CHAPTER 7

Techniques of Integration

Chapter 5 introduced the integral as a limit of sums. The calul of areas was
started—by hand or computer. Chapter 6 opened a different door. Its new functions
¢* andInx led to differential equations. You might say that all along we have been
solving the special differential equatidif /dx = v(x). The solution isf = [ v(x) dx.

But the step taly /dx = cy was a breakthrough.

The truth is that we are able to do remarkable thifdathematics has a lan-
guage, and you are learning to speak A short time ago the symbodgy /dx and
fv(x) dx were a mystery. (My own class was not too sure ahdut) itself—the
symbol for a function.) It is easy to forget how far we have come, in looking ahead to
what is next.

| do want to look ahead. For integrals there are two steps to take—more functions
and more application8y using mathematics we make it liv&he applications are
most complete when we know the integral. This short chapter will widen (very much)
the range of functions we can integrate. A computer with symbolic algebra widens it
more.

Up to now, integration depended on recognizing derivatives(t) = seé x then
f(x) =tanx. To integratdan x we use a substitution:

sinx du
dx=—| —=—Inu=—Incosx.
COSx u

What we need now artechniques for other integralsto change them around until

we can attack them. Two examples grer cosx dx and [ +/1 —x2 dx, which are

not immediately recognizable. With integration by parts, and a new substitution, they
become simple.

Those examples indicate where this chapter starts and stops. With reasonable
effort (and the help of tables, which is fair) you can integrate important functions.
With intense effort you could integrate even more functions. In older books that
extra exertion was made—it tended to dominate the course. They had integrals like
[(x+1) dx/+/2x2? —6x + 4, which we could work on if we had t®ur time is
too valuable for that Like long division, the ideas are for us and their intricate
elaboration is for the computer.

Integration by parts comes first. Then we do new substitutions. Partial fractions
is a useful idea (already applied to the logistic equatioe: cy —by?). In the last
sectionx goes to infinity ory(x) goes to infinity—but the area stays finite. These
improper integrals are quite common. Chapter 8 brings the applications.
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342 7 Techniques of Integration

I 7.1 Integration by Parts |

There are two major ways to manipulate integrals (with the hope of making them
easier). Substitutions are based on the chain rule, and more are ahead. Here we present
the other method, based on theduct rule The reverse of the product rule, to find
integrals not derivatives, istegration by parts
We have mentioned cos’ x dx and [ Inx dx. Now is the right time to compute
them (plus more examples). You will see h(f\dﬂx dx is exchanged fo{ ldx—
a definite improvement. AlS(fxex dx is exchanged forfex dx. The difference
between the harder integral and the easier integral is a known term—that is the point.
One note before starting: Integration by partsd just a trickwith no meaning.
On the contrary, it expresses basic physical laws of equilibrium and force balance.
It is a foundation for the theory of differential equations (and even delta functions).
The final paragraphs, which are completely optional, illustrate those points too.

We begin with the product rule for the derivativeuofx) timesv(x):

()5 400 T = (). )

Integrate both sides. On the right, integration brings back)v(x). On the left are
two integrals, and one of them moves to the other side (with a minus sign):

Ju(x)% dx:u(x)v(x)—Jv(x)% dx. (2)

Tha is the key to this section—not too impressive at first, but very powerful. It is
integration by partgu andv are the parts). In practice we write it withaus:

7A The integration by parts formulai§ u dv =uv — [ vdu. (3)

The problem of integratingt dv/dx is changed into the problem of integrating
vdu/dx. There is a minus sign to remember, and there is the “integrated term”
u(x)v(x). In the definite integral that products(x)v(x) is evaluated at the end-
pointsa andb:

b
J u@dx:u(b)v(b)—u(a)v(a)—fvﬁdx. (4)
dx . dx

a

The key is in choosingu and v. The goal of that choice is to makev du easier
thanf u dv. This is best seen by examples.

EXAMPLE 1 For [In x dx chooseu = In x anddv = dx (sov = x):

JInxdx=uv—Jvdu=x|n x—fx%dx.

| used the basic formuld3). Instead of working within x (searching for an
antiderivative), we now work with the right hand side. Therémes1/x is 1. The
integral of1 is x. Including the minus sign and the integrated term= x In x and
the constan€, the answer is

JInxdx=xInx—x+C. (5)

For safetytake the derivativeThe product rule giveb x +x(1/x) — 1, which is
In x. The areaundey =1In x from2to3is3In3—-3—-2In242.
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To repeat: We exchanged the integralrofc for the integral ofl.
EXAMPLE 2 For [ x cosx dx chooses = x anddv = cosx dx (sov(x) = sin x):
[ xcosxdx =uv— [ vdu=xsinx— [sinxdx. (6)
Again the right side has a simple integral, which completes the solution:
J xcosx dx =xsinx+cosx+C. (7)

Note The new integral is not always simpler. We could have chasencosx and
dv=xdx. Thenv = %xz. Integration using those parts give the true but useless
result

fxCOSxdx:uv—f vdu= %x2005x+f%x25inxdx.

The last integral is harder instead of easiet {s worse thanx). In the forward
direction this is no help. But in the opposite direction it simpIifﬁéxzsinx dx.
The idea in choosing andv is this: Try to giveu a nice derivative and/v a nice
integral.

EXAMPLE 3 For [ (cosx)? dx choose: = cosx anddv = cosx dx (sov = sin x):
J(cosx)? dx =uv— [vdu=cosxsinx+ [(sinx)*dx.

The integral of(sin x)? is no better and no worse than the integralads x)2. But
we never segsin x)? without thinking of1 — (cosx)?. So substitute fo¢sin x)2:

[(cosx)?dx =cosx sinx + [ 1dx— [(cosx)?dx.
The last integral on the right joins its twin on the left, aﬁdj dx =x:
2 [(cosx)? dx = cosx sinx +x.
Dividing by 2 gives the answer, which is definitely né—)(cos x)3. Add anyC:
J(cosx)?dx = J(cosx sinx +x)+C. (8)

Question Integrate(cosx)? from 0 to 2x. Why should the area be ?

Answer  The definite integral is%(cos;c sinx—f—x)]ﬁ”. This does giver. That
area can also be found by common sense, starting fom®x)? + (sin x)? = 1. The
area undet is 2. The areas undgcosx)? and(sin x)? are the same. So each one
is .

EXAMPLE 4  Evaluate[ tan ' x dx by choosing: = tan™! x andv = x:

ftanlxdx:uv—fv du:xtanlx—f dx 9

T2
The last integral ha = 1 + x2 below and almost hagw = 2x dx above:

xdx 1 (dw lln 1In(1—|— 2)
== |—=zlhw=— x7).
1+x2 2 w 2 2

Substituting back int¢9) gives [tan! x dx asx tan!x — 1 In(1 +x?). All the
familiar inverse functions can be integrated by parts (takex, and add 4-C” at
the end).

Our final example shows hotwo integrations by partsnay be needed, when the
first one only simplifies the problem half way.
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EXAMPLE 5  For [ x?e*dx chooseu = x? anddv = e*dx  (sov =e¥):

[x?e*dx =uv— [vdu=x%*— [e*(2x dx). (20)
The last integral involvese* . This is better thanr2e*, but it still needs work:
Jxe*dx =uv— [vdu=xe*— [e*dx (nowu=x). (11)

Finally e* is alone. Aftertwo integrations by parts, we reaghexdx. In equation(11),
the integral of xe* is xe* —e*. Substituting back int¢10),

[ x2e* dx = x?e* —2[xe* —e*] +C. (12)

These five examples are in the list of prime candidates for integration by parts

1 1

x"e*, x"sinx, x"cosx, x"Inx, e*sinx, e*cosx, sin” " x, tan " x, ....

This concludes the presentation of the method—brief and ghtfarward.
Figure 7.1a shows how the areﬁs dv andfv du fill out the difference between
the big area:(b)v(b) and the smaller area(a)v(a).

v(x) 8(x) & = v(0) 8(x)

red area = large box spike v(x)
- small box — gray area

= Uslly = U Uty = Ivdu

0

Fig. 7.1 The geometry of integration by parts. Delta function (at@anultiplies v(x) at
x=0.

In the movie Stand and Deliverthe Los Angeles teacher Jaime Escalante
computedfxzsinx dx with two integrations by parts. His success was through
exercises—plus insightin choosin@ndv. (Notice the difference frorjix sinx2dx.

That falls the other way—to a substitution.) The class did extremely well on the
Advanced Placement Exam. If you saw the movie, you remember that the examiner
didn’t believe it was possible. | spoke to him long after, and he confirms that practice
was the key.

THE DELTA FUNCTION

From the most familiar functions we move to the least familldre delta function

is the derivative of a step functianThe step functio/(x) jumps from0 to 1 at

x =0. We write §(x) =dU/dx, recognizing as we do it that there is no genuine
derivative at the jump. The delta function is the limit of higher and higher spikes—
from the “burst of speed” in Section 1.2. They approach an infinite spike concentrated
at a single point (wher& jumps). This “non-function” may be unconventional—itis
certainly optional—but it is important enough to come back to.

The slopedU/dx is zero except at = 0, where the step function jumps. Thus
8(x) = 0 except at that one point, where the delta function has a “spike.” We cannot
give a value for§ at x =0, but we know its integral across the jumpDn every
interval from— A to A, the integral of U/dx brings backlU:

A A
J §(x) dx = J U = vt =1. (13)
A _4 dx

“The area under the infinitely tall and infinitely thin spikér) equalsl.”
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So far so good. The integral 6€x) is U(x). We now integrate by parts for a crucial
purpose—to find the area under(x)§(x). This is an ordinary function times the
delta function. In some senséx) timesé(x) equalsv(0) timesé(x)—because away
from x = 0 the product is always zero. Thusé(x) equalsi(x), andsinx §(x) =0.

The area unden(x)§(x) is v(0)—which integration by parts will prove:

7B The integral ofv(x) timesé§(x) is ffA v(x)8(x)dx = v(0).

