Lecture 16. Music

Outline for Today:

O. Brief review of Last Class on Audition and Speech I. Music

Evolutionary Puzzle: why do humans make music?

Is it even an evolved capacity?

Is it innate?

Is it universal? *What* is universal?

II. Is music a distinct capacity in mind and brain?

Amusia in patients with brain damage

Congenital amusia

III. Cortical Specializations for Music? Distinct from speech and language?

- fMRI
- ECoG

IV. Quiz

Review of Lecture 15

I. Introduction (computational theory)

Sound is pressure waves travelling through air

We extract LOTS of info from sound: object and material recognition, locations of sources, etc These problems are ill-posed, e.g.:

separating sound sources (cocktail party problem)

reverb: echoes are on top of original sound, need to pull apart

Both problems solved by using knowledge of the properties of real-world sound.

II. Speech

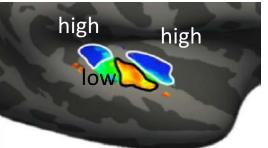
Phonemes: speech sounds that distinguish words in a given language Includes vowels (with lots of harmonics)

and consonants (few harmonics) Computational challenges:

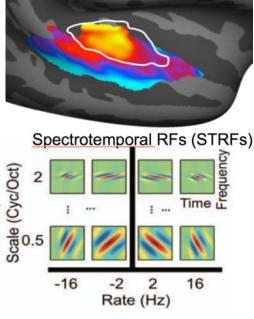
talker variability interdependence of voice and speech

III. Up to cortex

Primary auditory cortex is: Tonotopic (high, low, high) Well modeled by spectrotemporal filter (STRF) model


Today: MUSIC!

An important transition in the course to *uniquely human functions*:


the coolest things to study (who we are as humans!), and the hardest (why?)

Why bother with such a fluffy topic as music?

Bottom figures © 2018 Norman-Haignere, McDermott. License: CC BY. Source: Norman-Haignere SV, McDermott JH (2018) PLoSBiol 16(12): e2005127. <u>https://doi.org/10.1371/journal.pbio.2005127</u>

correlation of resp to natural sounds & their STRF-model versions

Why Music?

Not fluffy, but *fundamental*:

Music is a **uniquely** and **universally** human capacity:

- present in some form in every human society
- differs substantially from its closest analogues in animals

Music is important to humans:

• we have been doing it for a long time 40,000 year old flutes

singing probably goes back much farther maybe even before language???

- arises early in development young infants very interested in music sensitive to beat and melody (independent of absolute pitch)
- people pay a lot of \$ for it
 \$43 billion in sales in 2018

These facts raise an obvious question:

Why do humans create and like music?

LOST AND FOUND Scientists say that this bone flute, found at Hohle Fels Cave in Germany, is at least 42,000 years old. Jensen/University of Tubingen

Ancient bone flute © Jensen/University of Tübingen. All rights reserved. This content is excluded from our Creative Commons license, see <u>https://ocw.mit.edu/fairuse</u>.

Major puzzle: Why do we have music?

Is music an evolved capacity, specifically shaped by natural selection? (and if so, what was its selected-for function?)

Many thinkers have struggled with this question, including Darwin

"As neither the enjoyment nor the capacity of producing musical notes are faculties of the least direct use to man in reference to his ordinary habits of life, they must be ranked amongst the most mysterious with which he is endowed...."

Darwin's speculation...

Major puzzle: Why do we have music?

Is music an evolved capacity, specifically shaped by natural selection? (and if so, what was its selected-for function?)

Yes:

Darwin: sexual selection: *"[I]t appears probable that the progenitors of man, either the males or females or both sexes, before acquiring the power of expressing their mutual love in articulate language, endeavored to charm each other with musical notes and rhythm"*

Mehr & Krasnow (2017): managing parent-offspring conflict:

"infant-directed song arose in an evolutionary arms race between parents and infants, stemming from the dynamics of parent-offspring conflict" (infant needs to know parent is attending, parent has other needs)

Et cetera...

No:

Pinker (1994): Music is *"auditory cheesecake, an exquisite confection crafted to tickle the sensitive spots of at least six of our mental faculties."* If it vanished from our species, *"the rest of our lifestyle would be virtually unchanged"*

Put another way:

aha! an empirical question! stay tuned...

Music is not an evolutionary adaptation at all, stay funed... but an alternate use of neural machinery that evolved to serve other functions, like speech and language.

If music is an evolved capacity it should be a) innate & b) in all human societies. Is it?

Music Perception in Infants

Is music innate?

If specialized brain machinery for music in adults would that prove innateness?

If we find sensitivity to music in newborns?

problem: fetuses can hear in the womb.

So, a real challenge to answer. (Maybe impossible?) But we can ask *how early* infants are sensitive to music. Young infants are highly attuned to music:

are sensitive to pitch and rhythm

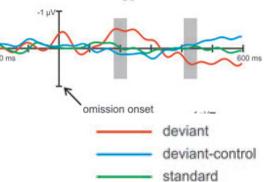


Figure © source unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

2-3 day old sleeping infants show beat induction (ERPs)

by 5-6 months can recognize a familiar melody when it is shifted in pitch

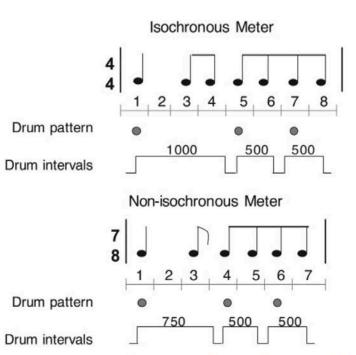
i.e., they use relative pitch, like adults, and unlike animals

5-month-olds familiarized with a melody recognize it 8 months later

Newborn infants' appreciation of music is not culturally specific

infants do not prefer consonance over dissonance

they are insensitive to key


they detect timing changes as well in complex foreign rhythms.....

If music is an evolved capacity it should be a) innate & b) in all human societies. Is it?

Infants' Response to Music: Meter

6-month-old US infants "get" rhythmic meters from unfamiliar nonisochronous rhythm By 12 months they can only "get" their own culture's rhythms Brief exposure to unfamiliar meters is sufficient for 12-month-olds to perceive the relevant distinctions but not for adults Sound familiar? perceptual narrowing!

