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Chapter 13 Energy, Kinetic Energy, and Work 

Acceleration of the expansion of the universe is one of the most exciting 
and significant discoveries in physics, with implications that could 
revolutionize theories of quantum physics, gravitation, and cosmology. 
With its revelation that close to the three-quarters of the energy density of 
the universe, given the name dark energy, is of a new, unknown origin and 
that its exotic gravitational “repulsion” will govern the fate of the 
universe, dark energy and the accelerating universe becomes a topic not 
just of great interest to research physicists but to science students at all 
levels. 1 

Eric Linder 

13.1 The Concept of Energy and Conservation of Energy 

The transformation of energy is a powerful concept that enables us to describe a vast 
number of processes: 

Falling water releases stored gravitational potential energy, which can become the 
kinetic energy associated with a coherent motion of matter. The harnessed mechanical 
energy can be used to spin turbines and alternators, doing work to generate electrical 
energy, transmitted to consumers along power lines. When you use any electrical 
device, the electrical energy is transformed into other forms of energy. In a 
refrigerator, electrical energy is used to compress a gas into a liquid. During the 
compression, some of the internal energy of the gas is transferred to the random 
motion of molecules in the outside environment. The liquid flows from a high-
pressure region into a low-pressure region where the liquid evaporates. During the 
evaporation, the liquid absorbs energy from the random motion of molecules inside of 
the refrigerator. The gas returns to the compressor. 

“Human beings transform the stored chemical energy of food into various forms 
necessary for the maintenance of the functions of the various organ system, tissues 

2
and cells in the body.” A person can do work on their surroundings – for example, by 
pedaling a bicycle – and transfer energy to the surroundings in the form of increasing 
random motion of air molecules, by using this catabolic energy. 

Burning gasoline in car engines converts chemical energy, stored in the molecular 
bonds of the constituent molecules of gasoline, into coherent (ordered) motion of the 
molecules that constitute a piston. With the use of gearing and tire/road friction, this 
motion is converted into kinetic energy of the car; the automobile moves. 

1 Eric Linder, Resource Letter: Dark Energy and the Accelerating Universe, Am.J.Phys.76: 197-
204, 2008; p. 197. 
2 George B. Benedek and Felix M.H. Villars, Physics with Illustrative Examples from Medicine and 
Biology, Volume 1: Mechanics, Addison-Wesley, Reading, 1973, p. 115-6. 
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Stretching or compressing a spring stores elastic potential energy that can be released 
as kinetic energy. 

The process of vision begins with stored atomic energy released as electromagnetic 
radiation (light), which is detected by exciting photoreceptors in the eye, releasing 
chemical energy. 

When a proton fuses with deuterium (a hydrogen atom with a neutron and proton for 
a nucleus), helium-three is formed (with a nucleus of two protons and one neutron) 
along with radiant energy in the form of photons. The combined internal energy of 
the proton and deuterium are greater than the internal energy of the helium-three. This 
difference in internal energy is carried away by the photons as light energy. 

There are many such processes involving different forms of energy: kinetic energy, 
gravitational energy, thermal energy, elastic energy, electrical energy, chemical energy, 
electromagnetic energy, nuclear energy and more. The total energy is always conserved 
in these processes, although different forms of energy are converted into others. 

Any physical process can be characterized by two states, initial and final, between 
which energy transformations can occur. Each form of energy E j , where “ j ” is an 
arbitrary label identifying one of the N forms of energy, may undergo a change during 
this transformation, 

ΔE j ≡ Efinal, j − Einitial, j . (13.1.1) 

Conservation of energy means that the sum of these changes is zero, 

N 

ΔE1 + ΔE2 + ⋅⋅⋅+ ΔEN = ∑ΔE j = 0 . (13.1.2) 
j=1 

Two important points emerge from this idea. First, we are interested primarily in 
changes in energy and so we search for relations that describe how each form of energy 
changes. Second, we must account for all the ways energy can change. If we observe a 
process, and the sum of the changes in energy is not zero, either our expressions for 
energy are incorrect, or there is a new type of change of energy that we had not 
previously discovered. This is our first example of the importance of conservation laws in 
describing physical processes, as energy is a key quantity conserved in all physical 
processes. If we can quantify the changes of different forms of energy, we have a very 
powerful tool to understand nature. 