The area i(0) because the spike is multiplied hy0)—the value of the smooth
function v(x) at the spike But multiplying infinity is dangerous, to say the least.
(Two times infinity is infinity). We cannot deal directly with the delta functiétris

only known by its integrals! As long as the applications produce integrals (as they
do), we can avoid the fact thatis not a true function.

The integral ofv(x)é(x) = v(x)d U/dx is computed “by parts:”

A A A dv
f D008 dx = v(x)U(x)]_A - Ll U 7 dx. (14)

Remember that/ =0 or U = 1. The right side of14)is our areav (0):

4 dv
v(A)-l—j 1—dx =v(A)— (v(4) —v(0)) = v(0). (15)
o dx

Whenv(x) = 1, this answer matchefss dx = 1. We give three examples:

[?,cosx8(x)dx =1 [°(Ux)+8(x)dx=T [ (5(x))*dx=c0.

A nightmare question occurs to mé&ha is the derivative of the delta functién

INTEGRATION BY PARTS IN ENGINEERING

Physics and engineering and economics frequently invpteducts Work is force

times distance. Power is voltage times current. Income is price times quantity. When
there are several forces or currents or sales, we add the products. When there are
infinitely many, we integrate (probably by parts).

| start with differential equations for the displacemerdt pointx in a bar:

dv : _ du
s f(x)withv(x) = kﬂ (16)

This describes a hanging bar pulled down by a fgf¢e). Each pointt moves through
a distance:(x). The top of the bar is fixed, 20(0) = 0. The stretching in the bar is
du/dx. The internal force created by stretchinguis= k du/dx. (This is Hooke’s
law.) Equation(16)is abalance of force®n the small piece of the bar in Figure 7.2.
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L il
x=0 u(0)y=0
v

fax v+ Av

Fig. 7.2 Difference in internal force balances external force =W
A= v =
—Av= fAx or —dv/dx = f(x)
v =W atx = 1 balances hanging weight @

EXAMPLE 6 Supposef(x) = F, aconstant force per unitlength. We can sq{6):

v(x)=—Fx+C and ku(x)=—-1Fx*+Cx+D. (7)

The constant§’ and D are settled at the endpoints (as usual for integrals). At0
we are giveru =0soD =0. At x =1 we are giverv =W soC =W + F. Then
v(x) andu(x) give force and displacement in the bar.

To see integration by parts, multiplydv/dx = f(x) by u(x) and integrate:

1

1 1
J f(x)u(x) dx:—f d—vu(x) dx:—u(x)v(x)}]—l—f v(x)d—udx. (18)
0 0 dx

o dx 0

The left side is force times displacement, external work The last term is inter-
nal force times stretching—anternal work The integrated term hag0) = 0—the
fixed support does no work. It also has«(1) W, the work by the hanging weight.
The balance of forces has been replaced bglance of work

This is a touch of engineering mathematics, and here is the main point. Integration
by parts makes physical sense! Whedv/dx = f is multiplied by other functions—
called test functionsor virtual displacements—then equati¢h8) becomesthe
principle of virtual work. It is absolutely basic to mechanics.

7.1 EXERCISES

Read-through questions

Integration by parts is the reverse of thea rule. It changes forces—dv/dx = f is multiplied by a displacement(x) and inte-
Judvinto_b minus__c . Incaseu=x and dv =e2*dx, grated to give a balance of u_.

itchangeijezxdx to__d minus__e . The definite integral
jozxezxdx becomes _f minus ¢

Integrate 1-16, usually by parts (sometimes twice).

] . 1 [xsinxdx 2 [xe**dx
In choosingu anddv,the__h ofu andthe_ i of dv/dx .

should be as simple as possible. Normallyclgoesinto | and 3 Jxe*dx 4 [ xcos3xdx

e* goesinto__k . Prime candidates are=x or x2 andv = sinx 2
. . 5 d Problenm

or__ | _or__m .Whenu=x?weneed__n__integrations by J % cosx dx (use Problent)

1 . _ .
par:)s. For_[sm x dx, the choicedv=dx leadsto__ 0o minus 6 f wIn x dx 7 f IN@2x + 1)dx

_ _ _ _ ) 8 [ x2e** dx (use Problen?)
If U is the unit step functiondU/dx =§ is the unit g

function. The integral from-A to A is U(A)=U(=4)=_r . ¢ [ e¥sinxdx 10 [ e*cosxdx
The integral of wv(x)§(x) equals s . The integral
_[_IICOSx 8(x)dx equals__t . In engineering, the balance off9 and10 need two integrations. | think® can beu or v.]
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11 [ e%*sinbx dx 12 fxe_xzdx
13 [ sin(Inx)dx 14 [ codlnx)dx
15 f(In x)%dx 16 [ x2Inxdx
17 [ simxdx 18 [ cos !(2x)dx

19 [x tan ! x dx
20 [ xZsinx dx (from the movie)

21 [ x3cosxdx 22 [ x3sinxdx
23 _fx3exdx 24 _fxse(flxdx
25 [xse@xdx 26 [ xcohxdx

Compute the definite integrals 27-34.
28 [} eV¥dx (letu =+/x)
30 J{ In(x?)dx

27 _fol Inxdx
29 fol xe 2Xdx
31 JJ xcosxdx 32 [, xsinxdx

34 [TI2

In 35—-40 derive “reduction formulas” from higher to lower pow-
ers.

35 [ x"e* dxzx"ex—nfx"_lexdx

36 [x"e™dx=__

37 [x"cosxdx=x"sinx—n [ x"1sinxdx
38 [x"sinxdx=__

39 [(Inx)*dx=x(Inx)"—n [ (Inx)"~ldx
40 [ x(nx)*dx=

41 How would you computef x sin x e*dx using Problem9?
Not necessary to do it.

33 J"03 In (x% + Ddx x2 sin xdx

42 How would you compute x e* tan~! x dx ? Don't do it.
43 (@) Integratef x3sinx2dx by substitution and parts.

(b) The integral( x" sinx2dx is possible ifnis
44-54 are about optional topics at the end of the section.
44 For the delta functiod(x) find these integrals:

@ ['e2¥8(x)dx (b) [, v(x)8(x)dx (c) [ cosx §(x)dx.
45 Solvedy/dx =38(x) anddy/dx =36(x)+ y(x).

347

© ' 8()8(x —Lydx.
49 The derivative of§(x) is extremely singular. It is a “dipole”
known by its integrals. Integrate by parts in (b) and (c):
1 1 1
(a)f ﬁdx (b)f x@dx (C)J v(x)ﬁdx =—'(0).
-1 dx —1 dx -1 dx
50 Whyis [!, U(x)8(x)dx equal to} ? (By parts.)

51 Choose limits of integration inv(x)= [ f(x)dx so that
dv/dx=—f(x)andv=0atx =1.

52 Draw the graph ob(x) if v(1) =0and—dv/dx = f(x):
@f=x; Of=U(x—3); (©f=68x-3)

53 What integral u(x) solves k du/dx=v(x) with end
condition u(0)=07? Find u(x) for the threev’s (not f’s) in
Problem52, and graph the three's.

54 Draw the graph of AU/Ax=[U(x+Ax)—-U(x)]/Ax.
What is the area under this graph ?
Problems 55-62 need more than one integration.

55 Two integrations by parts lead 16 = integral ofv:
f wv'dx =uv—Vu' —I—f Vu"dx.

Test this rule onf x2sin x dx.

56 After n integrations by partsf u(dv/dx)dx becomes
uv —u(l)v(l) +u(2)v(2) —(=D"[ u(")v(n_l)dx.

u™ is the nth derivative ofu, and v, is the nth integral ofv.
Integrate the last term by parts to stretch this formulante 1
integrations.

57 Use Problens6 tofind | x3e*dx.

58 From f(x)— f(0) =f(§‘ f'(¢)dt, integrate by parts (noticét
notdx) to reachf(x) = £(0)+ f'(0)x + [5 f"(t)(x —t)dt. Con-
tinuing as in Problend6 producesTaylor’s formula

@)= O+ Ox 5/ Ox - +f Fo0 =Dy,
! 0

n!

59 What s the difference betweefj uw”dx and f, u”w dx ?

60 Compute the areast = [{In xdx and B = fj e”dy. Mark

46 Strange factd(2x) is different fromé(x). Integrate them both o on the rectangle with cornei 0), (¢, 0), (e, 1). (0, 1).

from —1to 1.

47 The integral of§(x) is the unit stepU(x). Graph the next
integrals R(x) = [ U(x)dx and Q(x) = [ R(x)dx. The rampR

and quadratic splin@ are zero ak = 0.

48 In 8(x — ), the spike shifts tax = 3. It is the derivative of
the shifted stepU(x — ). The integral ofv(x)8(x—3) equals 62 Choose C

the value ofv atx = . Compute

@ [y 80x—Lydx; () [ e¥s(x—L)dx;

61 Find the mistake | don't believee* coshx = e* sinhx:

[ e sinhx dx = e* coshx — [ e¢* coshx dx

= e¥ coshx —e* sinhx + [ e* sinhx dx.

and D to make the derivative of
C e%* coshbx + D e%* sin bx equal toe?* coshx. Is this easier than
integratinge?* coshx twice by parts ?
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I 7.2 Trigonometric Integrals |

The next section will put old integrals into new forms. For exanfpié V1—x%dx
will becomef sif6cog # db. That looks simpler because the square root is gone.

But still sirfco$ 6 has to be integratedhis brief section integrates any product
of sines and cosines and secants and tangents

There are two methods to choose from. One uses integration by parts, the other
is based on trigonometric identities. Both methods try to make the integral easy (but
that may take time). We follow convention by changing the lditback tox.

Notice thatsin*x cosx dx is easy to integratelt is u*du. This is the goal in
Example 1—to separate oc0Sx dx. It becomes/u, andsinx is u.