(same deal with speech phonemes)

Fig. 1. One measure each of isochronous and nonisochronous meter familiarization excerpts with a long-short-short drum accompaniment, depicted in musical notation and graphical form. Each count of the measure is numbered to illustrate that isochronous meter excerpts consist of eight counts per measure, whereas nonisochronous meter excerpts contain seven counts per measure. The intervals in the isochronous meter drum pattern form a longto-short ratio of 1,000:500 or 2:1; the intervals in the nonisochronous meter drum pattern form a long-to-short ratio of 750:500 or 3:2.

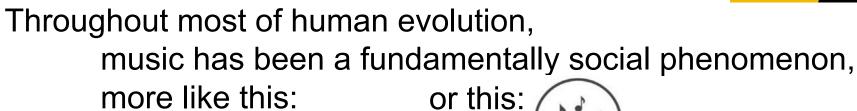
Figure © 2005 Hnnon and Trehub. This content is excluded from our Creative Commons license. See <u>https://ocw.mit.edu/fairuse</u>. Source: PNAS August 30, 2005 102 (35). <u>https://doi.org/10.1073/pnas.0504254102</u>

maybe ???

If music is an evolved capacity it should be a) innate & b) in all human societies. Is it?

What is Music, Anyway?

Notoriously hard to define it..... John Cage (1959)


> Video of John Cage's "Water Walk" as performed in 1960 by the composer on the TV show I've Got a Secret © CBS, Inc

But there are some things we can say.....

What is Music All About? Music is fundamentally *social!*

A reminder.....

You may think of music as a solitary enterprise..... But this is a very recent cultural invention

discrete pitches? isochronous beats?

An empirical question!

iPod sillouette ad screenshot © Apple, Inc. Images of drum circle and mother with child © sources unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

Are there "universals" of music?

Do Universals of Music E

<u>Savage et al (2015):</u>

304 recordings of music from all over the world:

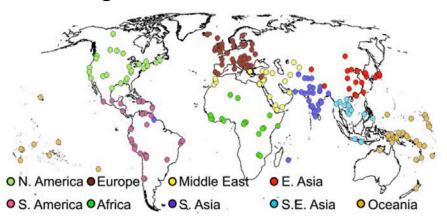


Fig. 1. The 304 recordings from the Garland Encyclopedia of World Music show a widespread geographic distribution. They are grouped into nine

Map & table © 2015 Savage, Brown, Sakai, and Currie. All rights reserved. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse. Source: PNAS July 21, 2015 112 (29) 8987-8992; https://doi.org/10.1073/pnas.1414495112

Found:

No absolute universals, but many regularities:

1. Melodies are usually made up of a limited set of discrete pitches (seven or fewer), which form part of a scale that is divided into unequal and relatively small intervals (a perfect 5th or less).

2. Most music also has a regular pulse (an isochronous beat), usually with 2 or 3 subdivisions, and a limited set of rhythmic patterns.

usic Exist?	\square	Γ			Re	gio	nal			
	G G G G lobal	GAfrica	OS. America	ON. America	S.E. Asia	OS. Asia	OMiddle East	E. Asia	GEurope	Oceania
1) 2- or 3-beat subdivisions	Ō	\bigcirc	0	$\overline{\bigcirc}$	⊕ S.	\bigcirc	$\overline{\mathbb{O}}$	ЭĒ.	$\overline{\mathbb{O}}$	Ō
2) Non-equidistant scale	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\odot	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\odot
3) ≤7 scale degrees	\odot	\odot	\bigcirc	\bigcirc	\bigcirc	\odot	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4) Chest voice	\odot	\bigcirc	\odot	\bigcirc	\odot	\odot	\bigcirc	\bigcirc	\odot	$ \mathbf{O} $
5) Discrete pitches	0	\odot	\bigcirc	\bigcirc	\bigcirc	\odot	\odot	\bigcirc	\bigcirc	•
6) Motivic patterns	$ \mathbb{O} $	\odot	\bigcirc	lacksquare	\odot	\odot	●	•	\bigcirc	lacksquare
7) Descending/arched contour	0000000	\bigcirc	\odot	•	●	\odot	\odot	•	ூ	\odot
8) Word use	\odot	lacksquare	\odot	\mathbb{O}	\bigcirc	\odot	\odot	\odot	\odot	O
9) Small intervals	\odot	\odot	•	●	\bullet	\odot	\bigcirc	●	●	0
10) Isochronous beat	$ \mathbf{O} $	\odot	\odot	•	\odot	\odot	O	•	•	0
11) 2-beat subdivisions	•	•	●	•	\bigcirc	•	•	•	O	0
12) Short phrases	0	\odot	\bigcirc	•	O	O	0	•	0	0
13) Instrument use	0	•	0	0	0	0	•	0	0	0
14) Male performers	0	0	0	0	0	0	0	0	0	0
15) Metrical hierarchy	0	0	0	0	0	0	0	0		0
16) Group performance	0	0	0	0	\bigcirc	0	0	•	0	0
17) Voice use	0	0	0	0	0	0	•	0	0	0
18) Few durational values	0	0	0	0	0	0	0	0	0	0
19) Sex segregation	0	0	•	0	0	0	0	0	0	0
20) Phrase repetition	0	0	0	0	0	0	0	0	0	0
21) Percussion use		0	•	0	0	0	0	0	0	0
22) Vocal embellishment	0	0	0	0	0	0	0	0	0	0
23) Syllabic singing	0	0	0	0	0		0	0	0	0
24) Vocable use	0	0	0	0	0	0	0	0	0	0
25) Loud volume	0	0	0	0	0	0	0	0	0	0
26) Membranophone use	0	0	0	0	0	0	0	0	0	0
27) High register	0	0	0	0	0	0	0	0	0	0
28) Idiophone use	0	0	U	0	0	0	0	0	0	0
29) Dance accompaniment	0	0		0			0		0	0
30) Dissonant homophony	0	-	U		NA		0	0		0
31) Aerophone use	-		0	0		-		0	0	0
32) Pentatonic scale	U	•	0	U	0	U	U	O	•	Ø

Do Universals of Music Exist?

