integral of.cosx/2. But
we never see.sinx/2 without thinking of1� .cosx/2. So substitute for.sinx/2:

r
.cosx/2 dxD cosx sin xC

r
1 dx�r

.cosx/2 dx:

The last integral on the right joins its twin on the left, and
r
1 dxD x:

2
r
.cosx/2 dxD cosx sin xCx:

Dividing by 2 gives the answer, which is definitely not1
3
.cosx/3. Add anyC :

r
.cosx/2 dxD 1

2
.cosx sin xCx/CC: (8)

Question Integrate.cosx/2 from0 to 2� . Why should the area be� ?

Answer The definite integral is1
2
.cosx sin xCx/

�2�

0
. This does give� . That

area can also be found by common sense, starting from.cosx/2 C .sinx/2 D 1. The
area under1 is 2� . The areas under.cosx/2 and.sinx/2 are the same. So each one
is� .

EXAMPLE 4 Evaluate
r

tan�1x dx by choosinguD tan�1x andvD x:»
tan�1x dxDuv�» v duD x tan�1x�» x dx

1Cx2
: (9)

The last integral haswD 1Cx2 below and almost hasdwD 2x dx above:»
x dx

1Cx2
D
1

2

»
dw

w
D
1

2
ln wD

1

2
ln.1Cx2/:

Substituting back into(9) gives
r

tan�1x dx asx tan�1x� 1
2

ln.1Cx2/. All the
familiar inverse functions can be integrated by parts (takevD x, and add “CC ” at
the end).

Our final example shows howtwo integrations by partsmay be needed, when the
first one only simplifies the problem half way.
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EXAMPLE 5 For
r
x2exdx chooseuD x2 anddvD exdx (sovD ex):

r
x2ex dxDuv�r

v duD x2ex�r
ex.2x dx/: (10)

The last integral involvesxex . This is better thanx2ex , but it still needs work:r
xexdxDuv�r

v duD xex�r
ex dx .now uD x/: (11)

Finallyex is alone. Aftertwo integrations by parts, we reach
r
exdx. In equation(11),

the integral ofxex is xex�ex . Substituting back into(10),r
x2ex dxD x2ex�2 Œxex�ex �CC: (12)

These five examples are in the list of prime candidates for integration by parts:

xnex ; xn sinx; xn cosx; xn lnx; ex sinx; ex cosx; sin�1x; tan�1x; : : : :

This concludes the presentation of the method—brief and straightforward.
Figure 7.1a shows how the areas

r
u dv and

r
v du fill out the difference between

the big areau.b/v.b/ and the smaller areau.a/v.a/.

Fig. 7.1 The geometry of integration by parts. Delta function (area1) multiplies v.x/ at
xD0:

In the movie Stand and Deliver, the Los Angeles teacher Jaime Escalante
computed

r
x2 sinx dx with two integrations by parts. His success was through

exercises—plus insight in choosingu andv. (Notice the difference from
r
x sinx2 dx.

That falls the other way—to a substitution.) The class did extremely well on the
Advanced Placement Exam. If you saw the movie, you remember that the examiner
didn’t believe it was possible. I spoke to him long after, and he confirms that practice
was the key.

THE DELTA FUNCTION

From the most familiar functions we move to the least familiar.The delta function
is the derivative of a step function. The step functionU.x/ jumps from0 to 1 at
xD 0. We write ı.x/D dU=dx, recognizing as we do it that there is no genuine
derivative at the jump. The delta function is the limit of higher and higher spikes—
from the “burst of speed” in Section 1.2. They approach an infinite spike concentrated
at a single point (whereU jumps). This “non-function” may be unconventional—it is
certainly optional—but it is important enough to come back to.

The slopedU=dx is zero except atxD 0, where the step function jumps. Thus
ı.x/D 0 except at that one point, where the delta function has a “spike.” We cannot
give a value forı at xD 0, but we know its integral across the jump. On every
interval from�A toA, the integral ofdU=dx brings backU :» A�A

ı.x/ dxD

» A�A

dU

dx
dxDU.x/

�A�A
D 1: (13)

“The area under the infinitely tall and infinitely thin spikeı.x/ equals1.”
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So far so good. The integral ofı.x/ isU.x/. We now integrate by parts for a crucial
purpose—to find the area underv.x/ı.x/. This is an ordinary function times the
delta function. In some sensev.x/ timesı.x/ equalsv.0/ timesı.x/—because away
fromxD 0 the product is always zero. Thusexı.x/ equalsı.x/, andsinx ı.x/D 0.

The area underv.x/ı.x/ is v.0/—which integration by parts will prove:

7B The integral ofv.x/ timesı.x/ is
r A�A

v.x/ı.x/dxD v.0/.

The area isv.0/ because the spike is multiplied byv.0/—the value of the smooth
function v.x/ at the spike. But multiplying infinity is dangerous, to say the least.
(Two times infinity is infinity). We cannot deal directly with the delta function.It is
only known by its integrals! As long as the applications produce integrals (as they
do), we can avoid the fact thatı is not a true function.

The integral ofv.x/ı.x/D v.x/dU=dx is computed “by parts:”» A�A

v.x/ı.x/ dxD v.x/U.x/
iA�A

�» A�A

U.x/
dv

dx
dx: (14)

Remember thatU D 0 or U D 1. The right side of(14) is our areav.0/:

v.A/ �1�» A

0

1
dv

dx
dxD v.A/� .v.A/�v.0//D v.0/: (15)

Whenv.x/D 1, this answer matches
r
ı dxD 1. We give three examples:

r 2�2
cosx ı.x/ dxD 1

r 6�5
.U.x/Cı.x//dxD 7

r 1�1
.ı.x//2dxD8:

A nightmare question occurs to me.What is the derivative of the delta function?

INTEGRATION BY PARTS IN ENGINEERING

Physics and engineering and economics frequently involveproducts. Work is force
times distance. Power is voltage times current. Income is price times quantity. When
there are several forces or currents or sales, we add the products. When there are
infinitely many, we integrate (probably by parts).

I start with differential equations for the displacementu at pointx in a bar:�dv
dx

D f .x/withv.x/D k
du

dx
: (16)

This describes a hanging bar pulled down by a forcef .x/. Each pointxmoves through
a distanceu.x/. The top of the bar is fixed, sou.0/D 0. The stretching in the bar is
du=dx. The internal force created by stretching isvD k du=dx. (This is Hooke’s
law.) Equation(16) is abalance of forceson the small piece of the bar in Figure 7.2.
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Fig. 7.2 Difference in internal force balances external force��vD f�x or�dv=dxD f .x/

vDW atxD 1 balances hanging weight

EXAMPLE 6 Supposef .x/DF , aconstant force per unit length. We can solve(16):

v.x/D�FxCC and ku.x/D�1
2
Fx2 CCxCD: (17)

The constantsC andD are settled at the endpoints (as usual for integrals). AtxD 0
we are givenuD 0 soDD 0. At xD 1 we are givenvDW soC DW CF . Then
v.x/ andu.x/ give force and displacement in the bar.

To see integration by parts, multiply�dv=dxD f .x/ by u.x/ and integrate:» 1

0

f .x/u.x/ dxD�» 1

0

dv

dx
u.x/ dxD�u.x/v.x/i1

0
C

» 1

0

v.x/
du

dx
dx: (18)

The left side is force times displacement, orexternal work. The last term is inter-
nal force times stretching—orinternal work. The integrated term hasu.0/D 0—the
fixed support does no work. It also has�u.1/W , the work by the hanging weight.
The balance of forces has been replaced by abalance of work.

This is a touch of engineering mathematics, and here is the main point. Integration
by parts makes physical sense! When�dv=dxD f is multiplied by other functions—
called test functionsor virtual displacements—then equation(18) becomesthe
principle of virtual work. It is absolutely basic to mechanics.

7.1 EXERCISES

Read-through questions

Integration by parts is the reverse of the a rule. It changesr
udv into b minus c . In caseuD x and dvD e2xdx,

it changes
r
xe2xdx to d minus e . The definite integral

r 2
0 xe

2xdx becomes f minus g .

In choosingu anddv, the h of u and the i of dv=dx
should be as simple as possible. Normally lnx goes into j and
ex goes into k . Prime candidates areuD x or x2 andvD sinx
or l or m . WhenuD x2 we need n integrations by
parts. For

r
sin�1 x dx, the choicedvD dx leads to o minus

p .

If U is the unit step function,dU=dxD ı is the unit q
function. The integral from�A to A is U.A/�U.�A/D r .
The integral of v.x/ı.x/ equals s . The integralr 1�1 cosx ı.x/ dx equals t . In engineering, the balance of

forces�dv=dxD f is multiplied by a displacementu.x/ and inte-
grated to give a balance of u .

Integrate 1–16, usually by parts (sometimes twice).

1
r
x sin x dx

3
r
x e�x dx

2
r
x e4x dx

4
r
x cos3x dx

5
r
x2 cosx dx (use Problem1)

6
r
x ln x dx 7

r
ln.2xC1/dx

8
r
x2e4x dx (use Problem2)

9
r
ex sin x dx 10

r
ex cosx dx

[9 and10 need two integrations. I thinkex can beu or v.]
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11
r
eax sin bx dx

13
r

sin.ln x/dx

15
r
.ln x/2dx

17
r

sin�1x dx

12
r
xe�x2

dx

14
r

cos.ln x/ dx

16
r
x2 ln x dx

18
r

cos�1.2x/ dx

19
r
x tan�1 x dx

20
r
x2 sin x dx (from the movie)

21
r
x3 cosx dx

23
r
x3ex dx

25
r
x sec2 x dx

22
r
x3 sin x dx

24
r
x sec�1x dx

26
r
x cosh x dx

Compute the definite integrals 27–34.