EXAMPLE 1 ['sin*xcos’x dx (the exponen3 is odd)
Solution  Keepcosx dx asdu. Convert the othecoS x to 1 — sirx:

sifx  sirx
3 5

fsinzxcoéx dx = fsinzx(l — sirfx)cosx dx = +C.

EXAMPLE 2 ['sin’x dx (the exponenf is odd)

Solution  Keepsinx dx and convert everything else to cosinddie conversion
is always based o’ x +cogx = 1:

J(1—cogx)?sinx dx = [(1—-2coSx +cosx)sinx dx.

Now cosx isu and—sinx dx is du. We have[ (—1+2u? —u*)du.
General method forf sin™x cos’x dx, whenm or n is odd

If n is odd, separate out a singles x dx. That leaves an even number of cosines.
Convert them to sines. Tha@wsx dx is du and the sines ang’s.

If m is odd, separate out a singl x dx asdu. Convert the rest to cosines.

If m andn are both odd, use either method.

If m andn are both even, a new method is needed. Here are two examples.

EXAMPLE 3 [coSxdx (m=0,n=2,botheven)

There are two good ways to integrates®x, but substitution is not one of them. If
u equalscosx, thendu is not here. The successful methods are integration by parts
and double-angle formulas. Both answers are in equd@)rbelow—I don't see
either one as the obvious winner.

IntegratingcoS x by parts was Example 3 of Section 7.1. The other approach, by
double angles, is based on these formulas from trigonometry:

cosx =1 (14cos2x)  sin’x=1(1—cos2x) 1)

Theintegral ofcos2x is % sin 2x. So these formulas can be integrated directly. They
give the only integrals you should memorize—either the integration by parts form,
or the result from these double angles:

fcogxdxequals I(x+sinxcosx) or ix+41lsin2x (plusC). (2

[sixdxequals 1(x—sinxcosx) or ix—Zisn2x (plusC). (3)
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EXAMPLE 4 [costxdx (m=0,n=4,bothare even)

Changingcog x to 1 — sir?x gets us nowhere. All exponents stay even. Substituting
u = sinx won't simplify sin*x dx, withoutdu. Integrate by parts or switch .

First solution Integrate by parts Takeu = coS x anddv = cosx dx:
J(cosx)(cosx dx) =uv— [vdu=cosx sinx — [(sinx)(—3cogxsinx dx).

The last integral has even powess?’x andcogx. This looks like no progress.
Replacingsin?x by 1 —cogx producesos'x on the right-hand side also:

Jcostx dx =cogxsinx+3 [cogx(1—cogx)dx.

Always even powers in the integrals. But now m@vﬁ cos'x dx to the left side:
Reduction 4 [cos*x dx =coSxsinx +3 [cosxdx. 4)

Patial success—the problem isducedfrom cos'x to cog x. Still an even power,
but a lower power. The integral b x is already known. Use it in equatig#):

Jcostx dx = tcos’xsinx + 21 (x +sinx cosx) +C. (5)

Second solution Substitute the double-angle formuag x = % + % COS2x:
fcostx dx = [(L+Lcos2x)2dx =1 [(1+2cos2x +cog 2x)dx.
Certainlyf dx =x.Also 2[0052x dx = sin2x. That leaves the cosine squared:
Jeog2x = [1(1+cosdx)dx=1x+4sindx+C.
The integral ofco' x using double angles is
%[x+sin2x+%x+%sin4x]+C. (6)

That solution looks different from equati@B), but it can’t be. There all angles were
x, here we hav@x and4x. We went fromcos'x to co$2x to cos4x, which was
integrated immediately. The powers were cut in half as the angle was doubled.

Double-angle method forf sin™x cod'x dx, whenm andn are even

Replacesin®x by 1 (1 —cos2x) andcosx by 1(1+ cos2x). The exponents drop
tom/2 andn /2. If those are even, repeat the idea @aes todx). If m/2 orn/2is

odd, switch to the “general method” using substitution. With an odd power, we have

du.
EXAMPLE 5 (Doubleangle) [sin®x co’x dx = [ (1 —cos2x)(1+cos2x)dx.

This leavesl —cog 2x in the last integral. That is familiar but not necessarily easy.
We can look it up (safest) or remember it (quickest) or use double angles again:

1 1 11 sin4
— [ (1—cog 2x)dx = - 1 — - ——cos4x dx=£— x+C.
4 4 2 2 8 32

Conclusion Everysin™x cos’x can be integratedThis includes negative: and
n— see tangents and secants below. Symbolic codes like MACSYMAathemat-
ica give the answer directly. Do they use double angles or integration by parts ?
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You may prefer the answer from integration by parts (I usually ttcavoids2x
and4x. But it makes no sense to go through every step every time. Either a computer
does the algebra, or we use a “reduction formula” froto n — 2:

Reduction 7 [cos'x dx =cod' 'x sinx+(n—1) [cod 2x dx. (7)

Forn = 2 this isfco§x dx—the integral to learn. For = 4 the reduction produces
cogx. The integral oo x goes tocos' x. There are similar reduction formulas for
sin™x and also fosin™ x cod' x. | don’t see a good reason to memorize them.

INTEGRALS WITH ANGLES px AND gx

Instead ofsin®x timescos x, suppose you havein 8x timescos6x. How do you
integrate ? Separately a sine and cosine are easy. The new quethieiritegral of
the product

EXAMPLE 6  Find J'OZ” sin 8x cos6x dx. More generally findﬁf” sin px cosgx dx.

This is not for the sake of making up new problems. | believe tla@sethe most
important definite integrals in this chaptey éndg are0,1,2,...). They may be
the most important in all of mathematics, especially because the question has such a
beautiful answerThe integrals are zeroOn that fact rests the success of Fourier
series, and the whole industry of signal processing.

One approach (the slow way) is to replate8x andcos6x by powers of cosines.
That involvescos #x. The integration is not fun. A better approach, which applies to
all anglespx andgx, is to use the identity

sin px COqu:%Sin(p—l—q)x—l—%sin(p—q)x. (8)

Thus sin8x cos6x = 1 sin 14x + 1 sin2x. Separated like that, sines are easy to
integrate:

=0.

27 or
1 cos 14 1cos?2
f Sin8x cos6x dx = [—5 r_ 2 x}

0 4 2 2 |,

Sincecosl4x is periodic, it has the same value(aand2sr. Subtraction gives zero.
The same is true foros2x. The integral of sine times cosine is always zero over a
complete period (liké® to 2).

What aboutsin px singx and cospx cosgx ? Their integrals are also zero,
provided p is different fromg. When p = ¢ we have a perfect square. There is
no negative area to cancel the positive area. The integrifx or sir? px is 7.
EXAMPLE 7 [T singxsin7x dx=0 and [ "sir? 8x dx = .

With two sines or two cosines (instead of sine times cosine), wdark to the
addition formulas of Section 1.5. ProbleéX4 derives these formulas:
sin px Sinqx:—%cos(p—l—q)x—i—%COS(p—q)x (9)

COSpx COSgx = %COS(p—l—q)x—i—% cos(p —q)x. (10)

With p =8 andg =7, we getcos15x andcosx. Their definite integrals are zero.
With p = 8 andg = 8, we getcos16x andcosOx (whichis1). Formulag9) and(10)
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also give a factok. The integral of} is:

[ singx sin7x dx =—1 2" cos15x dx +1 [7" cos x dx =040
[ sin8x sin8x dx =—1 [*"cos16x dx +1 [ cosOx dx =0+ 7

The answer zero is memorable. The answeappears constantly in Fourier series.
No ordinary numbers are seen in these integrals. The pasg = 1 brings back
Jcogx dx =5+ ;sin2x.

SECANTS AND TANGENTS

When we allownegative powersm andn, the main fact remains true. All integrals
fsirf"x cog'x dx can be expressed by known functions. The novelty for negative
powers is thatogarithms appear. That happens right at the startsfarx/ cosx

and forl/ cosx (tangent and secant):

Jtanx dx =— [ du/u =—In|cosx| (hereu = cosx)

[secx dx= [du/u= In|secx+tanx| (hereu =secx+tanx).

For higher powers there is one key identity:tarfx = seéx. That is the old
identity co€x + sin’x = 1 in disguise (just divide bgos x). We switch tangents to
secants just as we switched sines to cosines. Starer)’ = sex and(secx)’ =
secx tanx, nothing else comes in.

EXAMPLE 8  [tan’x dx = [(se¢x —1)dx =tanx —x +C.

EXAMPLE 9 [tarx dx = [tanx(se¢x —1)dx.

The first integral on the right i§ u du = Ju?, with u =tanx. The last integral is

— jtanx dx. The complete answer i§(tan x)2+In|cosx|+ C. By taking abso-
lute values, a negative cosine is also allowed. Agmdx = 0.

(tanx)™!

EXAMPLE 10 Reduction f (tanx)"dx = — J(tBHX)m_zdx

Same idea—separate ¢fanx)? asse@x — 1. Then integratétanx)™ 2seéx dx,
which isu™~2du. This leaves the integral on the right, with the exponent lowered by
2. Every power(tanx)™ is eventually reduced to Example 8 or 9.

EXAMPLE 11 [seCx dx =uv— [vdu =secx tanx — [tarfx secx dx

This was integration by parts, withh=secx andv =tanx. In the integral on the
right, replacgar?x by sex — 1 (this identity is basic):

[ seéx dx =secx tanx — [seéx dx + [ secx dx.

Bring [ secx dx to the left side. That reduces the problem free® x to secx.

| believe those examples make the point—trigonometric integrals are computable
Every productan™x sed x can be reduced to one of these examples.itfeven we
substitutex = tanx. If m is odd we sett = secx. If m is even and: is odd, use a
reduction formula (and always ut@?x = secx —1.)
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I mention very briefly a completely different substitution= tan%x. This seems

to all students and instructors (quite correctly) to come out of the blue:

2u 1 —u? 2du

sinx =—— and COSx = —— and dx = ——.
1 +u? 1 4+u? 14+u2

11)
The x-integral can involve sums as well as products—not aily” x cos'x but

also1/(5+ sinx —tanx). (No square roots.) The-integral is aratio of ordinary
polynomialslt is done bypartial fractions

Application of [ secx dx to distance on a magMercator projection)

The strange integrdh(sec x +tanx) has an everyday application. It measures the
distance from the equator to latituge on a Mercator map of the world.