Savage et al (2015):

304 recordings of music from all over the world:

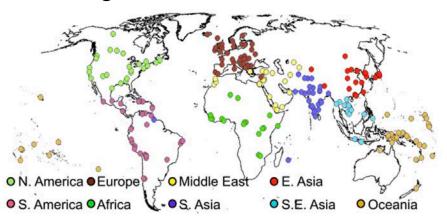


Fig. 1. The 304 recordings from the Garland Encyclopedia of World Music show a widespread geographic distribution. They are grouped into nine

Map & table © 2015 Savage, Brown, Sakai, and Currie. All rights reserved. This content is excluded from our Creative Commons license, see <u>https://ocw.mit.edu/fairuse</u>. Source: PNAS July 21, 2015 112 (29) 8987-8992; https://doi.org/10.1073/pnas.1414495112

• No absolute universals, but many regularities:

"The closest thing to an absolute universal was [song containing]... discrete pitches or regular rhythmic patterns or both, which applied to almost the entire sample, including instrumental music. However, three musical examples from Papua New Guinea containing combinations of friction blocks, swung slats, ribbon reeds, and moaning voices contained neither discrete pitches nor an isochronous beat."

usic Exist?	\square	Regional								
	⊖ ⊖ ⊖Global	GAfrica	OS. America	ON. America	S.E. Asia	GS. Asia	OMiddle East	E. Asia	GEurope	Oceania
1) 2- or 3-beat subdivisions	O	0	0	\bigcirc	⊕ S.	\bigcirc	$\overline{\mathbb{O}}$	⊕ Ei	$\overline{\mathbb{O}}$	\bigcirc
2) Non-equidistant scale	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\odot	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\odot
3) ≤7 scale degrees	0	\odot	\bigcirc	\bigcirc	\bigcirc	\odot	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4) Chest voice	\odot	\bigcirc	\odot	\bigcirc	\odot	\odot	\bigcirc	\bigcirc	\bigcirc	lacksquare
5) Discrete pitches	0	\odot	\bigcirc	\bigcirc	\bigcirc	\odot	\odot	\bigcirc	\bigcirc	\bullet
6) Motivic patterns	\odot	\odot	\bigcirc	lacksquare	\odot	\odot	●	●	\bigcirc	lacksquare
7) Descending/arched contour	0	\bigcirc	\odot	\bullet	●	\odot	\odot	●	\bullet	\odot
8) Word use	\odot	\bullet	\odot	\mathbb{O}	\bigcirc	\odot	\bigcirc	\odot	\odot	O
9) Small intervals	0	\odot	•	●	•	0	\bigcirc	●	●	\odot
10) Isochronous beat	\odot	\odot	${\mathbb O}$	0	${f O}$	${f O}$	O	0	•	lacksquare
11) 2-beat subdivisions	0		●	•	\bigcirc	•	•	0	O	\odot
12) Short phrases	\bullet	\odot	\bigcirc	•	O	O	O	0	\odot	lacksquare
13) Instrument use			\odot	●	\odot	\bigcirc	●	\odot	O	•
14) Male performers	0	•	0	0	0	0	•	O	0	\odot
15) Metrical hierarchy	0	0	0	0	0	•	•	0	•	0
16) Group performance	Ð	0	0	0	\bigcirc	\odot	O	•	0	0
17) Voice use		•	0	0	O	O	•	O	0	•
18) Few durational values	Ð	lacksquare	\odot	0	0	$ \mathbf{O} $	O	O	0	lacksquare
19) Sex segregation		0	•	0	•	0	•	0	0	0
20) Phrase repetition	0	0	Ο	0	0	0	0	0	0	0
21) Percussion use		•	•	0	0	•	0	0	0	0
22) Vocal embellishment	0	0	0	0	0	0	0	0	0	0
23) Syllabic singing	0	0	•	•	0	0	6	0	0	0
24) Vocable use	0	0	0	6	0	0	0	0	0	0
25) Loud volume	0	0	0	0	U	•	0	0	0	0
26) Membranophone use	0	0	0	0	0	0	0	0		0
27) High register	0	0	U	U	0	U	0	U	0	0
28) Idiophone use	0	0	U		0	6	U	U	•	0
29) Dance accompaniment		5					0		0	0
30) Dissonant homophony			-		NA	Q		U		0
31) Aerophone use	0		0	0	0	0		V	U	-
32) Pentatonic scale	U	•	U	•	U	U	•	\mathbf{O}	•	

Do Universals of Music Exist?

Test case: Consonance vs dissonance.

Why do we like this (consonant):

Is this preference shaped by biology? culture (Western music)?

To find out, test the Tsimane: a native society living in a remote village in the Amazon rainforest.

Tsimane' lack televisions, and have limited access to music via radio. Village lacks electricity and tap water, is inaccessible by road, and can be reached only by canoe.

televisions, and have

More than this (dissonant):

Photo from the Tsimimane project © UCSD Anthropology. All rights reserved. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

Preference for consonance> dissonance is completely absent in the Tsimane!

Consistent with lack of preference in infants.

McDermott et al, Nature (2016)

Lecture 16. Music

Outline for Today:

O. Brief review of Last Class on Audition and Speech I. Music

Evolutionary Puzzle: why do humans make music?

Is it even an evolved capacity?

Is it innate?

Is it universal? *What* is universal?

II. Is music a distinct capacity in mind and brain?

Amusia in patients with brain damage Congenital amusia

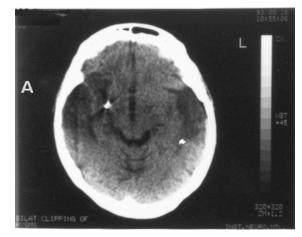
III. Cortical Specializations for Music? Distinct from speech and language?

- fMRI
- ECoG

IV. Quiz

Patient Studies: Acquired 'Amusia'

Table 1 Case reports of selective impairment and selective sparing in theauditory recognition of words, tunes and other meaningful sounds

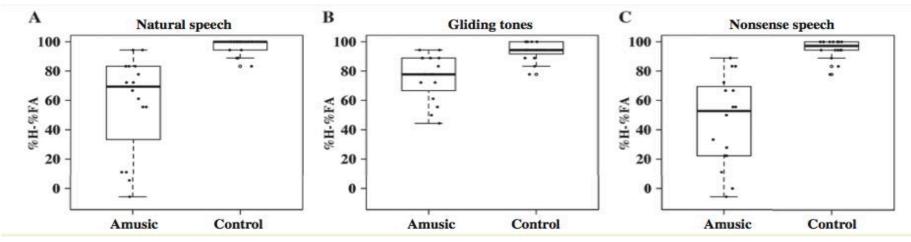

	Reports	Auditory domains			
		Tunes	Words	Other familiar sounds	
Impaired melody recognition	C.N. and G.L. ¹⁰		+	+ (+ voices)	
without impaired	I.R. ¹¹ H.V. ¹² H.J. ¹³	_	+ +	+ +	
speech perception	H.J. ¹⁵ 1 case ¹⁴ K.B. ¹⁵				
	11 cases of congenital amusia ¹⁷	-	+	+ (+ voices)	
	1 case ¹⁸	+	-	+	
Impaired speech	1 case, during recovery ¹⁹	+	-	+	
recognition	N.S. ²⁰	+)	+	
without impaired	G.L. ²¹	+	_	_	
melody recognition	1 case ²²	+	_		
	1 case ²³	+	_	_	
	+ normal; – impaired.				