We will begin our analysis of conservation of energy by considering processes 
involving only a few forms of changing energy. We will make assumptions that greatly 
simplify our description of these processes. At first we shall only consider processes 
acting on bodies in which the atoms move in a coherent fashion, ignoring processes in 
which energy is transferred into the random motion of atoms. Thus we will initially 
ignore the effects of friction. We shall then treat processes involving friction between 
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consider rigid bodies. We will later return to processes in which there is an energy 
transfer resulting in an increase or decrease in random motion when we study the First 
Law of Thermodynamics. 

Energy is always conserved but we often prefer to restrict our attention to a set of 
objects that we define to be our system. The rest of the universe acts as the surroundings. 
We illustrate this division of system and surroundings in Figure 13.1. When we discussed 
Newton’s Laws, an object is called isolated if there are no physical interactions between 
the object and the surroundings. According to Newton’s First Law an isolated object will 
undergo uniform motion. A system is called an isolated system if there are no physical 
interactions between the system and the surroundings. A system is open if both energy 
and matter can enter of leave the system. A system is closed if only energy can be 
transferred to or from the surroundings. 

Figure 13.1 A diagram of a system and its surroundings with boundary 

We shall just consider closed systems for the purposes of this discussion. Because 
energy is conserved, any energy that leaves the system must cross through the boundary 
and enter the surroundings. Consider any physical process in which energy 
transformations occur between initial and final states. We assert that 

when a system and its surroundings undergo a transition from an initial 
state to a final state, the change in energy is zero, 

ΔE = ΔEsystem + ΔEsurroundings = 0 . (13.1.3) 

Eq. (13.1.3) is called conservation of energy and is our operating definition for energy. 
We will sometime refer to Eq. (13.1.3) as the energy principle. In any physical 
application, we first identify our system and surroundings, and then attempt to quantify 
changes in energy. In order to do this, we need to identify every type of change of energy 
in every possible physical process. When there is no change in energy in the surroundings 
then the energy of a closed system is constant. 

ΔE = 0 . (13.1.4) system 

If we add up all known changes in energy in the system and surroundings and do 
not arrive at a zero sum, we have an open scientific problem. By searching for the 
missing changes in energy, we may uncover some new physical phenomenon. Recently, 
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one of the most exciting open problems in cosmology is the apparent acceleration of the 
expansion of the universe, which has been attributed to dark energy that resides in space 
itself, an energy type without a clearly known source.3 

13.2 Kinetic Energy 

The first form of energy that we will study is an energy associated with the coherent 
motion of molecules that constitute a body of mass m ; this energy is called the kinetic 
energy (from the Greek word kinetikos which translates as moving). Let us consider a car 
moving along a straight road (along which we will place the x -axis). For an observer at 

 ˆrest with respect to the ground, the car has velocity v = vx i . The speed of the car is the 

magnitude of the velocity, v ≡ vx . 

The kinetic energy K of a non-rotating body of mass m moving with speed 
v is defined to be the positive scalar quantity 

1 2K ≡ mv (13.2.1) 
2 

The kinetic energy is proportional to the square of the speed. The SI units for kinetic 
energy are [kg ⋅ m2 ⋅ s−2 ] . This combination of units is defined to be a joule and is denoted 

2 ⋅ s−2by [J] , thus 1 J ≡ 1 kg ⋅ m . (The SI unit of energy is named for James Prescott 
Joule.) The above definition of kinetic energy does not refer to any direction of motion, 
just the speed of the body.  

Let’s consider a case in which our car changes velocity. For our initial state, the 
car moves with an initial velocity v ! i = vx ,i î along the x -axis. For the final state (at some 
later time), the car has changed its velocity and now moves with a final velocity
 v f = vx, f î . Therefore the change in the kinetic energy is 

1 1 2ΔK = mv f 
2 − mvi . (13.2.2) 

2 2 

Example 13.1 Change in Kinetic Energy of a Car 

Suppose car A increases its speed from 10 to 20 mph and car B increases its speed from 
50 to 60 mph. Both cars have the same mass m . (a) What is the ratio of the change of 
kinetic energy of car B to the change of kinetic energy of car A? In particular, which car 

3 http://www-supernova.lbl.gov/~evlinder/sci.html 
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has a greater change in kinetic energy? (b) What is the ratio of the change in kinetic 
energy of car B to car A as seen by an observer moving with the initial velocity of car A? 