All mapmakers face the impossibility of putting part of a sphere onto a flat page.
You can't preserve distances, when an orange peel is flattened. But angles can be
preserved, and Mercator found a way to do it. His map came before Newton and
Leibniz. Amazingly, and accidentally, somebody matched distances on the map with
a table of logarithms—and discovergdecx dx before calculusyou would not be
surprised to mestin x, but who would recognizk(secx +tanx) ?

The map starts with strips at all latitudes The heights are/x, the lengths are
proportional tocosx. We stretch the strips by/ cosx—then Figure 7.3c lines up
evenly on the page. Whefx is also divided bycosx, angles are preserved—a small

L map width 70
Rdxse...  &—— R cos x R{ﬁéqm‘\
/
/
[
Rdx R Rdx[
map width

Fig. 7.3  Strips at latitudex are scaled by seg, making Greenland too large.

square becomes a bigger square. The distance north adds up the strip heights
dx/cosx. This gives| secx dx.

The distance to the North Pole is infinite! Close to the Pole, maps are stretched
totally out of shape. When sailors wanted to go frdnto B at a constant angle with
the North Star, they looked on Mercator’'s map to find the angle.

7.2 EXERCISES

Read-through questions

To integrate sifixcos'x, replace codx by a . Then is g . Replacing codx by _ h creates a new sfx dx
(sin*x —sin®x)cosx dx is __ b du. In terms ofu =sin x the that combines with the original one. The result isealuctionto
integral is__c . This idea works for sifixcos®x if either m jsinzx dx, which is known to equal i .

ornis__d

The second method uses the double-angle formufacsin |
If both m andn are __e , one method is integration byThen sirfx involves cod__k . Another doubling comes from

f_. For [sin*x dx, split off dv=sinx dx. Then — [vdu cos?2x =__| . The integral contains the sine of m .
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To integrate sirbx cos4x, rewrite it as %sin10x+ n
The indefinite integral is_ o . The definite integral from
0 to 27 is p . The product cogpx cosgx is written as
%cos(p +¢)x+ q . Its integral is also zero, except if r
when the answeris s .

With u =tanx, the integral
Similarly [sex (secxtanx dx)=

of tafx se@x is t .
u . For the combination

tan™ x sedx we apply the identity tahx =__v . After reduction
wemay needftanx dx=__w andfsecx dx=_x
Compute 1-8 by the“general method” whenm or n is odd.

1 [simx dx 2 [cos’x dx

3 [sinx cosx dx 4 [coSx dx

5 [sin’xcos’x dx 6 [sin3xcos’x dx

7 [+/sinx cosx dx 8 [+/sinxcos’x dx

9 Repeat Probler stating with sinx cosx = %sin 2x.

10 Find [sinax cosax dx and [ sinax cosax dx.

In 11-16 use the double-angle formulasi,n even)
f(;r six dx
Jcos?3x dx
[si?x dx+ [ cogx dx

11 12 [y sin*x dx

13 14 jsinzx cox dx

15 16 jsinzx co22x dx

17 Use the reduction formula (7) to integrate &os

18 Forn > 1 use formula (7) to prove

/2 /2
) )

n—1

cod'x dx = cod 2x dx.

19 Forn=2,4,6, ... deduce from Problem8 that
N/2 - —

J cod'x dx = 2= MHB)--- =1
0 2 Q@)

20 Forn=3,5,7, ... deduce from Problem§ that

rﬂ _@Q@--(n—1)
0

B3
(@) Separatelv =sinx dx from u =sin*~lx and integrate
[ sin”x dx by parts.

(b) Substitute 1 —sin*x for cox to find a reduction
formula like equation (7).

cos x dx

21

22 For whichn does symmetry givejO” cos’x dx=07?

23 Are the integrals (a)—(f) positive, negative, or zero ?

(@ Jo cos3x sin 3x dx (b) [y cosx sin2x dx
(© ffzﬂ cosx sinx dx

d) JJ (cogx —sintx)dx
) 9 costx dx

(e) j;” cospx singx dx
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24 Write down equation (9) fopp =¢ =1, and (10) for p =2,
q = 1. Derive (9) from the addition formulas for c@st¢) and
cogs —t) in Section 1.5.

In 25—-32 compute the indefinite integrals first, then the definite
integrals.

25 [27 cosx sin2x dx 26 [y sin3x sinSx dx

27 [, cos99x sin101x dx 28 [ coS3x dx

29 [ cos99x cos10lx dx

30 [¢7 sinx sin2x sin3x dx

31 [ cosx/2 sinx/2dx 32 [y x cosx dx (by parts)

33 Suppose dourier sine seriesAsinx + Bsin2x + C sin3x +

- adds up tax on the interval fronD to . Find A by multiply-
ing all those functions (including) by sinx and integrating fronf
toz. (B andC will disappear.)

34 Suppose a Fourier sine seridsinx + B sin 2x + C sin3x +

- adds up tol on the interval from0 to . Find C by multiply-
ing all functions (includingl) by sin3x and integrating frond to .
(A and B will disappear.)

35 In 33, the series also equals from —x to 0, because all

functions are odd. Sketch the “sawtooth function,” which equals

x from —x to = and then has perioglr. What is the sum of the
sine series at = ?

36 In 34, the series equals1 from —x to 0, because sines are odd
functions. Sketch the “square wave,” which is alternately and
+1, and find4 and B.

37 The area undery =sinx from 0 to = is positive. Which
frequencieg have [J' sin px dx =07

38 Which frequencieg hawe j(j’ cosgx dx=07?
39 Forwhichp, ¢ is [y’ sin px cosgx dx=07?

40 Show thath” sin px singx dx is always zero.

Compute the indefinite integrals 41-52

41 [secx tanx dx 42 [tan5x dx
43 [tarfx sex dx 44 [tarfx secx dx
45 [tanxseCx dx 46 [sectx dx
47 [tarfx dx 48 [tarfx dx
49 [cotx dx 50 [cscx dx
51 ﬂ dx 52 Jﬂ
cosx cosix

53 Choose A so tat cosx—sinx = AcoYx-+n/4). Then

integratel /(cosx —sinx).

54 Choose A so hat cosx—+/3sin x = Acos(x +7/3). Then
integratel /(cosx —+/3sin x)2.

55 EvaluatefS” |cosx —sinx|dx.
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56 Show thatacosx+bsin x =+va2+b2cosx —a) and find 61 What product sirpx singx is graphed below? Check

the correcphase angler. tha (pcospx singx —q sinpx cosqx)/(g%>—p?) has this
derivative.

57 If a square Mercator map shows000 miles at latitude

30°, how many miles does it show at latitude® ? 62 Finish [sedx dx in Example 11. This is needed for

the length of a parabola and a spiral (Problens.8 and

58 When lengths are scaled by sec area is scaled by Sections 8.2 and 9.3).

. Why is the area from the equator to latitude
proportional to tarx ?

59 Use substitution (11) to fingl dx /(1 + cosx).

60 Explain from areas whyf,’ si®x dx = [’ cos’x dx. These
integrals add tq"(;r 1 dx, so they both equal .
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I 7.3 Trigonometric Substitutions |

The most powerful tool we have, for integrating with pencil and paper and brain, is
themethod of substitutioffo make it work, we have to think of good substitutions—
which make the integral simpler. This section concentrates on the single most valuable
collection of substitutions. They are the only ones you should memorize, and two
examples are given immediately.

Tointegratey/1 — x2, substitutex = sind. Do not sety = 1 — x? (d—u

dx IS mlssmg)

dx cos6t do
J\/l —x2 dx—>f(cos@)(cos@ do) J —
V1—x2

cos6

The expression/1 — x2 is awkward as a function of. It becomes graceful as a
function of§. We are practically invited to use the equatibs (sin 8)% = (cos#)?2.
Then the square root is simptysf—provided this cosine is positive.

Notice the change irdx. Whenx is sinf, dx is cos6 df. Figure 7.4a shows
the original area with new letters. Figure 7.4b shows an equal area, after rewriting
J(cosb)(cosh db) as [ (cos0) db. Changing fromx to 6 gives a new height and a
new base. There is no change in area—that is the point of substitution.

To putit bluntly: If we go fromn/1 — x2 to cos6, and forget the difference between
dx andd#, and just comput§ cosf df, the answer is totally wrong.

1 cos 0
cos20

de de I

2
Fig. 7.4 Same area fox/1—x2 dx and cod6 d6. Third area is wrongix # d6

o 4

We still need the integral afo$*4. This was Example 3 of integration by parts, and
also equatior?.2.6. It is worth memorizing. The example shows thisntegral, and
returns tax:

EXAMPLE 1 [cos?0 df = 1 sin6 cosf + 16 isafter substitution
JV/1—x2dx = 1x4/1—x2+ 1sin"'x is the original problem

We changedsin back tox andcosf to 4/1 —x2. Notice thaté is sin~'x. The
answer is trickier than you might expect for the area under a circular arc. Figure 7.5
shows how the two pieces of the integral are the areas of a pie-shaped wedge and a
triangle.

dx  (costdf
V1i—x2 ) cosb

Remember: We already knogin~!x. Its derivativel /+/1 —x2 was computed in
Section 4.4. That solves the example. But instead of matching this special problem

EXAMPLE 2

=0+C=sn'x+C.
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1 |
wedge area -TB = —-sin I x

y =Vl —x2

area = m/2

1 r—)
area — X V1 —x2

0 X 0

Fig. 7.5  [A/1—x2dx is a sum of simpler areas. Infinite graph but finite area.

with a memory from Chapter 4, the substitution=sinf makes the solution
automatic. From)’ d6 = 6 we go back tesin ' x.