Double dissociation (sort of)

Annotated table above © Springer Nature. All rights reserved. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse. Source: Peretz, I., Coltheart, M. *Nat Neurosci* 6, 688–691 (2003). https://doi.org/10.1038/nn1083

Patient Studies: Acquired 'Amusia' What about Congenital Amusia?

- CN & GL
 - Bad melody recognition
 - Intact rhythm perception
 - Relatively intact language
- But...



Brain scan © source unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

- Probably impaired pitch perception
- Difficulty with prosodic voice tasks
- So this may be about pitch (for both music and speech), not music per se

Congenital Amusia

- 4% of population. Inability to recognize familiar melodies, "wrong notes"
- Primary difficulties with music not speech
- But seems to be caused by 'fine-grained' pitch contour deficit
- Most of you all assumed pitch contour in speech = pitch contour in music True? Measure performance on same/different task on small but ecologically valid intonational pitch contrasts (statement vs question?)

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse. Source: F. Liu, et al. Brain, Volume 133, Issue 6, June 2010, 1682–1693, https://doi.org/10.1093/brain/awq089

Liu et al., 2010 <u>Conclusion</u>: Like acquired amusia, congenital amusia seems to be not a domainspecific deficit in music, but a more general deficit in pitch perception. But: your reading from today: is it really just pitch?

Conclusions from Patient Literature

- Suggestive evidence for specialization but no clear dissociations
- Musical deficits are frequently associated with more basic difficulties in pitch perception.
- Many possible components of music...
 - pitch, interval, key, melody, beat, meter.....

what can fMRI tell us?

Lecture 16. Music

Outline for Today:

O. Brief review of Last Class on Audition and Speech I. Music

Evolutionary Puzzle: why do humans make music?

Is it even an evolved capacity?

Is it innate?

Is it universal? *What* is universal?

II. Is music a distinct capacity in mind and brain?

Amusia in patients with brain damage Congenital amusia

III. Cortical Specializations for Music? Distinct from speech and language?

- fMRI
- ECoG

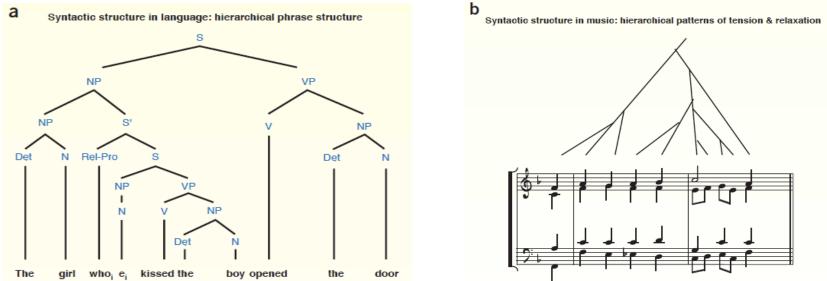
IV. Quiz

Tierney et al (2013): A Musical Illusion

You will hear a speech clip, then a subset of it will be repeated many times, then you will hear the original clip again. Listen carefully:

fMRI Blocked design, just listen and note if it sounds like speech or music

Brain images © unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.


Figure 2. Between-subjects surface-based average showing greater response for song versus speech stimuli.

Cool, but ambiguous: does this reflect pitch or melodic contour? Let's get serious...

Does Music Recruit Neural Machinery for Language?

Many have noted the commonalities between music and language:

- Both are distinctively human, natively auditory and unfold over time
- Both have complex hierarchical structure

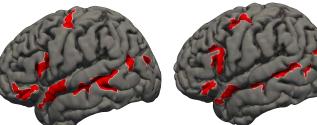
© Wiley. All rights reserved. This content is excluded from our Creative Commons license, see <u>https://ocw.mit.edu/fairuse</u>. Source: F. Lerdahl. Biological Foundations of Music June 2001 Vol. 930(1) 337-354. https://doi.org/10.1111/j.1749-6632.2001.tb05743.x

Lots of claims of overlap between language and music from neuroimaging But these are based on group analyses, which can find overlap even if it is not present in any individual subjects.... Luckily, however, Fedorenko did this right...

Does Music Recruit Ev Fedorenko Neural Machinery for Language?

1. Functionally identify language regions in each subject individually

Sentences> Nonwords in 3 subjects



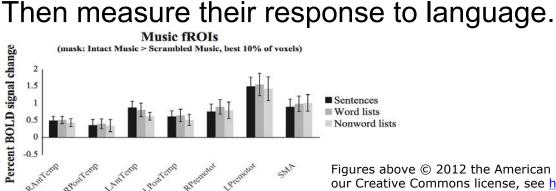


Photo © source unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

Then measure their response to intact and scrambled music. No significant response in any language regions to intact>scrambled music.

2. Functionally identify candidate "music regions" (intact > scrambled music).

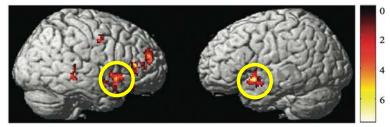


Fig. 6. Activation map from the random effects analysis for the Intact Music > Scrambled Music contrast (thresholded at P < 0.001, uncorrected) projected onto the single-subject template brain in SPM (single_subj_T1.img).

Figures above © 2012 the American Physiological Society. All rights reserved. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse. Source: E Fedorenko, et al. *J Neurophysiol*. 2012 Dec;108(12):3289-300. https://doi.org/10.1152/jn.00209.2012

No higher response to sentences> nonwords. Double dissociation of language and music. *Fedorenko, Behr, & Kanwisher, 2011*

Fedorenko, et²al., 2012

Does Music Recruit Neural Machinery for Language? **No!**

At least not the machinery for high-level language processing, that computes the meaning of a sentence independent of modality. But what about mechanisms for speech perception? Or, other auditory processing machinery? Organization of auditory cortex not well understood.

What is the Functional Organization of Human Auditory Cortex?