27
r 1
0 ln x dx

29
r 1
0 x e

�2xdx

31
r �
0 x cosx dx

33
r 3
0 ln .x2 C1/dx

28
r 1
0 e

?
xdx (let uD

?
x)

30
r e
1 ln.x2/dx

32
r ��� x sin x dx

34
r �=2
0 x2 sin x dx

In 35–40 derive “reduction formulas” from higher to lower pow-
ers.

35
r
xnex dxD xnex�n r

xn�1exdx

36
r
xneax dxD

37
r
xn cos x dxD xn sin x�n r

xn�1 sin x dx

38
r
xn sin x dxD

39
r
.ln x/ndxD x.ln x/n�nr

.ln x/n�1dx

40
r
x.ln x/n dxD

41 How would you compute
r
x sin x exdx using Problem9?

Not necessary to do it.

42 How would you compute
r
x ex tan�1 x dx ? Don’t do it.

43 (a) Integrate
r
x3 sinx2dx by substitution and parts.

(b) The integral
r
xn sinx2dx is possible ifn is .

44–54 are about optional topics at the end of the section.

44 For the delta functionı.x/ find these integrals:

(a)
r 1�1 e

2xı.x/dx (b)
r 3�1 v.x/ı.x/dx (c)

r 4
2 cosx ı.x/dx:

45 Solvedy=dxD 3ı.x/ anddy=dxD 3ı.x/Cy.x/.

46 Strange fact:ı.2x/ is different fromı.x/. Integrate them both
from�1 to 1.

47 The integral ofı.x/ is the unit stepU.x/. Graph the next
integralsR.x/D

r
U.x/dx andQ.x/D

r
R.x/dx. The rampR

and quadratic splineQ are zero atxD 0.

48 In ı.x� 1
2 /, the spike shifts toxD 1

2 . It is the derivative of
the shifted stepU.x� 1

2 /. The integral ofv.x/ı.x� 1
2 / equals

the value ofv atxD 1
2 . Compute

(a)
r 1
0 ı.x� 1

2 /dx; (b)
r 1
0 e

xı.x� 1
2 /dx;

(c)
r 1�1 ı.x/ı.x� 1

2 /dx.

49 The derivative ofı.x/ is extremely singular. It is a “dipole”
known by its integrals. Integrate by parts in (b) and (c):

(a)
» 1�1

dı

dx
dx (b)

» 1�1
x
dı

dx
dx (c)

» 1�1
v.x/

dı

dx
dxD�v1.0/:

50 Why is
r 1�1U.x/ı.x/dx equal to1

2 ? (By parts.)

51 Choose limits of integration inv.x/D
r
f .x/dx so that

dv=dxD�f .x/ andvD 0 atxD 1.

52 Draw the graph ofv.x/ if v.1/D 0 and�dv=dxD f .x/:

(a)f D xI (b)f DU
�

x� 1
2

�

; (c)f D ı
�

x� 1
2

�

:

53 What integral u.x/ solves k du=dxD v.x/ with end
condition u.0/D 0 ? Find u.x/ for the threev’s (not f ’s) in
Problem52; and graph the threeu’s.

54 Draw the graph of �U=�xD ŒU.xC�x/�U.x/�=�x.
What is the area under this graph ?

Problems 55–62 need more than one integration.

55 Two integrations by parts lead toV D integral ofv:

r
uv1dxDuv�V u1Cr

V u2dx:
Test this rule on

r
x2 sin x dx.

56 After n integrations by parts,
r
u.dv=dx/dx becomes

uv�u.1/v.1/ Cu.2/v.2/��� �C.�1/nr
u.n/v.n�1/dx:

u.n/ is the nth derivative ofu, and v.n/ is the nth integral ofv.
Integrate the last term by parts to stretch this formula tonC1

integrations.

57 Use Problem56 to find
r
x3exdx.

58 Fromf .x/�f .0/D r x
0 f

1.t/dt , integrate by parts (noticedt
not dx) to reachf .x/D f .0/Cf 1.0/xC

r x
0 f

2.t/.x� t/dt . Con-
tinuing as in Problem56 producesTaylor’s formula:

f .x/Df .0/Cf 1.0/xC
1

2Š
f 2.0/x2 C � � �C» x

0
f .nC1/.t/

.x� t/n
nŠ

dt:

59 What is the difference between
r 1
0 uw

2dx and
r 1
0 u

2w dx ?

60 Compute the areasAD
r e
1 ln x dx and B D

r 1
0 eydy. Mark

them on the rectangle with corners.0;0/; .e;0/; .e;1/; .0;1/.

61 Find the mistake. I don’t believeex coshxD ex sinhx:

r
ex sinhx dxD ex coshx�r

ex coshx dx

D ex coshx�ex sinhxC
r
ex sinhx dx:

62 Choose C and D to make the derivative of
C eax cosbxCD eax sin bx equal toeax cosbx. Is this easier than
integratingeax cosbx twice by parts ?
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7.2 Trigonometric Integrals

The next section will put old integrals into new forms. For example
r
x2
?
1�x2 dx

will become
r

sin2�cos2 � d� . That looks simpler because the square root is gone.
But still sin2�cos2� has to be integrated.This brief section integrates any product
of sines and cosines and secants and tangents.

There are two methods to choose from. One uses integration by parts, the other
is based on trigonometric identities. Both methods try to make the integral easy (but
that may take time). We follow convention by changing the letter� back tox.

Notice thatsin4x cosx dx is easy to integrate. It is u4du: This is the goal in
Example 1—to separate outcosx dx: It becomesdu; andsinx is u:

EXAMPLE 1
r

sin2xcos3x dx (the exponent3 is odd)

Solution Keepcosx dx asdu: Convert the othercos2x to 1�sin2x:»
sin2xcos3x dxD

»
sin2x.1�sin2x/cosx dxD

sin3x

3
� sin5x

5
CC:

EXAMPLE 2
r

sin5x dx (the exponent5 is odd)

Solution Keepsinx dx and convert everything else to cosines.The conversion
is always based onsin2xCcos2xD 1:

r
.1�cos2x/2 sinx dxD

r
.1�2cos2xCcos4x/sinx dx:

Now cosx is u and�sinx dx is du:We have
r
.�1C2u2�u4/du:

General method for
r

sinmx cosnx dx; whenm or n is odd

If n is odd, separate out a singlecosx dx: That leaves an even number of cosines.
Convert them to sines. Thencosx dx is du and the sines areu’s.

If m is odd, separate out a singlesinx dx asdu: Convert the rest to cosines.
If m andn are both odd, use either method.
If m andn are both even, a new method is needed. Here are two examples.

EXAMPLE 3
r

cos2x dx (mD 0; nD 2; both even)

There are two good ways to integratecos2x; but substitution is not one of them. If
u equalscosx; thendu is not here. The successful methods are integration by parts
and double-angle formulas. Both answers are in equation(2) below—I don’t see
either one as the obvious winner.

Integratingcos2x by parts was Example 3 of Section 7.1. The other approach, by
double angles, is based on these formulas from trigonometry:

cos2xD 1
2

�

1Ccos2x
�

sin2xD 1
2

�

1�cos2x
�

(1)

Theintegral ofcos2x is 1
2

sin 2x: So these formulas can be integrated directly. They
give the only integrals you should memorize—either the integration by parts form,
or the result from these double angles:

r
cos2x dx equals 1

2

�

xCsin x cosx
�

or 1
2
xC 1

4
sin 2x .plusC/: (2)r

sin2x dx equals 1
2

�

x�sinx cosx
�

or 1
2
x� 1

4
sin2x .plusC/: (3)



7.2 Trigonometric Integrals 349

EXAMPLE 4
r

cos4x dx (mD 0; nD 4; both are even)

Changingcos2x to 1�sin2x gets us nowhere. All exponents stay even. Substituting
uD sinx won’t simplify sin4x dx; withoutdu: Integrate by parts or switch to2x:

First solution Integrate by parts. TakeuD cos3x anddvD cosx dx:
r
.cos3x/.cosx dx/Duv�r

v duD cos3x sinx�r
.sinx/.�3cos2x sinx dx/:

The last integral has even powerssin2x and cos2x: This looks like no progress.
Replacingsin2x by 1�cos2x producescos4x on the right-hand side also:

r
cos4x dxD cos3x sinxC3

r
cos2x.1�cos2x/dx:

Always even powers in the integrals. But now move3
r

cos4x dx to the left side:

Reduction 4
r

cos4x dxD cos3x sinxC3
r

cos2x dx: (4)

Partial success—the problem isreducedfrom cos4x to cos2x: Still an even power,
but a lower power. The integral ofcos2x is already known. Use it in equation(4):

r
cos4x dxD 1

4
cos3x sinxC 3

4
� 1

2

�

xCsin x cosx
�

CC: (5)

Second solution Substitute the double-angle formulacos2xD 1
2

C 1
2

cos2x:
r

cos4x dxD
r
.1

2
C 1

2
cos2x/2dxD 1

4

r
.1C2 cos2xCcos2 2x/dx:

Certainly
r
dxD x: Also 2

r
cos2x dxD sin2x: That leaves the cosine squared:

r
cos22xD

r
1
2
.1Ccos4x/dxD 1

2
xC 1

8
sin 4xCC:

The integral ofcos4x using double angles is

1
4

�

xCsin 2xC 1
2
xC 1

8
sin 4x

�

CC: (6)

That solution looks different from equation(5), but it can’t be. There all angles were
x; here we have2x and4x: We went fromcos4x to cos22x to cos4x; which was
integrated immediately. The powers were cut in half as the angle was doubled.