The rest of this section is about other substitutions. They are more complicated
thanx =sin# (but closely related). A table will display the three main choices—
sinf,tan6, secd—and their uses.

TRIGONOMETRIC SUBSTITUTIONS

After working with v/1 —x2, the next step isv/4 —x2. The changex =sinf
simplified the first, but it does nothing for the secord: sin?é is not familiar.
Nevertheless a factor &f makes everything work. Instead af= siné, the idea
is to substitutex =2 sinf:

V44— x2=+/4_4siP@ =2cosh and dx=2cosf db.

Notice botf2's. The integralist | cos'0 d6 = 2sin# cosf + 26. But watch closely.
This is not4 times the previou§ co$6 d6! Sincex is2 sind, 6 is nowsin™' (x/2).

EXAMPLE 3 [4/4—x2dx =4[cog0d0 =x/1—(x/2)2+2sin ' (x/2).
Based om/1 — x2 and v/4 — x2, here is the general rule for/a? — x2. Substi-

tute x =asin6d. Then thea’s separate out

\/a2—x2:\/a2—a2sin20:a cosf and dx =a cos6 db.

That is the automatic substitution to try, whenever the squatappears.

/2
4 cosf db =J d9=£,
9=0 2

4 dx /2
L:o Vi6—x2 L:o £/ 42 —42(sin6)?

Here a? = 16. Thena = 4 andx = 4 siné. The integral hag cosf above and be-
low, so it is fd@. The antiderivative is jusf. For the definite integral notice that
x =4 meanssinf = 1, and this mean8 = 7 /2.

A table of integrals would hide that substitution. The table only ggies' (x/4).
There is no mention of d6 = 6. But what if 16 — x? changes tor? — 16 ?

EXAMPLE 4

JS dx 5
=4 VX216

Notice the two changes—the sign in the square root and the limits &xample 4
stayednsidethe interval|x| < 4, wherel6 — x? has a square root. Example 5 stays

EXAMPLE 5
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outside wherex? — 16 has a square root. The new problem cannotwuse4 siné,
because we don’t want the square root-afos 6.

The new substitution isc = 4 secf. This turns the square root intal tan 6:
x =4sech gives dx =4 sech tanfd df and x> —16 = 16sedf — 16 = 16tartd.

This substitution solves the example, when the limits are chaimg:

7[/34 t 77/3 ]r/3
L W:J sech@:In(sec@—i—tanG)]o =In(2++/3).

| want to emphasize the three steps. First came the substitutied sec6. An
unrecognizable integral becanfisect d6. Second came the new limit§ & 0 when
x =4,0 = /3 whenx =8). Then | integratedech.

Example 6 has the sam& — 16. So the substitution is again= 4 seco:

f’- 16dx J”/Z 64 secd tanf do r/z cosf df
wmg (X2—16)3/2 7 Jo__ 5 (4tanf)> | 5 sinPh
Step one substitutes = 4 sech. Step two changes the limits th The upper limit

x = o0 becomed) = /2, where the secant is infinite. The limit= 8 again means
6 = /3. To get a grip on the integral, | also changed to sines and cosines.

The integral of cosf/sir?d needs another substitution! (Or else recognize
cotf csch.) With u = sinf we have[ du/u* = —1/u = —1/sing:

Solution fﬂ/z cos6 df = ! i|n/2— 1+ 2
/3 sin’6 ~ sing n/3_ \/g

Warning With lower limit 6 =0 (or x = 4) this integral would be a disaster. It di-
vides bysin0, which is zeroThis area is infinite

0

EXAMPLE 6

(Warning? Example 5 also blew up at= 4, but the area wasot infinite. To make
the point directly, compare —'/2 to x —3/2. Both blow up atx = 0, but the first one
has finite area:

lld 2[12 lld 27’
e

Section 7.5 separates finite areas (slow growth 6f/x) from infinite areas (fast
growth of x —3/2).

Last substitutionTogether withl 6 — x2 andx? — 16 comes the possibility6 + x2.
(You might ask about-16 — x?2, but for obvious reasons we don'’t take its square

root.) This third form 16+ x2 requires a third substitution =4 tanf. Then
16 +x2 =16+ 16tartd = 16 se¢d. Here is an example:

J”’- dx r/z 4sech db T2 o
EXAMPLE 7 _— = — =-0 = —.
o 164x2 Jo_o 16s2@0 4|, 8

Table of substitutions fou? — x2, a?+x2, x> —a?
x=asinf replacesa?—x? by a?cosf and dx by acost df
x=atanf replacesa®+x2? by a’sedd and dx by asectdd
x =asech replacesx?—a? by a’tartf and dx by a secd tanf dé

357
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Note There is a subtle difference between changirtg sin 6 and changingin 6 to
u:

in Example 14x was replaced byosé d6(new method)
in Example 6,cosf d6 was already there and becanhe (old method)
The combinatiortost d6 was put into the first and pulled out of the second.
My point is that Chapter 5 needetl:/dx inside the integral. Thetdu/dx)dx
becamedu. Now it is not necessary to see so far ahedlle can try any substi-

tution. If it works, we win. In this sectiony = sin6 or secf or tané is bound to
succeed.

x dx
1+x2

d
5 = jd@ by trying x =tan6 OLD J = J2_u by seeingdu
u

We mention thenyperbolic substitutionganh8,sinh 6, andcoshf. The table
below shows their use. They give new forms for the same integrals. If you are familiar
with hyperbolic functions the new form might look simpler—as it does in Example 8.

x=atanhf replaces a>—x2 by a2?sechf and dx by asecRédo

x=asinh@ replaces a>+x2 by a2cositd and dx by a coshddb
x=a coshf replaces x2—a? by a?sinffd and dx by asinhé dé

J J sinhd df
Vx2— sinh @

fd@ is simple. The bad part Sh‘lx at the end. Compare with= sec#:

secH tanf do
=In(secd +tanf)+C =In(x++vx2—-1)+C.
«/x2 tan6

This way looks harder, but most tables prefer that final logarithm. It is clearer than
coshr!x, even if it takes more space. All answers agree if Prodiéris correct.

EXAMPLE 8

=0+C =cosh'x+C.

COMPLETING THE SQUARE

We have not said what to do farx2 —2x + 2 or v/—x2 + 2x. Those square roots
contain dinear term—a multiple ofx. The device for removing linear terms is worth
knowing. It is calleccompleting the squargand two examples will begin to explain
it:

x2—2x+2=(x—-1)2+1=u?+1

—x242x=—(x—1)>+1=1—u>

The idea has three steps. First, gettA@andx terms into one square. Here that square
was(x —1)? = x2 —2x + 1. Second, fix up the constant term. Here we recover the
original functions by adding. Third, setu = x — 1 to leave no linear term. Then the
integral goes forward based on the substitutions of this section:

dx du
J\/x2—2x+l B \/u2 j\/2x x2 AV1—u?
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The same idea applies to any quadratic that contains a lineafter:

rewrite  x?>+4+2bx+c¢ a  (x+b)>+C, withC =c—b?
rewrite —x2+2bx+c as —(x—b)>+C, with C =c +5b?

To match the quadratic with the square, we fix up the constant:

x24+10x+16= (x+5)?>+C leadstoC =16 —25=—9
—x2+10x +16 =—(x —5)2+C leads toC = 16 +25 = 41.

f dx J dx J du
EXAMPLE 9 = = .
x24+10x+16 (x+52%2-9 uz2—9

Hereu = x + 5 anddu = dx. Now comes a choice—struggle on with= 3 secf
or look for [ du/(u? —a?) inside the front cover. Then set= 3:

J du _1In
u2—9 6

Note If the quadratic starts withx? or —5x2, factor out thes first:

u—3 _1I
u+3|

x—|—2‘

6 |x+8

5x2 —10x 425 = 5(x% — 2x + 5) = (complete the square) 5[(x — 1) +4].

Now u = x — 1 produces[u? + 4]. This is ready for table lookup ar =2 tan6:

EXAMPLE 10 f dx —f du _steée a9 —ifde
5x2—10x+25 ) 5[u2+4] J 5[4secd] 10 ‘

This answer i#/10 4 C. Now go backwards/10 = (tar' 1u) /10 = (tarr ! J (x —
1))/10. Nobody could see that from the start. A double substitution takes practice,
from x tou to 6. Then go backwards from to u to x.

Final remark Foru? 4 a? we substitute: = a tand. Foru? — a? we substitute: =

a secf. This big dividing line depends on whether the constar(after completing

the square) is positive or negative. We either héve- a? or C = —a?. The same
dividing line in the originab:? 4 2bx + ¢ is betweere > b2 andc < b2. In between,

¢ = b? yields the perfect squaXe + b)?>— and no trigonometric substitution at all.

7.3 EXERCISES

Read-through questions

The function /1 —x2 suggests the substitution=__a . The quadraticx?+2bx+c¢ contains a__m__ term 2bx.
The square root becomes b and dx changes to__c¢ . To remove it we__n__ the square. This givegx+5)2+C
The integral [(1—x2)3/2dx becomes/__d _df. The interval with C =__ o . The examplex?+4x+9 becomes p
%gxglchangesto e <O<_ f . Then u=x+2. In case x2 enters with a minus sign,

—x244x+9 becomes ( g )?4__r . When the quadratic

For \/a? —x2 the substitution ist = with dx=__h . -
a—x —9 T contains4x2, start by factoringout_s .