Sam Norman-Haignere

Josh McDermott

Photos of the authors © sources unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

Map of Frequency

Less consensus:

- Speech regions
- Pitch Regions
- Spectrotemporal modulation?
- "Voice regions" ??
- "Music activations" ???
 Subsequent evidence:
 Same regions also respond to

There is a problem with the scattershot approach the field has been taking: ad hoc hypotheses each tested with just a few stimuli What if the main organization is not something we would think to test? We tried a new, data-driven approach....

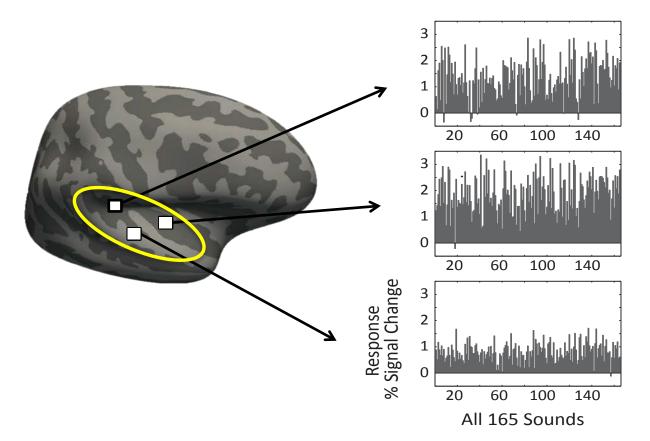
Same regions also respond to pitch.

Norman-Haignere, Kanwisher & McDermott, Neuron, 2015

Scan people while they listen to 165 of the most commonly-heard recognizable natural sounds (each is 2 seconds):

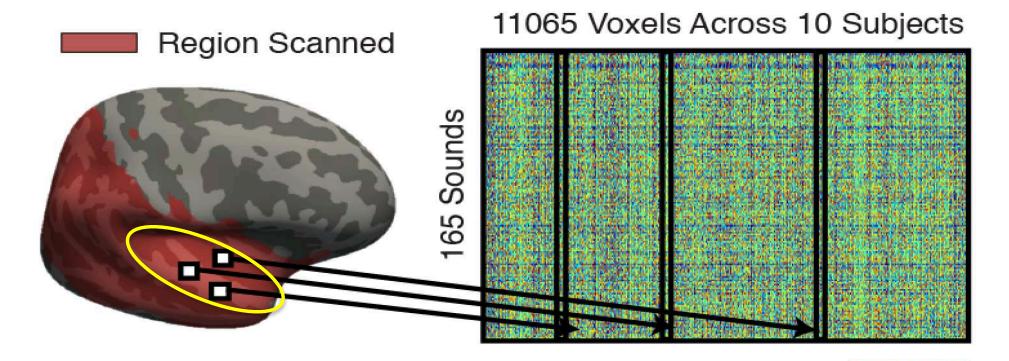
- 1. Man speaking
- 2. Flushing toilet
- 3. Pouring liquid
- 4. Tooth-brushing
- 5. Woman speaking
- 6. Car accelerating
- 7. Biting and chewing
- 8. Laughing
- 9. Typing
- 10. Car engine starting
- 11. Running water
- 12. Breathing
- 13. Keys jangling
- 14. Dishes clanking
- 15. Ringtone
- 16. Microwave
- 17. Dog barking
- 18. Walking (hard surface)
- 19. Road traffic

- 20. Zipper
- 21. Cellphone vibrating
- 22. Water dripping
- 23. Scratching
- 24. Car windows
- 25. Telephone ringing
- 26. Chopping food
- 27. Telephone dialing
- 28. Girl speaking
- 29. Car horn
- 30. Writing
- 31. Computer startup sound
- 32. Background speech
- **33.** Songbird
- 34. Pouring water
- **35**. Pop song
- 36. Water boiling
- 37. Guitar
- 38. Coughing


Fairly comprehensive: Most sounds you would think of are on the list

Norman-Haignere, Kanwisher & McDermott, Neuron, 2015

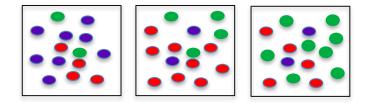
- **39**. Crumpling paper
- 40. Siren
- 41. Splashing water
- 42. Computer speech
- 43. Alarm clock
- 44. Walking with heels
- 45. Vacuum
- 46. Wind
- 47. Boy speaking
- 48. Chair rolling
- 49. Rock song
- 50. Door knocking


Voxel Responses

• For each voxel, we measure it's response magnitude to each sound

Do this for each voxel in auditory cortex for each of 10 subjects:11,065 voxels

Data Matrix

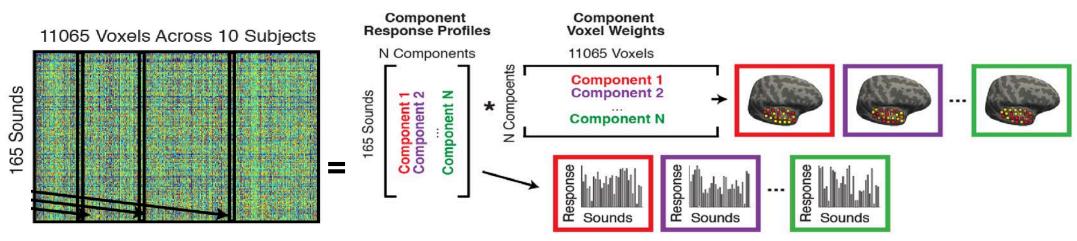


Response Magnitude

Next: we do some math (~ICA) that tries to discover the basic structure in this array Specifically.....

Modeling Assumptions

1. Voxel responses reflect the mixture of neural populations:


2. Each population has a canonical response profile across the 165 sounds

3. Voxel responses are the sum of the neural populations in each voxel

Goal: discover these canonical response profiles ("components")

Matrix Decomposition & ICA

Figures courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission. Source: S Norman-Haignere, N Kanwisher, J McDermott, *Neuron* Vol. 88 (6) 1281-1296, December 16, 2015. https://doi.org/10.1016/j.neuron.2015.11.035

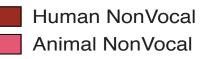
Factor response matrix into set of N components, each with:

- Response profile across the165 sounds
- Voxel weights specifying the contribution of each component to each voxel

Use ICA to search for components w/ independent voxel weights

- No information about sounds or anatomy used in decomposition
- Hypothesis space is huge and unconstrained (> 2¹⁶⁵)
- This method should discover the main dimensions that account for variance in the response across voxels in this stimulus set

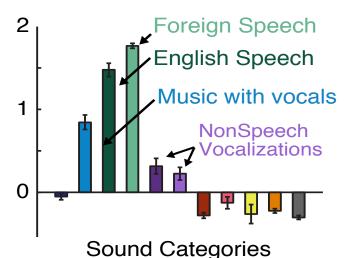

Six Components Account for Most of the Data


Four reflected ~expected acoustic properties. One = low frq, one = high: tonotopy!