Double-angle method for
r

sinmx cosnx dx; whenm andn are even:

Replacesin2x by 1
2
.1�cos2x/ andcos2x by 1

2
.1Ccos2x/: The exponents drop

tom=2 andn=2: If those are even, repeat the idea (2xgoes to4x). If m=2 or n=2 is
odd, switch to the “general method” using substitution. With an odd power, we have
du:

EXAMPLE 5 (Double angle)
r

sin2x cos2x dxD
r

1
4
.1�cos2x/.1Ccos2x/dx:

This leaves1�cos2 2x in the last integral. That is familiar but not necessarily easy.
We can look it up (safest) or remember it (quickest) or use double angles again:

1

4

»
.1�cos2 2x/dxD

1

4

» �
1� 1

2
� 1
2

cos4x

�

dxD
x

8
� sin4x

32
CC:

Conclusion Every sinmx cosnx can be integrated. This includes negativem and
n— see tangents and secants below. Symbolic codes like MACSYMA orMathemat-
ica give the answer directly. Do they use double angles or integration by parts ?
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You may prefer the answer from integration by parts (I usually do). It avoids2x
and4x: But it makes no sense to go through every step every time. Either a computer
does the algebra, or we use a “reduction formula” fromn to n�2:
Reduction n

r
cosnx dxD cosn�1x sinxC .n�1/ r

cosn�2x dx: (7)

FornD 2 this is
r

cos2x dx—the integral to learn. FornD 4 the reduction produces
cos2x: The integral ofcos6x goes tocos4x: There are similar reduction formulas for
sinmx and also forsinmx cosnx: I don’t see a good reason to memorize them.

INTEGRALS WITH ANGLES px AND qx

Instead ofsin8x timescos6x; suppose you havesin8x timescos6x: How do you
integrate ? Separately a sine and cosine are easy. The new question isthe integral of
the product:

EXAMPLE 6 Find
r 2�

0
sin 8x cos6x dx: More generally find

r 2�

0
sinpx cos qx dx.

This is not for the sake of making up new problems. I believe theseare the most
important definite integrals in this chapter (p andq are0;1;2; : : :). They may be
the most important in all of mathematics, especially because the question has such a
beautiful answer.The integrals are zero. On that fact rests the success of Fourier
series, and the whole industry of signal processing.

One approach (the slow way) is to replacesin8x andcos6x by powers of cosines.
That involvescos14x: The integration is not fun. A better approach, which applies to
all anglespx andqx; is to use the identity

sinpx cos qxD 1
2

sin.pCq/xC 1
2

sin.p�q/x: (8)

Thus sin8x cos6xD 1
2

sin 14xC 1
2

sin 2x: Separated like that, sines are easy to
integrate: » 2�

0

sin8x cos6x dxD

��1
2

cos 14x

14
� 1
2

cos 2x

2

�2�

0

D 0:

Sincecos14x is periodic, it has the same value at0 and2�: Subtraction gives zero.
The same is true forcos2x: The integral of sine times cosine is always zero over a
complete period (like0 to 2�).

What aboutsinpx sinqx and cospx cosqx ? Their integrals are also zero,
providedp is different fromq. WhenpD q we have a perfect square. There is
no negative area to cancel the positive area. The integral ofcos2px or sin2px is�:

EXAMPLE 7
r 2�

0
sin 8x sin7x dxD 0 and

r 2�

0
sin2 8x dxD�:

With two sines or two cosines (instead of sine times cosine), we go back to the
addition formulas of Section 1.5. Problem24 derives these formulas:

sinpx sin qxD�1
2

cos.pCq/xC 1
2

cos.p�q/x (9)

cospx cosqxD 1
2

cos.pCq/xC 1
2

cos.p�q/x: (10)

With pD 8 andqD 7; we getcos15x andcosx: Their definite integrals are zero.
WithpD 8 andqD 8;we getcos16x andcos0x (which is1). Formulas(9)and(10)
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also give a factor1
2
: The integral of1

2
is� :

r 2�

0
sin8x sin7x dxD�1

2

r 2�

0
cos15x dxC1

2

r 2�

0
cos x dxD0C0

r 2�

0
sin8x sin8x dxD�1

2

r 2�

0
cos16x dxC1

2

r 2�

0
cos0x dxD0C�

The answer zero is memorable. The answer� appears constantly in Fourier series.
No ordinary numbers are seen in these integrals. The casepD qD 1 brings backr

cos2x dxD 1
2

C 1
4

sin 2x:

SECANTS AND TANGENTS

When we allownegativepowersm andn; the main fact remains true. All integralsr
sinmx cosnx dx can be expressed by known functions. The novelty for negative

powers is thatlogarithms appear. That happens right at the start, forsinx=cosx
and for1=cosx (tangent and secant):

r
tanx dxD�r

du=uD� ln |cosx| .hereuD cosx/
r

secx dxD
r
du=uD ln |secxC tanx| .hereuD secxC tanx/:

For higher powers there is one key identity:1C tan2xD sec2x: That is the old
identitycos2xCsin2xD 1 in disguise (just divide bycos2x). We switch tangents to
secants just as we switched sines to cosines. Since.tanx/1 D sec2x and.secx/1 D
secx tanx; nothing else comes in.

EXAMPLE 8
r

tan2x dxD
r
.sec2x�1/dxD tanx�xCC:

EXAMPLE 9
r

tan3x dxD
r

tanx.sec2x�1/dx:
The first integral on the right is

r
u duD 1

2
u2; with uD tanx: The last integral is�r

tanx dx: The complete answer is1
2
.tanx/2 C ln |cosx|CC: By taking abso-

lute values, a negative cosine is also allowed. AvoidcosxD 0:

EXAMPLE 10 Reduction
»
.tanx/mdxD

.tanx/m�1

m�1 �» .tanx/m�2dx

Same idea—separate off.tanx/2 assec2x�1:Then integrate.tanx/m�2sec2x dx;
which isum�2du: This leaves the integral on the right, with the exponent lowered by
2: Every power.tanx/m is eventually reduced to Example 8 or 9.

EXAMPLE 11
r

sec3x dxDuv�r
v duD secx tanx�r

tan2x secx dx

This was integration by parts, withuD secx andvD tanx: In the integral on the
right, replacetan2x by sec2x�1 (this identity is basic):

r
sec3x dxD secx tanx�r

sec3x dxC
r

secx dx:

Bring
r

sec3x dx to the left side. That reduces the problem fromsec3x to secx:

I believe those examples make the point—trigonometric integrals are computable.
Every producttanmx secnx can be reduced to one of these examples. Ifn is even we
substituteuD tanx: If m is odd we setuD secx: If m is even andn is odd, use a
reduction formula (and always usetan2xD sec2x�1:)
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I mention very briefly a completely different substitutionuD tan1
2
x: This seems

to all students and instructors (quite correctly) to come out of the blue:

sinxD
2u

1Cu2
and cosxD

1�u2

1Cu2
and dxD

2du

1Cu2
: (11)

The x-integral can involve sums as well as products—not onlysinmx cosnx but
also1=.5Csinx� tanx/: (No square roots.) Theu-integral is aratio of ordinary
polynomials. It is done bypartial fractions.

Application of
r

secx dx to distance on a map(Mercator projection)

The strange integralln.secxC tanx/ has an everyday application. It measures the
distance from the equator to latitudex; on a Mercator map of the world.

All mapmakers face the impossibility of putting part of a sphere onto a flat page.
You can’t preserve distances, when an orange peel is flattened. But angles can be
preserved, and Mercator found a way to do it. His map came before Newton and
Leibniz. Amazingly, and accidentally, somebody matched distances on the map with
a table of logarithms—and discovered

r
secx dx before calculus. You would not be

surprised to meetsinx; but who would recognizeln.secxC tanx/ ?
The map starts with strips at all latitudesx: The heights aredx; the lengths are

proportional tocosx: We stretch the strips by1=cosx—then Figure 7.3c lines up
evenly on the page. Whendx is also divided bycosx; angles are preserved—a small

Fig. 7.3 Strips at latitudex are scaled by secx;making Greenland too large.

square becomes a bigger square. The distance north adds up the strip heights
dx=cosx: This gives

r
secx dx:

The distance to the North Pole is infinite! Close to the Pole, maps are stretched
totally out of shape. When sailors wanted to go fromA toB at a constant angle with
the North Star, they looked on Mercator’s map to find the angle.

7.2 EXERCISES

Read-through questions

To integrate sin4x cos3x; replace cos2x by a . Then
.sin4x�sin6x/cosx dx is b du: In terms ofuD sin x the
integral is c . This idea works for sinmx cosnx if either m
or n is d .

If both m and n are e , one method is integration by
f . For

r
sin4x dx; split off dvD sinx dx: Then �r

v du

is g . Replacing cos2x by h creates a new sin4x dx
that combines with the original one. The result is areduction tor

sin2x dx; which is known to equal i .

The second method uses the double-angle formula sin2xD j .
Then sin4x involves cos2 k . Another doubling comes from
cos22xD l . The integral contains the sine of m .
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To integrate sin6x cos4x; rewrite it as 1
2 sin 10xC n .

The indefinite integral is o . The definite integral from
0 to 2� is p . The product cospx cosqx is written as
1
2 cos.pCq/xC q . Its integral is also zero, except if r
when the answer is s .

With uD tanx; the integral of tan9x sec2x is t .
Similarly

r
sec9x .secx tanx dx/D u . For the combination

tanmx secnx we apply the identity tan2xD v . After reduction
wemay need

r
tanx dxD w and

r
secx dxD x .

Compute 1–8 by the“general method,” whenm or n is odd.

1
r

sin3x dx

3
r

sinx cosx dx

5
r

sin5x cos2x dx

7
r ?

sinx cosx dx

2
r

cos3x dx

4
r

cos5x dx

6
r

sin3x cos3x dx

8
r ?

sinx cos3x dx

9 Repeat Problem6 starting with sinx cosxD 1
2 sin 2x:

10 Find
r

sin2ax cosax dx and
r

sinax cosax dx:

In 11–16 use the double-angle formulas (m;n even).