For x2—a? we usex=__i _withdx=_j .Then[dx/(1+ o

x2) becomes [ df. becausel +tar?6 =__k__. The answer is Integrate 1-20 by substitution Changef back to x.
f=tan—lx. We already knew that | is the derivative 1 dx 5 dx

of tan~x. V4—x2 Vx2—a?
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3 J\/4—x2dx
x2dx dx
5 _— 6 _ax
VI-x? x2A/1—x2
dx
7 | = x2Z 2
J(1+x2)2 8 [Vx2+a?dx (seel.2.62)
2
9 J X —25dx 10
X

4 J dx
V1+9x2

x3dx
\/9—x2
11

12 f\/xG—xS dx

14 fidx
(1 —x2)3/2

f\/l—i—xzdx
X

dx
J \/x6 —x4
13 J __ax
(1+x2)72

5[4
J (x2—9)3/2

x2dx sz dx

*16

*17 —_— 18
A/x2 =1 )C2+4
dx x2dx
19 | ——— *20 | ==
x2v/x2+1 V14+x2

21 (Important) This section started with=siné and

Jdx/N1—-x2=[df=60=sin"1x.
(@) Usex = cos# to get a different answer.
(b) How can the same integral give two answers ?

22 Computef dx/x \/x% — 1 with x = secf. Recompute with: =
cscl. How can both answers be correct ?

7 Techniques of Integration

34 Integratel/cosx and1/(1+ cosx) and+/1+cosx.

35 (@) x= gives [ dx/A/x? —1=In(sech +tanf).
(b) From the triangle, this answer i§ =In(x ++/x2—1).
Check thatlf /dx = 1/~/x%—1.

(c) Verify that coshf =1i(e/ +e=/)=x.  Then

f = cosh 1x, the answer in Example 8.

36 (@) x= gives [ dx/vx2+1=In(sech +tand).
(b) The second triangle converts this answergte: In(x +
Vx241). Check thatdg/dx = 1/4/x2 +1.
(c) Verify that sinhg = 1 (e8 —e¢) =x sog = sinfhLx.
(d) Substitute x =sinhg directly into [dx/vx2+1 and
integrate.

In 37-42 substitute x =sinh 6, tanh6. After

integration change back tox.

coshf, or

37

dx
2

dx
38 _
\x Jx«/l—xz

N
39 J\/x2—1dx 40 f x2 1a’x
X
</ 2
41 J dx 42 J 1+x dx
1—x2 x2

Rewrite 43-48 as(x +b)% +C or —(x —b)? 4+ C by completing

23 Integrate x/(x2+1) with x =tanf, and also directly as athe square

logarithm. Show that the results agree.

24 Show thatf dx/x+/x*—1= Fsec™1(x2).
Calculate the definite integrals 25—-32

a
25 J \a? —x2 dx = area of
—a

1
26 J (1 —x2)3/2 dx
—1

27 fl dx
54/1—x2
4 dx i dx
J QJ 2_1\3/2
1 A/x2-1 2 (x*—1)
L ydx L dx
30 J i1 = f 249
1 X +1 o X +9
1
32J \/1—x2dx = area of .
1/2

33 Combine the integrals to prove the reduction form@a# 0):

xn+1 n n—1
J dx:x——Jx dx
x2+1 n x2+1

28

43 x%2—4x+8 44 —x2+42x+8
45 x2—6x 46 —x2+410
47 x%242x+1 48 xZ4+4x—12

49 For the three functionsf(x) in Problems 43, 45, 47
integratel / f(x).

50 For the three functionsg(x) in Problems 44, 46, 48
integratel /+/g(x).

51 For jdx/(x2+2bx+c) why does the answer have different
forms forb2 > ¢ andb? < ¢ ? What is the answer #2 =¢ ?

52 What substitutionu =x+b or u=x—»b will remove the
linear term ?

dx dx
et b et
(@) Jx2—4x+c () _[3x2+6x

X dx
© J—x2+10x+c (@ _[sz—x

53 Find the mistake With x =sinfd and /1 —x2 =cos#f,
substitutingdx = cosf d6 changes

27 0
J co0do into J\/l—xzdx.

0 0
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54 (@) If x=tanfthen[v1+x2dx={ do. 56 Draw y=1/A/1—x2 and y=1/4/16—x2 to the same
(b) Convert%[sec 0 tanf +In(sech +tané)] back tox.

scale (” across and upt” across anq‘[" up).
(c) Ifx=sinh6 then[+v1+x2dx= | de.

(d) Convert}[sinh 6 coshd + 6] back tox.

These answers agree. In Section 8.2 they will give the length )
of a parabola. Compare with Probléim.62. J

57 What is wrong, if anything, with

i1
=sin""2?
55 Rescalex and y in Figure 7.5b to produce the equal area 0 \/1—x2
[ydx in Figure 7.5c. What happens tp and what happens

todx?
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I 7.4 Partial Fractions [

This section is about rational functionB(x)/Q(x). Sometimes their integrals
are also rational functions (ratios of polynomials). More often they are not. It is
very common for the integral oP /Q to involve logarithms. We meet logarithms
immediately in the simple cad¢/ (x —2), whose integral i$n |x — 2| + C. We meet
them again in a sum of simple cases:

1 3 4
f + ——|dx=In|x—=2|+3In|x+2|—4In|x|+C.
x—2 x+2 x
Our plan is to split P/ Q into a sum like this—and integrate each piece
Which rational function produced that particular sum ? It was

1 3 4 (x+2)(x0)+3(x=2)(x) —4(x=2)(x+2) —4x 416
x—2 x+2 x (x —2)(x +2)(x) T (x=2)(x+2)(x)
Thisis P/ Q. Itis aratio of polynomials, degreleover degre8. The pieces ofP are
collected into—4x 4 16. The common denominatdx —2)(x +2)(x) = x3 —4x
is Q. But | kept these factors separate, for the following reason. When we start with
P/Q, and break it into a sum of piecdsie first things we need are the factors of
0.

In the standard problem®/ Q is given. To integrate it, we break it up. The goal of

partial fractions is to find the pieces—to prepare for integratidhat is the tech-
nique to learn in this section, and we start right away with examples.

EXAMPLE 1 SupposeP/Q has the samé) but a different numerataP :

P 3x2+8x—4 A B C

— = = | +—. (1)

0 (x—-2)(x+2)(x) x—-2 x+4+2 x
Notice the form of those pieces! They are thgaftial fractions” that add toP/ Q.
Each one is a constant divided by a factotbfWe know the factors —2 andx + 2
andx. We don’'t know the constant$, B, C. In the previous case they wele3, —4.
In this and other examples, there are two ways to find them.

Method3 (slow) Put the right side ofl) over the common denominatg}:
3x24+8x—4 _A(x+2)(x)+ B(x —2)(x) + C(x —2)(x +2)
Q (x =2)(x+2)(x)
Why is A multiplied by (x +2)(x) ? Because canceling those factors will leave
A/(x —2) as in equatior{1). Similarly we haveB/(x +2) andC/x. Choose the

numbersA, B, C so that the numerators matchAs soon as they agree, the split-
ting is correct.

)

Method4 (quicker) Multiply equatior(1) by x — 2. That leaves a space:

3x?+8x—4 B(x—2) C(x—2
—_———= ( ) + ( ). 3
(x+2)(x) x+2 X
Now setx =2 and immediately you havel. The last two terms of3) are zero,
becauser —2 is zero wherx = 2. On the left sidex = 2 gives

3°+8(2)—4 24 .
W— 3 =3. (WhICh ISA).
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Notice how multiplying byx —2 produced a hole on the left side. Meth@d
is the ‘cover-up method Cover upx —2 and then substitute =2. The result
is3=A4+40+0, just what we wanted.

In Method1l, the numerators of equati¢®) must agree. The factors that multiply
B andC are again zero at=2. That leads to the samé&—but the cover-up method
avoids the unnecessary step of writing down equa@)n

Calculation of B Multiply equation(1) by x 4 2, which covers up théx + 2):

3x24+8x—4  A(x+2 C(x+2
_AwF) L CHD

(x—=2  (x) x-—2 x (4)

Now setx = —2, so A andC are multiplied by zero:

3(=2)%4+8(-2)—4 -8
—2-2 (= s 7%

This is almost full speed, b#) was not neededust cover up inQ and givex the
right value(which makes the covered factor zero).

Calculation ofC (quickes) In equation(1), cover up the factafx) and setx = 0:

3(0°+8(0)—4 _ —4

(0—-2)(0+2) —4 ®)
To repeat: The same result= 3, B = —1, C = 1 comes from Method.
x+2 A B

EXAMPLE 2 = + .
x—1)(x+3) x—1 x+3

First cover up(x — 1) on the left and set = 1. Next cover up(x + 3) and setx =
—3:
142 3 —3+2 —1
( )(1+3) 4 (=3—-1)( ) —4

The integral is3 In|x — 1|+ In|x + 3|+ C.

EXAMPLE 3 This was needed for the logistic equation in Section 6.5:

1 A B

- 4 _- 6
yle=by) 'y +c—by (©)

First multiply by y. That covers upy in the first two terms and changésto By.
Then sety = 0. The equation becomdgc = A

To find B, multiply by ¢ — by. That covers ug — by in the outside terms. In the
middle, A timesc — by will be zero aty = ¢/b. That leavesB on the right equal to
1/y =b/c on the left. Thend = 1/c and B = b/c give the integral announced in
Equation6.5.9:

dy  [dy b dy _In_y In(c —by) )
ch—by2 _Jc Jc(c—by) c c ’

It is time to admit that the general method of partial fractions can be very
awkward First of all, it requires the factors of the denomina@r When Q is a
quadraticax? + bx + ¢, we can find its roots and its factors. In theory a cubic or a
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quartic can also be factored, but in practice only a few are plessifor examplec* —
1is (x2—1)(x%2+1). Even for this good exampléwo of the roots are imaginary
We can splitc? — 1 into (x + 1)(x — 1). We cannot splitc2 4 1 without introducing
i.

The method of partial fractions can work directly with 4 1, as we now see.

3x242x+7
x2+1
This has another difficulty. The degree Bf equals the degree dp (= 2). Partial

fractions cannot start until P has lower degreeTherefore | divide the leading
termx? into the leading term3x2. That gives3, which is separated off by itself:

EXAMPLE 4 dx (aquadratic over a quadratic).