Sound Categories

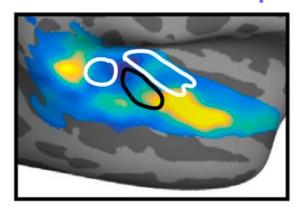
Instr. Music Vocal Music

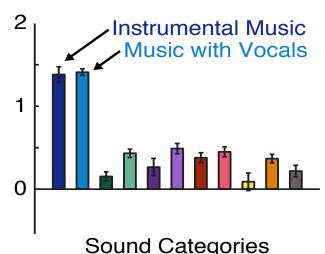
English SpeechForeign Speech



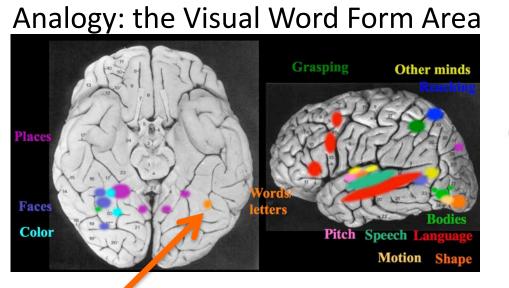
Response Magnitude

Nature Mechanical


Env. Sounds

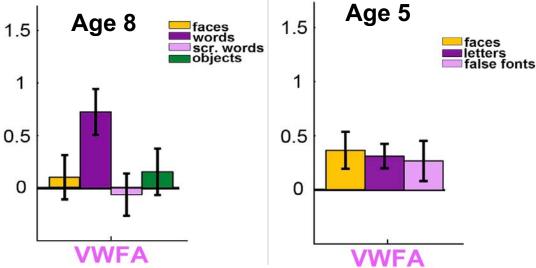


Component : Music! •Double diss. of S & M •Music does not just use mechs for speech

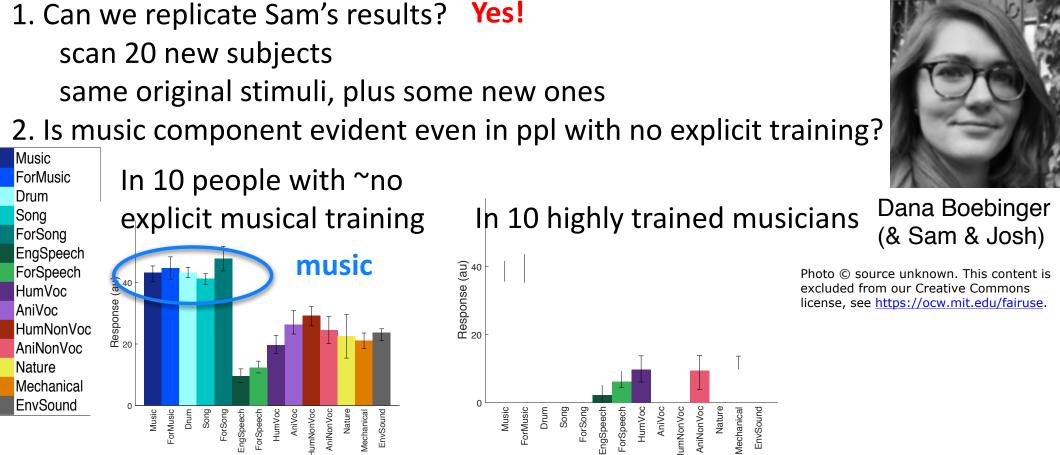

Really?

Music – Selective Component

- 1. Can we replicate Sam's results? scan 20 new subjects
- 2. Is the music component a result of explicit training?
 10 people with ~ no explicit musical training
 10 highly trained musicians


Is the music component like this?

Really?


Dana Boebinger (& Sam & Josh)

PSC charts © Springer Nature. All rights reserved. This content is excluded from our Creative Commons license, see <u>https://ocw.mit.edu/fairuse</u>. Source: Z M Saygin, et al. Nat Neurosci. 2016 Sep;19(9):1250-5. doi: 10.1038/nn.4354.

Is Explicit Musical Training Required?

Music component is present in people with no explicit musical training. Note this doesn't mean no *experience*, just no *explicit training*. May be more selective/ have higher weights, in musicians than non (stay tuned).