11
r �
0 sin2x dx

13
r

cos23x dx

15
r

sin2x dxC
r

cos2x dx

12
r �
0 sin4x dx

14
r

sin2x cos2x dx

16
r

sin2x cos22x dx

17 Use the reduction formula (7) to integrate cos6x:

18 For n¡ 1 use formula (7) to prove» �=2

0
cosnx dxD

n�1
n

» �=2

0
cosn�2x dx:

19 FornD 2;4;6; : : : deduce from Problem18 that» �=2

0
cosnx dxD

�

2

.1/.3/ � � � .n�1/
.2/.4/ � � � .n/

20 FornD 3;5;7; : : : deduce from Problem18 that» �=2

0
cosnx dxD

.2/.4/ � � � .n�1/
.3/.5/ � � � .n/

21 (a) SeparatedvD sin x dx from uD sinn�1x and integrater
sinn

x dx by parts.

(b) Substitute 1�sin2x for cos2x to find a reduction
formula like equation (7).

22 For whichn does symmetry give
r �
0 cosnx dxD 0?

23 Are the integrals (a)–(f) positive, negative, or zero ?

(a)
r �
0 cos 3x sin 3x dx (b)

r �
0 cosx sin 2x dx

(c)
r 0�2� cosx sinx dx (d)

r �
0 .cos2x�sin2x/ dx

(e)
r 3�
� cospx sinqx dx (f)

r 0
� cos4x dx

24 Write down equation (9) forpD qD 1; and (10) for pD 2;

qD 1: Derive (9) from the addition formulas for cos.sC t/ and
cos.s� t/ in Section 1.5.

In 25–32 compute the indefinite integrals first, then the definite
integrals.

25
r 2�
0 cosx sin2x dx

27
r �
0 cos99x sin101x dx

29
r �
0 cos99x cos101x dx

31
r 4�
0 cosx=2 sinx=2 dx

26
r �
0 sin3x sin5x dx

28
r ��� cos23x dx

30
r 2�
0 sin x sin2x sin3x dx

32
r �
0 x cosx dx (by parts)

33 Suppose aFourier sine seriesAsinxCB sin2xCC sin3xC� � � adds up tox on the interval from0 to �: Find A by multiply-
ing all those functions (includingx) by sinx and integrating from0
to �: (B andC will disappear.)

34 Suppose a Fourier sine seriesAsinxCB sin 2xCC sin3xC� � � adds up to1 on the interval from0 to �: Find C by multiply-
ing all functions (including1) by sin3x and integrating from0 to�:
(A andB will disappear.)

35 In 33; the series also equalsx from �� to 0; because all
functions are odd. Sketch the “sawtooth function,” which equals
x from �� to � and then has period2�: What is the sum of the
sine series atxD� ?

36 In 34; the series equals�1 from�� to 0; because sines are odd
functions. Sketch the “square wave,” which is alternately�1 and
C1; and findA andB:

37 The area underyD sinx from 0 to � is positive. Which
frequenciesp have

r �
0 sinpx dxD 0 ?

38 Which frequenciesq have
r �
0 cosqx dxD 0 ?

39 For whichp, q is
r �
0 sinpx cosqx dxD 0 ?

40 Show that
r �
0 sinpx sinqx dx is always zero.

Compute the indefinite integrals 41–52.

41
r

sec x tanx dx

43
r

tan2x sec2x dx

42
r

tan5x dx

44
r

tan2x secx dx

45
r

tanx sec3x dx

47
r

tan4x dx

49
r

cotx dx

51
»

sinx

cos3x
dx

46
r

sec4x dx

48
r

tan5x dx

50
r

cscx dx

52
»

sin6x

cos3x
dx

53 Choose A so that cosx�sinxDAcos.xC�=4/: Then
integrate1=.cosx�sinx/:

54 ChooseA so that cosx�?3sin xDAcos.xC�=3/: Then
integrate1=.cosx�?3sin x/2:

55 Evaluate
r 2�
0 |cosx�sinx|dx:
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56 Show that acosxCb sin xD
?
a2 Cb2 cos.x�˛/ and find

the correctphase anglę :

57 If a square Mercator map shows1000 miles at latitude
30�; how many miles does it show at latitude60� ?

58 When lengths are scaled by secx; area is scaled by
: Why is the area from the equator to latitudex

proportional to tanx ?

59 Use substitution (11) to find
r
dx=.1Ccosx/:

60 Explain from areas why
r �
0 sin2x dxD

r �
0 cos2x dx: These

integrals add to
r �
0 1 dx; so they both equal :

61 What product sinpx sin qx is graphed below ? Check
that (p cospx sinqx�q sinpx cosqx/=.q2�p2/ has this
derivative.

62 Finish
r

sec3x dx in Example 11. This is needed for
the length of a parabola and a spiral (Problem7:3:8 and
Sections 8.2 and 9.3).
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7.3 Trigonometric Substitutions

The most powerful tool we have, for integrating with pencil and paper and brain, is
themethod of substitution. To make it work, we have to think of good substitutions—
which make the integral simpler. This section concentrates on the single most valuable
collection of substitutions. They are the only ones you should memorize, and two
examples are given immediately.

To integrate
?
1�x2; substitutexD sin�:Do not setuD 1�x2

�

du

dx
ismissing

�» a
1�x2 dxÑ »

.cos�/.cos� d�/

»
dx?
1�x2

Ñ »
cos� d�

cos�

The expression
?
1�x2 is awkward as a function ofx: It becomes graceful as a

function of�:We are practically invited to use the equation1� .sin �/2 D .cos�/2:
Then the square root is simplycos�—provided this cosine is positive.

Notice the change indx. Whenx is sin�; dx is cos� d� . Figure 7.4a shows
the original area with new letters. Figure 7.4b shows an equal area, after rewritingr
.cos�/.cos� d�/ as

r
.cos2�/d�: Changing fromx to � gives a new height and a

new base. There is no change in area—that is the point of substitution.
To put it bluntly: If we go from

?
1�x2 to cos�; and forget the difference between

dx andd�; and just compute
r

cos� d�; the answer is totally wrong.

Fig. 7.4 Same area for
a
1�x2 dx and cos2� d�: Third area is wrong:dx¤ d�

We still need the integral ofcos2�: This was Example 3 of integration by parts, and
also equation7:2:6. It is worth memorizing. The example shows this� integral, and
returns tox:

EXAMPLE 1
r

cos2� d� D 1
2

sin � cos�C 1
2
� is after substitution

r ?
1�x2 dxD 1

2
x
?
1�x2 C 1

2
sin�1x is the original problem:

We changedsin� back tox andcos� to
?
1�x2: Notice that� is sin�1x. The

answer is trickier than you might expect for the area under a circular arc. Figure 7.5
shows how the two pieces of the integral are the areas of a pie-shaped wedge and a
triangle.

EXAMPLE 2

»
dx?
1�x2

D

»
cos� d�

cos�
D �CC D sin�1xCC:

Remember: We already knowsin�1x: Its derivative1=
?
1�x2 was computed in

Section 4.4. That solves the example. But instead of matching this special problem
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Fig. 7.5
r a

1�x2 dx is a sum of simpler areas. Infinite graph but finite area.

with a memory from Chapter 4, the substitutionxD sin� makes the solution
automatic. From

r
d� D � we go back tosin�1x:

The rest of this section is about other substitutions. They are more complicated
thanxD sin� (but closely related). A table will display the three main choices—
sin�; tan�;sec�—and their uses.

TRIGONOMETRIC SUBSTITUTIONS

After working with
?
1�x2; the next step is

?
4�x2: The changexD sin�

simplified the first, but it does nothing for the second:4�sin2� is not familiar.
Nevertheless a factor of2 makes everything work. Instead ofxD sin�; the idea
is to substitutexD 2 sin� :a

4�x2 D
a
4�4sin2� D 2 cos� and dxD 2 cos� d�:

Notice both2’s. The integral is4
r

cos2� d� D 2sin� cos�C2�:But watch closely.
This is not4 times the previous

r
cos2� d� ! Sincex is2 sin�; � is nowsin�1.x=2/.

EXAMPLE 3
r ?

4�x2dxD 4
r

cos2� d� D x
a
1� .x=2/2 C2sin�1.x=2/:

Based on
?
1�x2 and

?
4�x2; here is the general rule for

?
a2�x2: Substi-

tutexD asin�: Then thea’s separate out:a
a2�x2 D

a
a2�a2sin2� D a cos� and dxD a cos� d�:

That is the automatic substitution to try, whenever the square root appears.

EXAMPLE 4

» 4

xD0

dx?
16�x2

D

» �=2

�D0

4 cos� d�a
42�42.sin�/2

D

» �=2

�D0

d� D
�

2
:

Herea2 D 16: ThenaD 4 andxD 4 sin�: The integral has4 cos� above and be-
low, so it is

r
d�: The antiderivative is just�: For the definite integral notice that

xD 4meanssin� D 1; and this means� D�=2:
A table of integrals would hide that substitution. The table only givessin�1.x=4/:

There is no mention of
r
d� D �: But what if16�x2 changes tox2�16 ?

EXAMPLE 5

» 8

xD4

dx?
x2�16 D ?

Notice the two changes—the sign in the square root and the limits onx: Example 4
stayedinsidethe interval|x| ¤ 4; where16�x2 has a square root. Example 5 stays



7.3 Trigonometric Substitutions 357

outside, wherex2�16 has a square root. The new problem cannot usexD 4 sin�;
because we don’t want the square root of�cos2�:

The new substitution isxD 4 sec� . This turns the square root into4 tan� :

xD 4 sec� gives dxD 4 sec� tan� d� and x2�16D 16sec2��16D 16 tan2�:

This substitution solves the example, when the limits are changed to� :» �=3

0

4 sec� tand�

4 tan�
D

» �=3

0

sec� d� D ln.sec�C tan�/
i�=3

0
D ln.2C

?
3/:

I want to emphasize the three steps. First came the substitutionxD 4 sec�: An
unrecognizable integral became

r
sec� d�: Second came the new limits (� D 0when

xD 4;� D�=3 whenxD 8). Then I integratedsec�:
Example 6 has the samex2�16: So the substitution is againxD 4 sec� :

EXAMPLE 6

» 8
xD8

16dx

.x2�16/3=2
D

» �=2

�D�=3

64 sec� tan� d�

.4 tan�/3
D

» �=2

�=3

cos� d�

sin2�
:

Step one substitutesxD 4 sec�: Step two changes the limits to�: The upper limit
xD8 becomes� D�=2; where the secant is infinite. The limitxD 8 again means
� D�=3: To get a grip on the integral, I also changed to sines and cosines.