3x24+2x+7 L 2xtd
X241 T X241

®)

Note how3 really used3x? + 3 from the original numerator. That lettx + 4. Par-
tial fractions will accept a linear factor2x + 4 (or Ax + B, not justA) above a
quadratic

This example contain@x/(x2+ 1), which integrates tdn(x?+1). The final
4/(x%+1) integrates tot tan~! x. When the denominator is? + x + 1 we com-
plete the square before integrating. The point of Sections 7.2 and 7.3 was to make that
integration possible. This section gets the fraction ready—in parts.

The essential point is that we never have to go higher than quadritiesy
denominator Q can be split into linear factors and quadratic factor§here
is no magic way to find those factors, and most examples begin by giving them. They
go into their own fractions, and they have their own numerators—which acé dmel
B and2x + 4 we have been computing.

The one remaining questionvghat to do if a factor is repeatedrhis happens in
Example 5.

2x+3 A N B
(x—1)2 (x—1) (x—D*
The key is the new ternB/(x — 1)2. That is the right form to expect. Wittx — 1)

(x —2) this term would have beeB/(x —2). But when(x — 1) is repeated, some-
thing new is needed. To fin&, multiply through by(x — 1) and setx = 1:

EXAMPLE 5

2x+3=A(x—1)+ B becomes 5=B when x=1.

This cover-up method givesB. Then A=2 is easy, and the integral is
2In|x — 1] —5/(x —1). The fraction5/(x — 1)? has an integral without logarithms.

2x*+9x2+4 A LB Cx+D E
X2(x2+4)(x—1) x  x2  x244 x-—1
This final example has almost everything! It is more of a game tharalculus

problem. In fact calculus doesn’t enter until we integrate (and nothing is new there).
Before computingd, B, C, D, E, we write down the overall rules for partial fractions:

EXAMPLE 6

1. The degree ofP must be less than the degree @f Otherwise divide their
leading terms as in equati¢8) to lower the degree aP. Here3 < 5.

2. Expect the fractions illustrated by Example 6. The linear factoedx + 1
(and the repeated?) are underneath constants. The quadretig- 4 is under
a linear term. A repeatec? + 4)2 would be under a new x + G.
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3. Find the numberdl, B, C, ... by any means, including cover-up.
4. Integrate each term separately and add.

We could prove that this method always works. It makes better sense to show that
it works once, in Example 6.

To find E, cover up(x —1) on the left and substitute =1. Then £ =3. To
find B, cover upx? on the left and sek =0. ThenB =4/(0+4)(0—1) = —1.
The cover-up method has done its job, and there are several ways td,ffdD.
Compare the numerators, after multiplying through by the common denomifator

2x3 4+ 02 +4=Ax(x2+4)(x = 1) = (x> +4)(x = 1)+ (Cx + D)(x>)(x — 1) +3x23(x2 + 4).
The known terms on the right, frod = —1 and E = 3, can move to the left:
3x*3x3 4P Fax = Ax (P + 4 (x — 1)+ (Cx+ D)x?*(x — 1).
We can divide through by andx — 1, which checks thaB and E were correct:
—3x2 —4=A(x>+4)+(Cx+ D)x.

Finally x = 0 yields A = —1. This leaves—2x? = (Cx + D)x. ThenC = —2 and
D =0.

You should never have to do such a probleéhmever intend to do another one. It
completely depends on expecting the right form and matching the numerators.
They could also be matched by comparing coefficientsafc3, x2, x, I—to give
five equations ford, B,C, D, E. That is an invitation to human error. Cover-up is
the way to start, and usually the way to finish. With repeated factors and quadratic
factors, match numerators at the end.

7.4 EXERCISES

Read-through questions

The idea of __a fractions is to expressP(x)/Q(x) as a 1 Find the numberst ard B to split1/(x2 —x):
b of simpler terms, each one easy to integrate. To begin, | 4 B
the degree ofP should be__c  the degree ofQ. Then Q —

is split into __d  factors like x—5 (possibly repeated) and Xr= xx—l

quadratic factors liker? +x + 1 (possibly repeated). The quadrati¢qyer upx and setx =0 to find 4. Cover upx—1 and set
factors have two__e  roots, and do not allow real linear, _ | (o find B. Then integrate.

factors. ) )
. . . 2 Find the numberst and B to split1/(x2 —1):
A factor like x—5 contributes a fractionA/__f . Its
integral is g . To compute A, cover up __h in the 1 A n B
denominator of P/Q. Then setx=__i , and the rest of x2—1 x—1 x4+1°

P/Q becomesA. An equivalent method puts all fractions over
a common denominator (which is j ). Then match the Multiply by x —1 and setr = 1. Multiply by x + 1 and setx = —1.
k__. Atthe same point =__| _this matching gives. Integrate Then find4 and B again by method —with numerator
A(x+1)+ B(x—1) equal tol.

A repeated linear factor(x —5)2 contributes not only
A/(x—5) but alsoB/__m . A quadratic factor likex2+x+1 Express the rational functions 3—16 as partial fractions
contributes a fraction__n_/(x2+x+1) involving C and
D. A repeated quadratic factor or a triple linear factor would, 1 4 — =
bring in (Ex+ F)/(x24+x+1)? or G/(x —5)3. The conclusion (x—=3)(x—2) (x=3)(x=2)

is that anyP /Q can be split into partial_o__, which can always x24+1 5 1

be integrated. ME+D(x+2) x3—x

X
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11

13

15

16

17

Match the numerators on the far left and far rightvhy does

3x+1 3x+1
x2 (x—1)2
3x2 1
. . 10 —
powy (divide first) G—D2+1)
1 X
- 12—
x2(x—=1) xc—4

1 X241, )
TGN —2)(x=3) 14 P (divide first)

1 1
o1 DG —DE2ED)

A
remember the- term)
X

1
x2(x—1) (

Apply Method1 (matching numerators) to Example 3:

1 A B

_4 _ A(c—by)+ By
cy—by* y c—by

y(e—=by)

Ac =17 Why does—hA+ B =07 What ared andB ?

18

Over a common denominator, try to match the numerators. What to

What goes wrong if we look fod and B so that

x2 A B

(x—3)(x+3) x—3 ’

+x+3'

do first?

19

3x2 3x2 A

Bx+C

Split +
X

31 o De24atD) MOy
(@ Coverupx —1and setx =1to find A.
(b) Subtract4/(x — 1) from the left side. FindBBx + C.
(c) Integrate all terms. Why do we already know

In(x>—1=In(x—1)+In(x2+x+1)?

xX24+x+1"

7 Techniques of Integration

20 Solvedy/dt =1—y? by separating dy/1—y? = [dt. Then

1 1 _ 2 1
1—y2  (1=-y»0+y) 1=y 1+y
Integration gives%ln =t+C. With yo =0 the constant
isC = . Taking exponentials gives . The solution is
y= . Thisis theS-curve

By substitution change 21-28 to integrals of rational functions.
Problem 23 integratesl/ sin 6 with no special trick.

e*dx 1—+/x
21 —_—
Jezx—ex 22 _[I—I—\/;dx
J sinf do dt
- 24 S
1—cogd J(et—e*t)2
1 X 3/
25 J te dx 26 al 8dx
1—eX X
J dx J dx
27 | — 28 | ————
1+vx+1 Vx+ Yx
29 Multiply this partial fraction byx —a. Then letx — a:
! 4
0(x) x—a '

Show thatd = 1/Q’(a). Whenx = a is a double root this fails be-
causeQ’(a) = .

1
30 FindAin =
x8—1 X —

+---. Use Problen29.

31 (for instructors only) Which rational function®/Q are the
derivatives of other rational functions (no logarithms) ?
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I 7.5 Improper Integrals [

“Impropel’ means that some parts(i‘f7 y(x) dx becomednfinite. It might beb ora
or the functiony. The region under the graph reaches infinitely far—to the right or left
or up or down. (Those come froin= o0 anda = —o0 andy — o0 andy — —a0.)
Nevertheless the integral magdnverge’ Just because thregionis infinite, it is not
automatic that thareais infinite. That is the point of this section—to decide when
improper integrals have proper answers.

The first examples show finite area whiee= oo, thena = —o0, theny = 1/4/x
at x = 0. The areas in Figure 7.6 atel, 2:

“dx 17" 0 0 Udx 1
PR =1 oY dx = e* =1 — =24/ =2.
Jl x2 xi|1 J/c e ]71 Jo VX \/;]0

(%)

}
I
=

"
1-

1
s y=
' X VX
1
) area =2
' area =1 el
[=.-]

1 oo —co -1 1

Fig. 7.6 ~ The shaded areas are finite but the regions go to infinity.

In practice we substitute the dangerous limits and watch what happens. When
the integral is—1/x, substitutingb = oo gives “—1/00 = 0.” When the integral is
e*, substitutinga = —o0 gives “e~™ = 0.” | think that is fair, and | know it is suc-
cessful. But it is not completely precise.

The strict rules involve a limit. Calculus sneaks up bfvo ande~* just as it
sneaks up off)/0. Instead of swallowing an infinite region all at once, the formal
definitions push out to the limit:

s b b b
DEFINITION J y(x)dx:blim J y(x)dx J y(x)dx = lim J y(x)dx.
a — L —or a——L

-Ja a
The conclusion is the same. The first examples convergédlt@. Now come two
more examples going out to= co:
[s's}

d
%:Inx]l — 0 1)

*dx xlpj|7“ 1
1

o0
The area undel/x is infinite: f
1

=—

The area under/x? is finiteif p > 1: f = T
p—

p X 1=p
The area undel/x is like 1 + % + % + i + -+, which is also infinite. In fact the sum
approximates the integral—the curved area is close to the rectangular area. They go
together (slowly to infinity).