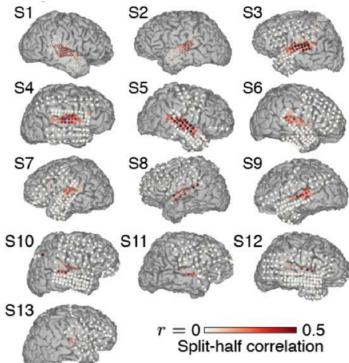
Interrim Summary

1. Music perception does not engage cortical regions specialized for language understanding and vice versa.

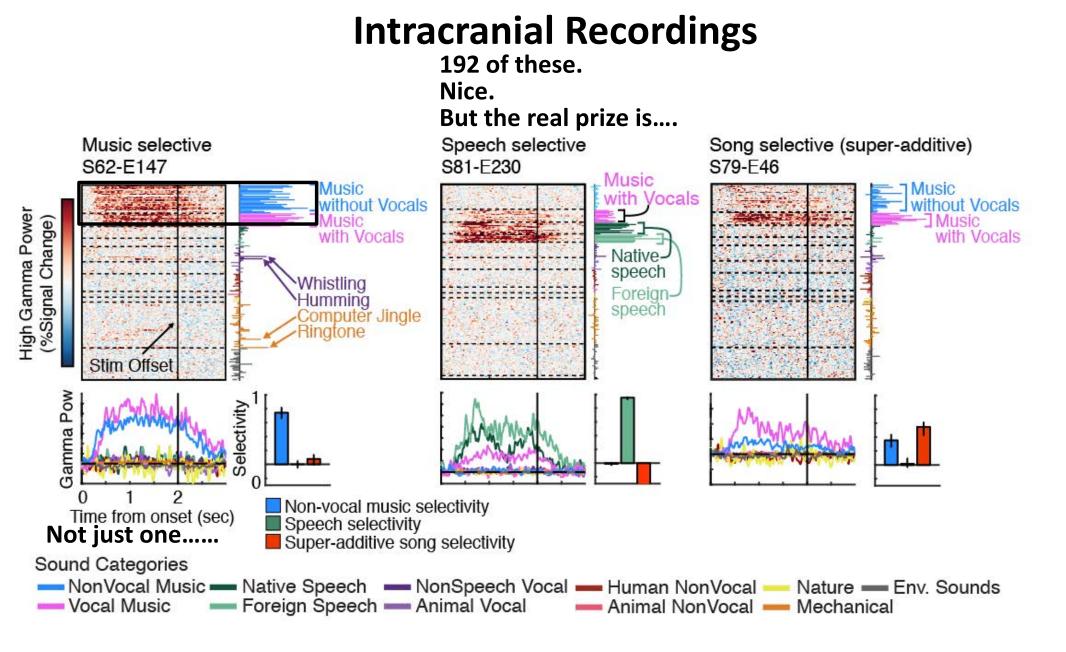
- 2. Data-driven fMRI methods discover a strikingly music-specific component in human auditory cortex.
- 3. The music component does not respond to speech and vice versa.
- 4. It is present in people who have had no explicit musical training.so, not like the VWFA in requirement for explicit instruction (though, maybe like the VWFA in requirement for experience)

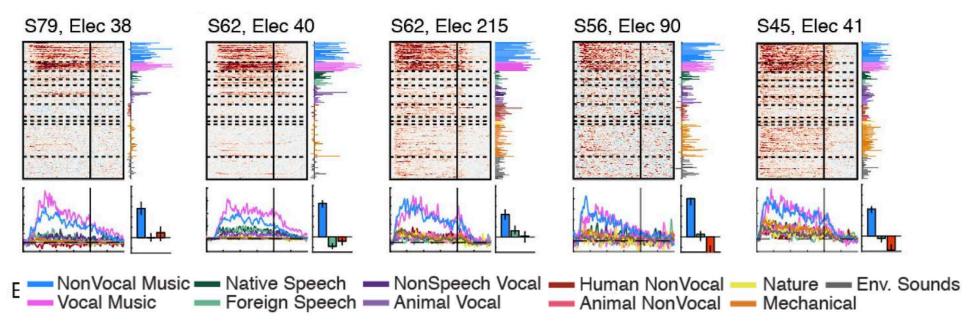
This is all very nice, but what is this "music component" anyway? Presumably a population of neurons with this response profile. But so far we have only inferred it mathematically. We cannot directly observe this same selectivity in individual voxels. Wouldn't it be nice if we could observe it directly? Perhaps, with a higher resolution method we could...

Sam Norman-Haignere


13 Neurosurgery patients w/ electrode grids

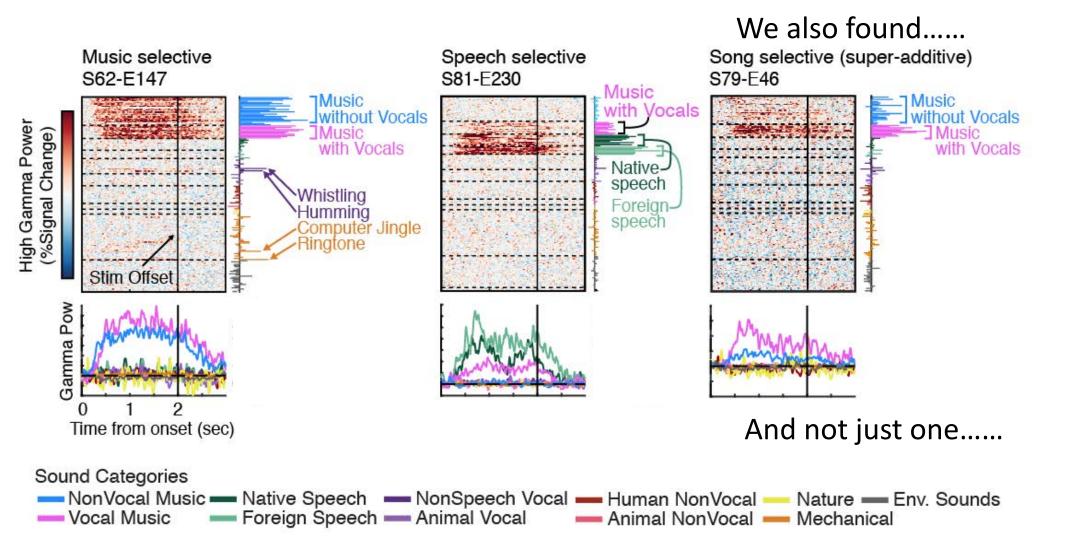
over superior temporal gyrus 271 electrodes w/ reliable responses

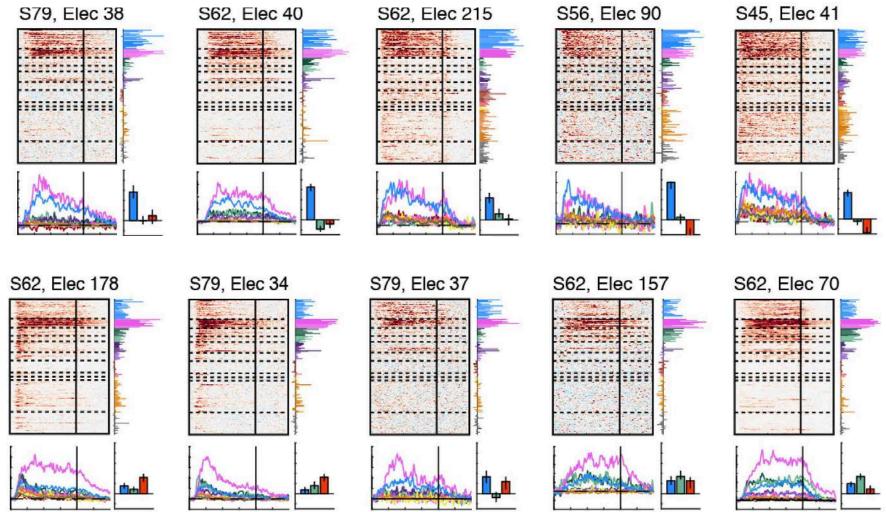

Figures © 2020 Norman-Haignere, Feather, Brunner, Ritaccio, McDermott, Schalk, Kanwisher. License: CC BY-ND. This content is excluded from our Creative Commons license, see <u>https://ocw.mit.edu/fairuse</u>. Source: bioRxiv 696161; doi: <u>https://doi.org/10.1101/696161</u>.