The integral of cos�=sin2� needs another substitution! (Or else recognize
cot� csc�:) With uD sin� we have

r
du=u2 D�1=uD�1=sin� :

Solution

» �=2

�=3

cos� d�

sin2�
D

�1
sin�

��=2

�=3

D�1C
2?
3
:

Warning With lower limit � D 0 (or xD 4) this integral would be a disaster. It di-
vides bysin0; which is zero.This area is infinite.

.Warning/2 Example 5 also blew up atxD 4; but the area wasnot infinite. To make
the point directly, comparex�1=2 to x�3=2: Both blow up atxD 0; but the first one
has finite area:» 1

0

1?
x
dxD 2

?
x
i1

0
D 2

» 1

0

1

x3=2
dxD

�2?
x

�1

0

D8:
Section 7.5 separates finite areas (slow growth of1=

?
x) from infinite areas (fast

growth ofx�3=2).

Last substitutionTogether with16�x2 andx2�16 comes the possibility16Cx2:
(You might ask about�16�x2; but for obvious reasons we don’t take its square
root.) This third form 16Cx2 requires a third substitutionxD 4 tan�: Then
16Cx2 D 16C16 tan2� D 16 sec2�: Here is an example:

EXAMPLE 7

» 8
xD0

dx

16Cx2
D

» �=2

�D0

4 sec2� d�

16 sec2�
D
1

4
�

��=2

0

D
�

8
:

Table of substitutions fora2�x2; a2 Cx2; x2�a2

xD a sin� replacesa2�x2 by a2cos2� and dx by a cos� d�

xD a tan� replacesa2 Cx2 by a2sec2� and dx by asec2� d�

xD a sec� replacesx2�a2 by a2tan2� and dx by a sec� tan� d�
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Note There is a subtle difference between changingx to sin � and changingsin� to
u:

in Example 1,dx was replaced bycos� d� (new method)

in Example 6,cos� d� was already there and becamedu (old method):

The combinationcos� d� was put into the first and pulled out of the second.
My point is that Chapter 5 neededdu=dx inside the integral. Then.du=dx/dx

becamedu: Now it is not necessary to see so far ahead. We can try any substi-
tution. If it works, we win. In this section,xD sin� or sec� or tan� is bound to
succeed.

NEW
»

dx

1Cx2
D

»
d� by tryingxD tan� OLD

»
x dx

1Cx2
D

»
du

2u
by seeingdu

We mention thehyperbolic substitutionstanh�;sinh�; andcosh�: The table
below shows their use. They give new forms for the same integrals. If you are familiar
with hyperbolic functions the new form might look simpler—as it does in Example 8.

xD a tanh� replaces a2�x2 by a2 sech2� and dx by a sech2� d�

xD a sinh� replaces a2 Cx2 by a2 cosh2� and dx by a cosh� d�

xD a cosh� replaces x2�a2 by a2 sinh2� and dx by a sinh� d�

EXAMPLE 8

»
dx?
x2�1 D

»
sinh� d�

sinh�
D �CC D cosh�1xCC:

r
d� is simple. The bad part iscosh�1x at the end. Compare withxD sec� :»
dx?
x2�1 D

»
sec� tan� d�

tan�
D ln.sec�C tan�/CC D ln.xC

a
x2�1/CC:

This way looks harder, but most tables prefer that final logarithm. It is clearer than
cosh�1x; even if it takes more space. All answers agree if Problem35 is correct.

COMPLETING THE SQUARE

We have not said what to do for
?
x2�2xC2 or

?�x2 C2x: Those square roots
contain alinear term—a multiple ofx: The device for removing linear terms is worth
knowing. It is calledcompleting the square, and two examples will begin to explain
it:

x2�2xC2D .x�1/2 C1Du2 C1�x2 C2xD�.x�1/2 C1D 1�u2:

The idea has three steps. First, get thex2 andx terms into one square. Here that square
was.x�1/2 D x2�2xC1: Second, fix up the constant term. Here we recover the
original functions by adding1: Third, setuD x�1 to leave no linear term. Then the
integral goes forward based on the substitutions of this section:»

dx?
x2�2xC1

D

»
du?
u2 C1

»
dx?
2x�x2

D

»
du?
1�u2
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The same idea applies to any quadratic that contains a linear term 2bx:

rewrite x2 C2bxCc as .xCb/2 CC; with C D c�b2

rewrite �x2 C2bxCc as �.x�b/2 CC; with C D cCb2

To match the quadratic with the square, we fix up the constant:

x2 C10xC16D .xC5/2 CC leads toC D 16�25D�9�x2 C10xC16D�.x�5/2 CC leads toC D 16C25D 41:

EXAMPLE 9

»
dx

x2 C10xC16
D

»
dx

.xC5/2�9 D

»
du

u2�9:
HereuD xC5 andduD dx: Now comes a choice—struggle on withuD 3 sec�
or look for

r
du=.u2�a2/ inside the front cover. Then setaD 3:»

du

u2�9 D
1

6
ln

����u�3uC3

����D 1

6
ln

����xC2

xC8

���� :
Note If the quadratic starts with5x2 or�5x2; factor out the5 first:

5x2�10xC25D 5.x2�2xC5/D (complete the square)D 5Œ.x�1/2C4�:

Now uD x�1 produces5Œu2 C4�: This is ready for table lookup oruD 2 tan� :

EXAMPLE 10

»
dx

5x2�10xC25
D

»
du

5Œu2 C4�
D

»
2sec2� d�

5Œ4sec2��
D
1

10

»
d�:

This answer is�=10CC:Now go backwards:�=10D .tan�1 1
2
u/=10D .tan�1 1

2
.x�

1//=10: Nobody could see that from the start. A double substitution takes practice,
from x to u to �: Then go backwards from� to u to x:

Final remark Foru2 Ca2 we substituteuD a tan�: Foru2�a2 we substituteuD
a sec�: This big dividing line depends on whether the constantC (after completing
the square) is positive or negative. We either haveC D a2 or C D�a2: The same
dividing line in the originalx2 C2bxCc is betweenc¡ b2 andc  b2: In between,
cD b2 yields the perfect square.xCb/2— and no trigonometric substitution at all.

7.3 EXERCISES

Read-through questions

The function
a
1�x2 suggests the substitutionxD a .

The square root becomes b and dx changes to c .
The integral

r
.1�x2/3=2dx becomes

r
d d�: The interval

1
2 ¤x¤ 1 changes to e ¤ � ¤ f .

For
a
a2�x2 the substitution isxD g with dxD h .

For x2�a2 we usexD i with dxD j . Then
r
dx=.1C

x2/ becomes
r
d�; because1C tan2� D k . The answer is

� D tan�1x: We already knew that l is the derivative
of tan�1x:

The quadraticx2 C2bxCc contains a m term 2bx:

To remove it we n the square. This gives.xCb/2 CC

with C D o . The examplex2 C4xC9 becomes p .
Then uD xC2: In case x2 enters with a minus sign,�x2 C4xC9 becomes ( q )2C r . When the quadratic
contains4x2; start by factoring out s .

Integrate 1–20 by substitution: Change� back to x:

1
»

dxa
4�x2

2
»

dxa
x2�a2
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3
» a

4�x2 dx

5
»

x2 dxa
1�x2

7
»

dx

.1Cx2/2

9
» a

x2�25
x

dx

4
»

dx?
1C9x2

6
»

dx

x2
a
1�x2

8
r ?

x2 Ca2 dx (see7:2:62)

10
»

x3 dxa
9�x2

11
»

dxa
x6�x4

13
»

dx

.1Cx2/3=2

15
»

dx

.x2�9/3=2�17
»

x2 dxa
x2 �1

19
»

dx

x2
?
x2 C1

12
» a

x6�x8 dx

14
»

dx

.1�x2/3=2�16
» ?

1Cx2 dx

x

18
»
x2 dx

x2 C4�20
»

x2 dx?
1Cx2

21 (Important) This section started withxD sin� and
r
dx=

a
1�x2 D

r
d� D � D sin�1x:

(a) UsexD cos� to get a different answer.

(b) How can the same integral give two answers ?

22 Compute
r
dx=x

a
x2�1with xD sec�:Recompute withxD

csc�: How can both answers be correct ?

23 Integratex=.x2 C1/ with xD tan�; and also directly as a
logarithm. Show that the results agree.

24 Show that
r
dx=x

a
x4�1D 1

2 sec�1.x2/:

Calculate the definite integrals 25–32.

25
» a�a

a
a2�x2 dxD area of

26
» 1�1

.1�x2/3=2 dx 27
» 1

:5

dxa
1�x2

28
» 4

1

dxa
x2�1

30
» 1�1

x dx

x2 C1

29
» 8

2

dx

.x2�1/3=2

31
» 8�8 dx

x2 C9

32
» 1

1=2

a
1�x2 dxD area of :

33 Combine the integrals to prove the reduction formula.n¤ 0/:»
xnC1

x2 C1
dxD

xn

n
�» xn�1

x2 C1
dx:

34 Integrate1=cosx and1=.1Ccosx/ and
?
1Ccosx:

35 (a) xD gives
r
dx=

a
x2�1D ln.sec�C tan�/:

(b) From the triangle, this answer isf D ln.xC
a
x2�1/:

Check thatdf=dxD 1=
a
x2�1:

(c) Verify that coshf D 1
2 .e

f Ce�f /D x: Then
f D cosh�1x; the answer in Example 8.