A larger p brings the graph more quickly to zero. Figure 7.7a shows a finite area
1/(p— 1) =100. The region is still infinite, but we can cover it with strips cut out of
a square! The borderline for finite aregps= 1. | call it the borderline, bup =1 is
strictly on the side of divergence.
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The borderline is alsgp = 1 when the function climbs they axis. At x =0, the
graph ofy = 1/x? goes to infinity. Forp = 1, the area undet/x is again infinite.
But atx = 0itis asmall p (meaningp < 1) that produces finite area:

1

1 1 1—
dx 1 d> 1P 1
l:|n,x] — 0 @2 - ifp<l. (@3
o X o XP 1=ply 1=p
Loosely speakingIn 0 = 00.” Strictly speaking we integrate from the point= a
1 .
nearzero, to getfa dx/x = —Ina. As a approaches zero, the area shows itself as

infinite. Fory = 1/x2, which blows up faster, the areal /x]} is again infinite.

For y = 1/4/x, the area fronD to 1 is 2. In that casep = % For p =99/100
the area id /(1 — p) = 100. Approachingp = 1 the borderline in Figure 7.7 seems
clear.But that cutoff is not as sharp as it looks

Fig. 7.7  Graphs ofl /x? onboth sides ofp = 1. | drew the same curves!

Narrower borderlineUnder the graph of / x, the area is infinite. When we divide
by In x or (In x)?2, the borderline is somewhere in between. One has infinite area
(going out tox = o0), the other area is finite:

S . ~ oy 17
L x(lnx)zln(lnx)]e =0 L W:—m} =1. (4)

e

The first isj du/u with u =In x. The logarithm ofin x does eventually make it to
infinity. At x = 101, the logarithm is nea23 andIn(In x) is near3. That is slow!
Even slower idn(In(In x)) in Probleml1 1. No function isexactlyon the borderline.
The second integral in equatid¢4) is convergent (td). It is fa’u/u2 with u =
In x. At first | wrote it with x going from zero to infinity. That gave an answer |
couldn’t believe: )
* dx 1 j|f‘

o x(Inx)2 “Inx 0
There must be a mistake, because we are integrating a positive function. The area
can’t be zero. It is true thdt/ In b goes to zero ab — oo. It is also true that /In a

goes to zero ag — 0. But there is another infinity in this integralhe trouble is at
x =1, whereln x is zero and the area is infinite.

‘=0(??)

EXAMPLE 1 The factore * overrides any power? (but only asx — o0).

s

[0/ x2% % dx =50! but [0 xle=* dx = 0.

The firstintegral ig50)(49)(48) - - - (1). It comes from fifty integrations by parts (not
recommended). Changirg) to 1, the integral defines%‘factorial.” The product
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2(=%)(=2)--- has no way to stop, but somehay is 1+/7. See Problents.

The integralf,” x®¢~*dx = 1 is the reason behind “zero factoria 1. That seems
the most surprising of all.

The area under—* /x is (—1)! = co. The factore—* is absolutely no help at =
0. That is an example (the first of many) in which we do not know an antiderivative—
but still we get a decision. To integrate™ /x we need a computer. But to decide that
an improper integral is infinite (in this case) or finite (in other cases), we rely on the
following comparison test

7C (Comparisontest Suppose thad < u(x) < v(x). Thenthe area undei(x
is smaller than the area unde(x):

Ju(x)dx <ooif [v(x)dx <o if [u(x)dx =oothen [v(x)dx = o0.

Comparison can decide if the area is finite. We don’t get the exact area, but we learn
about one function from the other. The trick is to construct a simple function (like
1/x?) which is on one side of the given function—and stays close to it:

i i (™" dx
EXAMPLE 2 f converges by comparison Wltﬁ — =1
1 1

x244x X

o0

EXAMPLE 3 fL dx diverges by comparison witl - dx =
L VAt Y WA

U dx , . (Ydx
EXAMPLE 4 > diverges by comparison with — = 0.
o X*+4x 0 5x

1

1
dx X

EXAMPLE 5 ——— converges by comparison with — =1.
fo Va1 oEges By comp o 1

In Examples 2 and 5, the integral on the right is larger than the integral on the left.
Removing4x and 4/x increased the area. Therefore the integrals on the left are
somewhere betweehandl.

In Examples 3 and 4, wimcreasedthe denominators. The integrals on the right
are smaller, but still they diverge. So the integrals on the left diverge. The idea of
comparing functiong seen in the next examples and Figure 7.8.

1

o0
EXAMPLE 6 f e~ dx is belowf
0

ldx—i-f e *dx=1+1.
0 1

¢ dx | ¢ dx
EXAMPLE 7 —— is above =0
1 Inx 1 xInx

EXAMPLE 8 JI dx is belowf1 dx —|—f dx =242
0 Vx—x2 0o VX Jo V/1—x '
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[— arca = —oo

Fig. 7.8 Comparing u(x) to v(x): [{ dx/Inx=00 and _[01 dx/N/x—x2<4. But
00—00 #0.

There are two situations not yet mentioned, and both are quite common. The first is
an integral all the way frorx = —o0 to b = 4-00. That is split into two parts, and
each part must convergeBy definition, the limits at-oco and+o0 are keptsepa-

rate:

b

j_], y(x)dx = f/ y(x)dx+ J: y(x)dx = aﬂ)rp% JO y(x)dx +17|i_rI}LJ y(x) dx.

a 0

The bell-shaped curve = e—** covers afinite area (exactlyr). The region extends
to infinity in both directions, and the separate area%a\y/e—r. But notice:

|, xdx is not defined even thougﬁfb x dx =0 for everyb.

The area undey = x is +00 on one side of zero. The area+4s0 on the other side.
We cannot accepto — oo = 0. The two areas must be separately finite, and in this
case they are not.

EXAMPLE 9 1/x has balancing regions left and rightot= 0. Computeﬂ1 dx/x.

This integral does not exist. There is no answer, even for the region in Figure 7.8c.
(They are mirror images becaudé¢x is an odd function.) You may feel that the
combined integral from—1 to 1 should be zero. Cauchy agreed with that—his
“principal value integral” is zero. But the rules say no:— o0 is not zero.

7.5 EXERCISES

Read-through questions

An improper integralj:y(x) dx has lower limita=__a _or Suppose)d < u(x) < v(x) forall x. The convergence of j im-
upper limit b=_b or y becomes__c  in the interval plies the convergence of k . The divergence of u(x)dx__|
a<x<b. The example_[l‘f“a’x/x3 is improper because_d . the divergence offv(x)dx. From —oo to oo, the integral of

We should study the limit of[*dx/x3 as__e . In practice 1/(¢*+e™*) converges by comparison with m . Strictly

we work directly with—1x=2]° =__ f . For 1 the improper speaking we split(~co,c0) into (_n__, 0) and 0, _o ).
y 2] p= prop IChanging to 1/(e¥—e~*) gives divergence, because p .

integral g is finite. For p<1 the improper integral - ] ) i i
h__is finite. Fory = e—* the integral fron0 to oo is __i Also Ln dx/sinx diverges by comparison with q . The
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regions left and right of zero don't cancel because—o 28 Compute(—%)!by substitutingr = u?:

IS r

Decide convergence or divergence in 1-16.

integrals that converge.
J"“‘ dx
l _
1 x¢

Jl dx
3 -
0o V1—x

e
9 J In x dx (by parts)
0

N ~ dx
JIOO x(Inx)(InIn x)

”_/_‘\
13 J cox dx
0

In 17-26, find a larger integral that converges or a smaller

integral that diverges.

L dx
17 J 3

1 X +1
19 Jf Vxdx

0

x2+1

’_/_‘\
21 J e *sinxdx
1
> 2
23 J XXX dx
0

J"“‘ Siré x dx

2
o x2

ol

N

10

12

Lax
o x7

Jl dx
0 1—x
Jl _dx
—14/1—x2
98]

J sinx dx

J ) x e *dx (by parts)
0

Jl dx
8
0 x0+1

20

22

24

26

Jl e *dx

0 1—x
vsl

J xXdx
1

1
J vV—=Inxdx
0

”_/_‘\
o Grs)e
1 \x 1+x

27 If p >0, integrate by parts to show that

LD =X Iy — L p—1,—x
Jo xPeXdx=p [y xP~le " dx.

Compute the

I’ xV2e=Xgx = =/ (known).
Then apply Probler@7 to find (1)!
29 Integratef,” x2 e~ dx by parts.

30 The beta functionB(m,n) =f01 xM=1(1 —x)"1dx is finite
whenm andn are greater than

31 A perpetual annuitypays s dollars a year forever. With
continuous interest rate its present value igg = f(‘)f“ se~¢'dt. To
receive 3$000/year atc = 10%, you deposityg =

32 In a perpetual annuity that pays once a year, the present
vaue is yo=s/a+s/a*>+---= . To receive $000/year

at 10% (now a=1.1) you again deposityy=

Infinite sums are like improper integrals.

33 The work to move a satellite (mass) infinitely far from
the Earth (radiuR, massM) is W = [z GMm dx/x?. Evaluate
W. What escape velocityat liftoff gives an energy%mvg that
equalsi ?

34 The escape velocity for a black hole exceeds the speed of
light: vo>3-10% m/sec. The Earth ha&M = 4-101*m3/sel.

If it were compressed to radiusk= , the Earth
would be a black hole.

35 Show how the area undey =1/2* can be covered (draw
a graph) by rectangles of ard&{—%+%+--- =2. What is the
exact area from =0tox =00?

36 Explain this paradox:

b d = d
J 2 0 for everyb but J rar diverges
_p 14+x2 o 14x2

37 Compute the area betweem=secx and y=tanx for
0 < x <m/2. What is improper ?

*38 Compute any of these integrals found by geniuses:

—1/2d 0O ,—X _ ,—2Xx
fu:ﬂ f £ 7  dx=In2
1+x 0 X

© x
J xe *cosxdx=0 J cosx2dx =~/n/8.
0

0

”_/_‘\
The first integral is the definition ofp! So the equation is 39 For whichpisj dix 0 ?
0

pl= . In particular 0! =

. Another notation for

xP+x—P

p! is T'(p+1)—using the gamma functionemphasizes thap 40 Explain from Figure 7.6c why the red area & when

need not be an integer.

Figure 7.6a has red aréa
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