Measure high gamma responses of each electrode to the 165 sounds We find electrodes with three kinds of responses. (Each electrode is categorized based on independent data.) An example of the first kind of electrode...

Gerwin Schalk

Music Selectivity is for real!


Visible in raw gamma power in individual electrodes.

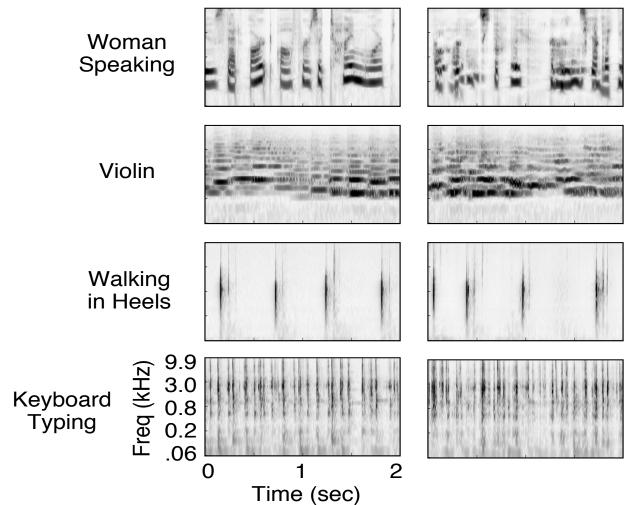

(Cannot see this in fMRI voxels.)

Validates the ICA method.

But we also found a surprise.

In addition to speech- and music-selective responses.....

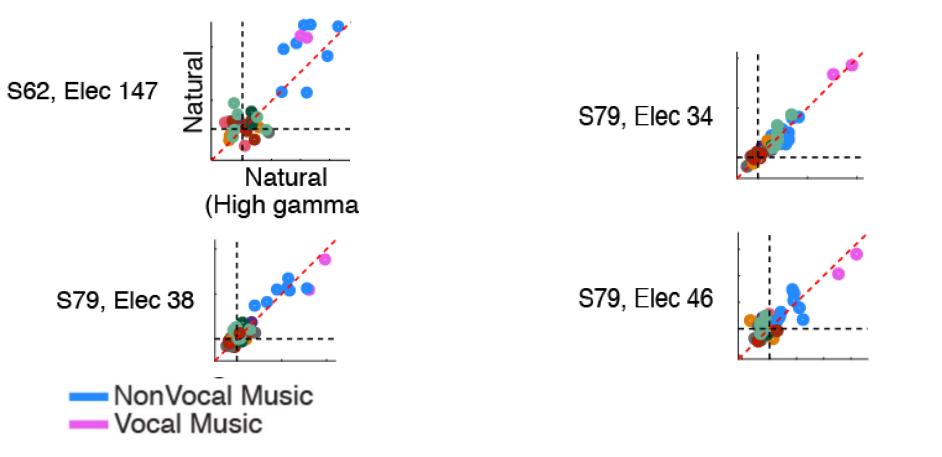
Song response is > sum of resp to music and speech (super additive). Can these results be explained by low-level acoustic correlates?


Reminder: Norman-Haignere & McDermott (2018)

Idea: Create acoustically matched control stimuli using a standard model of A1 (linear spectrotemporal filters)

Indeed, A1 responds v similarly to original and model-matched version of stimulus.

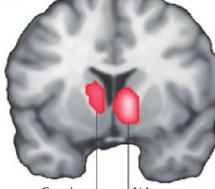
Natural Sound


Model-Matched Sound

© 2018 Norman-Haignere, McDermott. License: CC BY. Source: Norman-Haignere SV, McDermott JH (2018) PLoSBiol 16(12): e2005127. <u>https://doi.org/10.1371/journal.pbio.2005127</u>

Two music-selective electrodes showing test-retest reliability Lower resp to "synthetic music"

Two song-selective electrodes Lower resp to "synthetic song"


Can these results be explained by low-level acoustic correlates? No!

Conclusions

- 1. Music perception does not engage cortical regions specialized for language understanding and vice versa.
- 2. Data-driven fMRI methods discover a strikingly music-specific component in human auditory cortex.
- 3. The music component does not respond to speech and vice versa.
- 4. It is present in people who have had no explicit musical training.
 so, not like the VWFA in requirement for explicit instruction (though, maybe like the VWFA in requirement for experience)
- 5. The music-selective component inferred from fMRI now validated by direct recording from the surface of the brain.
- 6. New neural selectivity for vocal music discovered.
- 7. These selectivities cannot be accounted for by acoustic properties.

Open Questions

- What features of music drive the music-selective responses? note-level structure (e.g. pitch and timbre) or patterning of notes (e.g. melodies, harmonies & rhythms)
- 2. How is music actually coded at the level of neural populations?
- 3. How is music and song selectivity constructed over development? Heather is working on this⁶ correlates of musical
- 4. Why is music *enjoyable*?

correlates of musical enjoyment = usual reward machinery: caudate and accumbens

but that doesn't tell us why

5. What if any part of this system is the product of natural selection? we still don't know!...

Brain image © source unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.

Major Puzzle: Why do we have Music?

Darwin's hypothesis: sexual selection: no evidence either way

"[I]t appears probable that the progenitors of man, either the males or females or both sexes, before acquiring the power of expressing their mutual love in articulate language, endeavored to charm each other with musical notes and rhythm"

Mehr & Krasnow (2017): maybe

"infant-directed song [native form of music] *arose in an evolutionary arms race between parents and infants, stemming from the dynamics of parent-offspring conflict*" (infant needs to know parent is attending, parent has other needs)

Pinker (1994):

Music is "auditory cheesecake, an exquisite confection crafted to tickle the sensitive spots of at least six of our mental faculties." If it vanished from our species, "the rest of our lifestyle would be virtually unchanged"

If so, it changes that machinery a lot over development, even with no explicit training

Put another way (common view):

Music is not an evolutionary adaptation at all,

but an alternate use of neural machinery that evolved to serve other functions,

like speech and language.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

9.13 The Human Brain Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.