36 (a) xD gives
r
dx=

?
x2 C1D ln.sec�C tan�/:

(b) The second triangle converts this answer togD ln.xC?
x2 C1/: Check thatdg=dxD 1=

?
x2 C1:

(c) Verify that sinhgD 1
2 .e

g�e�g/D x sogD sinh�1x:

(d) Substitute xD sinhg directly into
r
dx=

?
x2 C1 and

integrate.

In 37–42 substitute xD sinh �; cosh�; or tanh�: After
integration change back tox:

37
»

dxa
x2�1

39
» a

x2�1 dx
41

»
dx

1�x2

38
»

dx

x
a
1�x2

40
» a

x2�1
x2

dx

42
» ?

1Cx2

x2
dx

Rewrite 43–48 as.xCb/2 CC or �.x�b/2 CC by completing
the square.

43 x2�4xC8

45 x2�6x
47 x2 C2xC1

44 �x2 C2xC8

46 �x2 C10

48 x2 C4x�12
49 For the three functionsf .x/ in Problems 43, 45, 47

integrate1=f .x/:

50 For the three functionsg.x/ in Problems 44, 46, 48

integrate1=
a
g.x/:

51 For
r
dx=.x2 C2bxCc/ why does the answer have different

forms forb2¡ c andb2  c ? What is the answer ifb2 D c ?

52 What substitutionuD xCb or uD x�b will remove the
linear term ?

(a)
»

dx

x2�4xCc
(b)

»
dx

3x2 C6x

(c)
»

dx�x2 C10xCc
(d)

»
dx

2x2�x
53 Find the mistake. With xD sin� and

a
1�x2 D cos�;

substitutingdxD cos� d� changes» 2�

0
cos2� d� into

» 0

0

a
1�x2 dx:
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54 (a) If xD tan� then
r ?

1Cx2dxD
r

d�:
(b) Convert1

2 Œsec � tan�C ln.sec�C tan�/� back tox:

(c) If xD sinh� then
r ?

1Cx2 dxD
r

d�:

(d) Convert1
2 Œsinh � cosh�C�� back tox:

These answers agree. In Section 8.2 they will give the length
of a parabola. Compare with Problem7:2:62:

55 Rescalex and y in Figure 7.5b to produce the equal arear
y dx in Figure 7.5c. What happens toy and what happens

to dx ?

56 Draw yD 1=
a
1�x2 and yD 1=

a
16�x2 to the same

scale (12 across and up;42 across and14
2

up).

57 What is wrong, if anything, with» 2

0

dxa
1�x2

D sin�12‹
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7.4 Partial Fractions

This section is about rational functionsP.x/=Q.x/: Sometimes their integrals
are also rational functions (ratios of polynomials). More often they are not. It is
very common for the integral ofP=Q to involve logarithms. We meet logarithms
immediately in the simple case1=.x�2/;whose integral isln |x�2|CC:We meet
them again in a sum of simple cases:» �

1

x�2C
3

xC2
� 4

x

�

dxD ln|x�2|C3 ln|xC2|�4 ln|x|CC:

Our plan is to splitP=Q into a sum like this—and integrate each piece.
Which rational function produced that particular sum ? It was

1

x�2C
3

xC2
� 4

x
D
.xC2/.x/C3.x�2/.x/�4.x�2/.xC2/

.x�2/.xC2/.x/
D

�4xC16

.x�2/.xC2/.x/
:

This isP=Q: It is a ratio of polynomials, degree1 over degree3: The pieces ofP are
collected into�4xC16: The common denominator.x�2/.xC2/.x/Dx3�4x
isQ: But I kept these factors separate, for the following reason. When we start with
P=Q; and break it into a sum of pieces,the first things we need are the factors of
Q.

In the standard problemP=Q is given. To integrate it, we break it up. The goal of
partial fractions is to find the pieces—to prepare for integration. That is the tech-
nique to learn in this section, and we start right away with examples.

EXAMPLE 1 SupposeP=Q has the sameQ but a different numeratorP :

P

Q
D

3x2 C8x�4
.x�2/.xC2/.x/

D
A

x�2C
B

xC2
C
C

x
: (1)

Notice the form of those pieces! They are the “partial fractions” that add toP=Q:
Each one is a constant divided by a factor ofQ:We know the factorsx�2 andxC2
andx:We don’t know the constantsA;B;C: In the previous case they were1;3;�4:
In this and other examples, there are two ways to find them.

Method3 (slow) Put the right side of.1/ over the common denominatorQ:

3x2 C8x�4
Q

D
A.xC2/.x/CB.x�2/.x/CC.x�2/.xC2/

.x�2/.xC2/.x/
(2)

Why is A multiplied by .xC2/.x/ ? Because canceling those factors will leave
A=.x�2/ as in equation(1). Similarly we haveB=.xC2/ andC=x: Choose the
numbersA;B;C so that the numerators match. As soon as they agree, the split-
ting is correct.

Method4 (quicker) Multiply equation(1) by x�2: That leaves a space:

3x2 C8x�4
.xC2/.x/

DAC
B.x�2/
xC2

C
C.x�2/

x
: (3)

Now setxD 2 and immediately you haveA. The last two terms of(3) are zero,
becausex�2 is zero whenxD 2: On the left side,xD 2 gives

3.2/2 C8.2/�4
.2C2/.2/

D
24

8
D 3: .which isA/:
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Notice how multiplying byx�2 produced a hole on the left side. Method2
is the “cover-up method.” Cover upx�2 and then substitutexD 2. The result
is 3DAC0C0; just what we wanted.

In Method1, the numerators of equation(2) must agree. The factors that multiply
B andC are again zero atxD2: That leads to the sameA—but the cover-up method
avoids the unnecessary step of writing down equation(2).

Calculation ofB Multiply equation(1) by xC2; which covers up the.xC2/:

3x2 C8x�4
.x�2/ .x/

D
A.xC2/

x�2 CBC
C.xC2/

x
: (4)

Now setxD�2; soA andC are multiplied by zero:

3.�2/2 C8.�2/�4
.�2�2/ .�2/ D

�8
8

D�1DB:

This is almost full speed, but(4) was not needed.Just cover up inQ and givex the
right value(which makes the covered factor zero).

Calculation ofC (quickest) In equation(1), cover up the factor.x/ and setxD 0:

3.0/2 C8.0/�4
.0�2/.0C2/

D
�4�4 D 1DC: (5)

To repeat: The same resultAD 3; B D�1; C D 1 comes from Method1.

EXAMPLE 2
xC2

.x�1/.xC3/
D

A

x�1C
B

xC3
:

First cover up.x�1/ on the left and setxD 1: Next cover up.xC3/ and setxD�3:
1C2

. /.1C3/
D
3

4
DA

�3C2

.�3�1/. /
D
�1�4 DB:

The integral is3
4

ln|x�1|C 1
4

ln|xC3|CC:

EXAMPLE 3 This was needed for the logistic equation in Section 6.5:

1

y.c�by/ D
A

y
C

B

c�by : (6)

First multiply byy: That covers upy in the first two terms and changesB to By:
Then setyD 0: The equation becomes1=cDA:

To findB; multiply by c�by: That covers upc�by in the outside terms. In the
middle,A timesc�by will be zero atyD c=b: That leavesB on the right equal to
1=yD b=c on the left. ThenAD 1=c andBD b=c give the integral announced in
Equation6:5:9 W»

dy

cy�by2
D

»
dy

cy
C

»
b dy

c.c�by/ D
ln y

c
� ln.c�by/

c
: (7)

It is time to admit that the general method of partial fractions can be very
awkward. First of all, it requires the factors of the denominatorQ: WhenQ is a
quadraticax2 CbxCc; we can find its roots and its factors. In theory a cubic or a
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quartic can also be factored, but in practice only a few are possible—for examplex4�
1 is .x2�1/.x2 C1/: Even for this good example,two of the roots are imaginary.
We can splitx2�1 into .xC1/.x�1/:We cannot splitx2 C1 without introducing
i:

The method of partial fractions can work directly withx2 C1; as we now see.

EXAMPLE 4

»
3x2 C2xC7

x2 C1
dx (a quadratic over a quadratic).

This has another difficulty. The degree ofP equals the degree ofQ.D 2/: Partial
fractions cannot start untilP has lower degree. Therefore I divide the leading
termx2 into the leading term3x2: That gives3; which is separated off by itself:

3x2 C2xC7

x2 C1
D 3C

2xC4

x2 C1
: (8)

Note how3 really used3x2 C3 from the original numerator. That left2xC4: Par-
tial fractions will accept a linear factor2xC4 (or AxCB; not justA) above a
quadratic.

This example contains2x=.x2 C1/; which integrates toln.x2 C1/: The final
4=.x2 C1/ integrates to4 tan�1x: When the denominator isx2 CxC1 we com-
plete the square before integrating. The point of Sections 7.2 and 7.3 was to make that
integration possible. This section gets the fraction ready—in parts.

The essential point is that we never have to go higher than quadratics.Every
denominatorQ can be split into linear factors and quadratic factors. There
is no magic way to find those factors, and most examples begin by giving them. They
go into their own fractions, and they have their own numerators—which are theA and
B and2xC4 we have been computing.

The one remaining question iswhat to do if a factor is repeated. This happens in
Example 5.

EXAMPLE 5
2xC3

.x�1/2 D
A

.x�1/C
B

.x�1/2 :
The key is the new termB=.x�1/2: That is the right form to expect. With.x�1/
.x�2/ this term would have beenB=.x�2/: But when.x�1/ is repeated, some-
thing new is needed. To findB; multiply through by.x�1/2 and setxD 1:

2xC3DA.x�1/CB becomes 5DB when xD 1:

This cover-up method givesB: Then AD 2 is easy, and the integral is
2 ln |x�1|�5=.x�1/:The fraction5=.x�1/2 has an integral without logarithms.

EXAMPLE 6
2x3 C9x2 C4

x2.x2 C4/.x�1/ D
A

x
C
B

x2
C
CxCD

x2 C4
C

E

x�1:
This final example has almost everything! It is more of a game thana calculus
problem. In fact calculus doesn’t enter until we integrate (and nothing is new there).
Before computingA;B;C;D;E;we write down the overall rules for partial fractions:

1. The degree ofP must be less than the degree ofQ: Otherwise divide their
leading terms as in equation(8) to lower the degree ofP: Here3  5:

2. Expect the fractions illustrated by Example 6. The linear factorsx andxC1
(and the repeatedx2) are underneath constants. The quadraticx2 C4 is under
a linear term. A repeated.x2 C4/2 would be under a newFxCG:
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3. Find the numbersA;B;C; : : : by any means, including cover-up.
4. Integrate each term separately and add.

We could prove that this method always works. It makes better sense to show that
it works once, in Example 6.

To find E; cover up.x�1/ on the left and substitutexD 1: ThenED 3: To
find B; cover upx2 on the left and setxD 0: ThenB D 4=.0C4/.0�1/D�1:
The cover-up method has done its job, and there are several ways to findA;C;D:
Compare the numerators, after multiplying through by the common denominatorQ:

2x3 C9x2 C4DAx.x2 C4/.x�1/� .x2C4/.x�1/C .CxCD/.x2/.x�1/C3x2.x2 C4/:

The known terms on the right, fromB D�1 andED 3; can move to the left:�3x4 C3x3�4x2 C4xDAx.x2 C4/.x�1/C .CxCD/x2.x�1/:
We can divide through byx andx�1; which checks thatB andE were correct:�3x2�4DA.x2 C4/C .CxCD/x:

Finally xD 0 yieldsAD�1: This leaves�2x2 D .CxCD/x: ThenC D�2 and
DD 0:

You should never have to do such a problem! I never intend to do another one. It
completely depends on expecting the right form and matching the numerators.
They could also be matched by comparing coefficients ofx4;x3;x2;x;1—to give
five equations forA;B;C;D;E: That is an invitation to human error. Cover-up is
the way to start, and usually the way to finish. With repeated factors and quadratic
factors, match numerators at the end.

7.4 EXERCISES

Read-through questions

The idea of a fractions is to expressP.x/=Q.x/ as a
b of simpler terms, each one easy to integrate. To begin,

the degree ofP should be c the degree ofQ: Then Q
is split into d factors like x�5 (possibly repeated) and
quadratic factors likex2 CxC1 (possibly repeated). The quadratic
factors have two e roots, and do not allow real linear
factors.

A factor like x�5 contributes a fractionA= f . Its
integral is g . To compute A; cover up h in the
denominator of P=Q: Then set xD i , and the rest of
P=Q becomesA: An equivalent method puts all fractions over
a common denominator (which is j ). Then match the

k . At the same pointxD l this matching givesA:

A repeated linear factor.x�5/2 contributes not only
A=.x�5/ but alsoB= m . A quadratic factor likex2 CxC1

contributes a fraction n =.x2 CxC1/ involving C and
D: A repeated quadratic factor or a triple linear factor would
bring in .ExCF /=.x2 CxC1/2 or G=.x�5/3: The conclusion
is that anyP=Q can be split into partial o , which can always
be integrated.

1 Find the numbersA andB to split1=.x2�x/:
1

x.x�1/ D
A

x
C

B

x�1 :
Cover up x and setxD 0 to find A: Cover up x�1 and set
xD 1 to findB: Then integrate.

2 Find the numbersA andB to split1=.x2�1/:
1

x2�1 D
A

x�1 C
B

xC1
:

Multiply by x�1 and setxD 1: Multiply by xC1 and setxD�1:
Integrate. Then findA andB again by method1—with numerator
A.xC1/CB.x�1/ equal to1:

Express the rational functions 3–16 as partial fractions:

3
1

.x�3/.x�2/ 4
x

.x�3/.x�2/
5

x2 C1

.x/.xC1/.xC2/
6

1

x3�x
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7
3xC1

x2
8

3xC1

.x�1/2
9

3x2

x2 C1
(divide first) 10

1

.x�1/.x2 C1/

11
1

x2.x�1/
13

1

x.x�1/.x�2/.x�3/ 12
x

x2�4
14

x2 C1

xC1
(divide first)

15
1

x4�1 D
1

.xC1/.x�1/.x2 C1/

16
1

x2.x�1/ �remember the
A

x
term

�

17 Apply Method1 (matching numerators) to Example 3:

1

cy�by2
D
A

y
C

B

c�by D
A.c�by/CBy
y.c�by/ :

Match the numerators on the far left and far right. Why does
AcD 1 ? Why does�bACB D 0 ? What areA andB ?

18 What goes wrong if we look forA andB so that

x2

.x�3/.xC3/
D

A

x�3C
B

xC3
‹

Over a common denominator, try to match the numerators. What to
do first ?

19 Split
3x2

x3�1 D
3x2

.x�1/.x2 CxC1/
into

A

x�1C
BxCC

x2 CxC1
:

(a) Cover upx�1 and setxD 1 to findA:

(b) SubtractA=.x�1/ from the left side. FindBxCC:

(c) Integrate all terms. Why do we already know

ln.x3�1/D ln.x�1/C ln.x2 CxC1/‹

20 Solvedy=dt D 1�y2 by separating
r
dy=1�y2 D

r
dt: Then

1

1�y2
D

1

.1�y/.1Cy/
D

1=2

1�y C
1=2

1Cy

Integration gives1
2 ln D tCC: With y0 D 0 the constant

is C D : Taking exponentials gives : The solution is
yD : This is theS-curve.

By substitution change 21–28 to integrals of rational functions.
Problem 23 integrates1=sin� with no special trick.

21
»

exdx

e2x�ex

23
»

sin� d�

1�cos2�

25
»
1Cex

1�ex
dx

27
»

dx

1C
?
xC1

22
»
1�?x
1C
?
x
dx

24
»

dt

.et �e�t /2

26
» 3
?
x�8
x

dx

28
»

dx?
xC 4

?
x

29 Multiply this partial fraction byx�a: Then letxÑa:

1

Q.x/
D

A

x�a C � � � :
Show thatAD 1=Q1.a/: WhenxD a is a double root this fails be-
causeQ1.a/D :

30 FindA in
1

x8�1 D
A

x�1C � � � : Use Problem29:

31 (for instructors only) Which rational functionsP=Q are the
derivatives of other rational functions (no logarithms) ?



7.5 Improper Integrals 367

7.5 Improper Integrals

“ Improper” means that some part of
r b

a
y.x/ dx becomesinfinite. It might beb ora

or the functiony: The region under the graph reaches infinitely far—to the right or left
or up or down. (Those come frombD8 andaD�8 andyÑ8 andyÑ�8:)
Nevertheless the integral may “converge.” Just because theregion is infinite, it is not
automatic that thearea is infinite. That is the point of this section—to decide when
improper integrals have proper answers.

The first examples show finite area whenbD8; thenaD�8; thenyD 1=
?
x

at xD 0: The areas in Figure 7.6 are1;1;2:» 8
1

dx

x2
D � 1

x

�8
1

D 1

» 0�8 exdxD ex
i0�8 D 1

» 1

0

dx?
x

D 2
?
x
i1

0
D 2:

Fig. 7.6 The shaded areas are finite but the regions go to infinity.

In practice we substitute the dangerous limits and watch what happens. When
the integral is�1=x; substitutingbD8 gives “�1=8D 0:” When the integral is
ex ; substitutingaD�8 gives “e�8 D 0:” I think that is fair, and I know it is suc-
cessful. But it is not completely precise.

The strict rules involve a limit. Calculus sneaks up on1=8 ande�8 just as it
sneaks up on0=0: Instead of swallowing an infinite region all at once, the formal
definitions push out to the limit:

DEFINITION

» 8
a

y.x/dxD lim
bÑ8» b

a

y.x/dx

» b�8y.x/dxD lim
aÑ�8» b

a

y.x/dx:

The conclusion is the same. The first examples converged to1;1;2: Now come two
more examples going out tobD8:

The area under1=x is infinite:

» 8
1

dx

x
D ln x

i8
1

D8 (1)

The area under1=xp is finite if p¡ 1 W

» 8
1

dx

xp
D
x1�p

1�p�81 D
1

p�1: (2)

The area under1=x is like 1C 1
2

C 1
3

C 1
4

C � � � , which is also infinite. In fact the sum
approximates the integral—the curved area is close to the rectangular area. They go
together (slowly to infinity).

A largerp brings the graph more quickly to zero. Figure 7.7a shows a finite area
1=.p�1/D 100:The region is still infinite, but we can cover it with strips cut out of
a square! The borderline for finite area ispD 1: I call it the borderline, butpD 1 is
strictly on the side of divergence.
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The borderline is alsopD 1when the function climbs they axis. At xD 0; the
graph ofyD 1=xp goes to infinity. ForpD 1; the area under1=x is again infinite.
But atxD 0 it is a smallp (meaningp  1) that produces finite area:» 1

0

dx

x
D ln x

i1

0
D8 » 1

0

dx

xp
D
x1�p

1�p�1

0

D
1

1�p if p  1: (3)

Loosely speaking “� ln 0D8:” Strictly speaking we integrate from the pointxD a

nearzero, to get
r 1

a
dx=xD� ln a: As a approaches zero, the area shows itself as

infinite. ForyD 1=x2; which blows up faster, the area�1=x�10 is again infinite.
For yD 1=

?
x; the area from0 to 1 is 2: In that casepD 1

2
: For pD 99=100

the area is1=.1�p/D 100: ApproachingpD 1 the borderline in Figure 7.7 seems
clear.But that cutoff is not as sharp as it looks.

Fig. 7.7 Graphs of1=xp onboth sides ofpD 1: I drew the same curves!

Narrower borderlineUnder the graph of1=x; the area is infinite. When we divide
by ln x or .ln x/2; the borderline is somewhere in between. One has infinite area
(going out toxD8), the other area is finite:» 8

e

dx

x.ln x/
D ln.ln x/

i8
e

D8 » 8
e

dx

x.ln x/2
D � 1

ln x

�8
e

D 1: (4)

The first is
r
du=u with uD ln x: The logarithm ofln x does eventually make it to

infinity. At xD 1010; the logarithm is near23 and ln.ln x/ is near3: That is slow!
Even slower isln.ln.ln x// in Problem11: No function isexactlyon the borderline.

The second integral in equation(4) is convergent (to1). It is
r
du=u2 with uD

ln x: At first I wrote it with x going from zero to infinity. That gave an answer I
couldn’t believe: » 8

0

dx

x.ln x/2
D� 1

ln x

�8
0

D 0 .‹‹/

There must be a mistake, because we are integrating a positive function. The area
can’t be zero. It is true that1= ln b goes to zero asbÑ8: It is also true that1= ln a
goes to zero asaÑ 0: But there is another infinity in this integral. The trouble is at
xD 1; whereln x is zero and the area is infinite.

EXAMPLE 1 The factore�x overrides any powerxp (but only asxÑ8).
r 8

0
x50e�x dxD 50Š but

r 8
0
x�1e�x dxD8:

The first integral is.50/.49/.48/ � � �.1/: It comes from fifty integrations by parts (not
recommended). Changing50 to 1

2
; the integral defines “1

2
factorial:” The product
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1
2

�� 1
2

��� 3
2

� � � � has no way to stop, but somehow1
2
! is 1

2

?
�: See Problem28:

The integral
r 8

0
x0e�xdxD 1 is the reason behind “zero factorial”D 1: That seems

the most surprising of all.

The area undere�x=x is .�1/ŠD8: The factore�x is absolutely no help atxD
0: That is an example (the first of many) in which we do not know an antiderivative—
but still we get a decision. To integratee�x=x we need a computer. But to decide that
an improper integral is infinite (in this case) or finite (in other cases), we rely on the
following comparison test:

7C (Comparison test) Suppose that0¤u.x/¤ v.x/:Then the area underu.x/
is smaller than the area underv.x/:
r
u.x/dx 8 if

r
v.x/dx 8 if

r
u.x/dxD8 then

r
v.x/dxD8:

Comparison can decide if the area is finite. We don’t get the exact area, but we learn
about one function from the other. The trick is to construct a simple function (like
1=xp) which is on one side of the given function—and stays close to it:

EXAMPLE 2

» 8
1

dx

x2 C4x
converges by comparison with

» 8
1

dx

x2
D 1:

EXAMPLE 3

» 8
1

dx?
xC1

diverges by comparison with

» 8
1

dx

2
?
x

D8:
EXAMPLE 4

» 1

0

dx

x2 C4x
diverges by comparison with

» 1

0

dx

5x
D8:

EXAMPLE 5

» 1

0

dx?
xC1

converges by comparison with

» 1

0

dx

1
D 1:

In Examples 2 and 5, the integral on the right is larger than the integral on the left.
Removing4x and

?
x increased the area. Therefore the integrals on the left are

somewhere between0 and1:
In Examples 3 and 4, weincreasedthe denominators. The integrals on the right

are smaller, but still they diverge. So the integrals on the left diverge. The idea of
comparing functionsis seen in the next examples and Figure 7.8.

EXAMPLE 6

» 8
0

e�x2

dx is below

» 1

0

1 dxC

» 8
1

e�xdxD 1C1:

EXAMPLE 7

» e

1

dx

ln x
is above

» e

1

dx

x ln x
D8:

EXAMPLE 8

» 1

0

dx?
x�x2

is below

» 1

0

dx?
x

C

» 1

0

dx?
1�x D 2C2:
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Fig. 7.8 Comparing u.x/ to v.x/:
r e
1 dx= ln xD8 and

r 1
0 dx=

a
x�x2  4: But8�8¤ 0:

There are two situations not yet mentioned, and both are quite common. The first is
an integral all the way fromaD�8 to bD C8: That is split into two parts, and
each part must converge. By definition, the limits at�8 andC8 are keptsepa-
rate:» 8�8y.x/ dxD

» 0�8 y.x/ dxC

» 8
0

y.x/ dxD lim
aÑ�8» 0

a

y.x/ dxC lim
bÑ8» b

0

y.x/ dx:

The bell-shaped curveyD e�x2
covers a finite area (exactly

?
�). The region extends

to infinity in both directions, and the separate areas are1
2

?
�: But notice:

r 8�8 x dx is not defined even though
r b�b

x dxD 0 for everyb:

The area underyD x is C8 on one side of zero. The area is�8 on the other side.
We cannot accept8�8D 0. The two areas must be separately finite, and in this
case they are not.

EXAMPLE 9 1=x has balancing regions left and right ofxD 0:Compute
r 1�1

dx=x:

This integral does not exist. There is no answer, even for the region in Figure 7.8c.
(They are mirror images because1=x is an odd function.) You may feel that the
combined integral from�1 to 1 should be zero. Cauchy agreed with that—his
“principal value integral” is zero. But the rules say no:8�8 is not zero.

7.5 EXERCISES

Read-through questions

An improper integral
r b
a y.x/ dx has lower limit aD a or

upper limit bD b or y becomes c in the interval
a¤x¤ b: The example

r8
1 dx=x3 is improper because d .

We should study the limit of
r b
1 dx=x

3 as e . In practice
we work directly with�1

2x
�2�81 D f . Forp¡ 1 the improper

integral g is finite. For p  1 the improper integral
h is finite. ForyD e�x the integral from0 to8 is i .

Suppose0¤u.x/¤ v.x/ for all x: The convergence of j im-
plies the convergence of k . The divergence of

r
u.x/dx l

the divergence of
r
v.x/dx: From �8 to 8; the integral of

1=.ex Ce�x/ converges by comparison with m . Strictly
speaking we split.�8;8/ into ( n , 0) and (0; o ).
Changing to 1=.ex�e�x/ gives divergence, because p .
Also

r ��� dx=sinx diverges by comparison with q . The
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regions left and right of zero don’t cancel because8�8
is r .

Decide convergence or divergence in 1–16. Compute the
integrals that converge.

1
» 8

1

dx

xe 2
» 1

0

dx

x�

3
» 1

0

dx?
1�x

5
» 0�8 dx

x2 C1

7
» 1

0

ln x

x
dx

9
» e

0
ln x dx (by parts)

4
» 1

0

dx

1�x
6
» 1�1

dxa
1�x2

8
» 8�8 sinx dx

10
» 8

0
x e�xdx (by parts)

11
» 8

100

dx

x.ln x/.ln ln x/

13
» 8

0
cos2x dx

15
» 8

0

dx

xp

12
» 8�8 x dx

.x2�1/2
14

» �=2

0
tanx dx

16
» 8

0

ex dx

.ex�1/p
In 17–26, find a larger integral that converges or a smaller
integral that diverges.

17
» 8

1

dx

x6 C1

19
» 8

0

?
x dx

x2 C1

21
» 8

1
e�x sinx dx

23
» 8

0
e2xe�x2

dx

25
» 8

0

sin2 x

x2
dx

18
» 1

0

dx

x6 C1

20
» 1

0

e�xdx

1�x
22

» 8
1
x�xdx

24
» 1

0

?� ln x dx

26
» 8

1

�

1

x
� 1

1Cx

�

dx

27 If p¡ 0; integrate by parts to show that
r8
0 xp e�x dxDp

r8
0 xp�1e�x dx:

The first integral is the definition ofp! So the equation is
pŠD : In particular 0ŠD : Another notation for
p! is �.pC1/—using the gamma functionemphasizes thatp
need not be an integer.

28 Compute
�� 1

2

�

! by substitutingxDu2:

r8
0 x�1=2e�xdxD D

?
� (known):

Then apply Problem27 to find
�

1
2

�

!

29 Integrate
r8
0 x2 e�x2

dx by parts.

30 The beta functionB.m;n/D
r 1
0 xm�1.1�x/n�1dx is finite

whenm andn are greater than :

31 A perpetual annuity pays s dollars a year forever. With
continuous interest ratec; its present value isy0 D

r8
0 se�ctdt: To

receive $1000=year atcD 10%; you deposity0 D :

32 In a perpetual annuity that pays once a year, the present
value is y0 D s=aCs=a2 C � � �D : To receive $1000=year
at 10% (now aD 1:1) you again deposit y0 D :

Infinite sums are like improper integrals.

33 The work to move a satellite (massm) infinitely far from
the Earth (radiusR; massM ) is W D

r8
R GMm dx=x2: Evaluate

W: What escape velocityat liftoff gives an energy1
2mv

2
0 that

equalsW ?

34 The escape velocity for a black hole exceeds the speed of
light: v0¡ 3 �108 m=sec. The Earth hasGM D 4 �1014m3=sec2:
If it were compressed to radiusRD ; the Earth
would be a black hole.

35 Show how the area underyD 1=2x can be covered (draw
a graph) by rectangles of area1C 1

2 C 1
4 C � � �D 2: What is the

exact area fromxD 0 to xD8 ?

36 Explain this paradox:» b�b

x dx

1Cx2
D 0 for everyb but

» 8�8 x dx

1Cx2
diverges:

37 Compute the area betweenyD secx and yD tanx for
0¤x¤�=2: What is improper ?�38 Compute any of these integrals found by geniuses:»

x�1=2 dx

1Cx
D�

» 8
0

e�x�e�2x

x
dxD ln 2» 8

0
x e�x cosx dxD 0

» 8
0

cosx2dxD
a
�=8:

39 For whichp is
» 8

0

dx

xp Cx�p
D8 ?

40 Explain from Figure 7.6c why the red area is2; when
Figure 7.6a has red area1:
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