Solution: (a) The ratio of the change in kinetic energy of car B to car A is 

1 m(vB, f )
2 − 

1 m(vB,i )
2 

)2ΔKB 2 2 (vB, f )
2 − (vB,i= = 

ΔK A 1 1 )2 − (vA,i )
2 

m(vA, f )
2 − m(vA,i )

2 (vA, f 
2 2 
(60 mph)2 − (50 mph)2 

= = 11/ 3. 
(20 mph)2 − (10 mph)2 

Thus car B has a much greater increase in its kinetic energy than car A. 

(b) In a reference moving with the speed of car A , car A increases its speed from rest to 
10 mph and car B increases its speed from 40 to 50 mph. The ratio is now 

ΔKB 2
1 m(vB, f )

2 − 
2
1 m(vB,0 )

2 
(vB, f )

2 − (vB,0 )
2 

= = 
ΔK A 1 m(vA, f )

2 − 
1 )2 (vA, f )

2 − (vA,0 )
2 

2 2 
m(vA,0 

(50 mph)2 − (40 mph)2 

= = 9. 
(10 mph)2 

The ratio is greater than that found in part a). Note that from the new reference frame 
both car A and car B have smaller increases in kinetic energy. 

13.3 Kinematics and Kinetic Energy in One Dimension 

13.3.1 Constant Accelerated Motion 

Let’s consider a constant accelerated motion of a rigid body in one dimension in which 
we treat the rigid body as a point mass. Suppose at t = 0 the body has an initial x -
component of the velocity given by vx ,i . If the acceleration is in the direction of the 
displacement of the body then the body will increase its speed. If the acceleration is 
opposite the direction of the displacement then the acceleration will decrease the body’s 
speed. The displacement of the body is given by 

1
Δx = v t + a t2 . (13.3.1) x ,i x2 

The product of acceleration and the displacement is 
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a Δx = a (v t + 
1 

a t2 ) . (13.3.2) x x x ,i x2 
The acceleration is given by 

Δv (v − v )
x x , f x ,ia = = . (13.3.3) x Δt t 

Therefore 
(v − v ) ⎛ 1 (v − v ) ⎞ x , f x ,i x , f x ,i t2a Δx = v t + ⎟ . (13.3.4) x ⎜ x ,it ⎝ 2 t ⎠ 

Equation (13.3.4) becomes 

1 1 1 2a Δx = (v − v )(v ) + (v − v )(v − v ) = v 2 − v . (13.3.5) x x , f x ,i x ,i x , f x ,i x , f x ,i x , f x ,i2 2 2 

If we multiply each side of Equation (13.3.5) by the mass m of the object this 
kinematical result takes on an interesting interpretation for the motion of the object. We 
have 

ma Δx = 
1 

mv2 − m 
1 

v2 = K f − Ki . (13.3.6) x x , f x ,i2 2 

Recall that for one-dimensional motion, Newton’s Second Law is Fx = ma x , for the 
motion considered here, Equation (13.3.6) becomes 

F Δx = K − K . (13.3.7) x f i 

13.3.2 Non-constant Accelerated Motion 

If the acceleration is not constant, then we can divide the displacement into N intervals 
indexed by j = 1 to N . It will be convenient to denote the displacement intervals by Δx j , 

the corresponding time intervals by Δt j and the x -components of the velocities at the 
beginning and end of each interval as vx, j−1 and vx, j . Note that the x -component of the 

velocity at the beginning and end of the first interval j = 1 is then v = v and the x ,1 x ,i 

velocity at the end of the last interval, j = N is vx,N = vx, j . Consider the sum of the 

products of the average acceleration (a , j ) and displacement Δx j in each interval, x ave 

j= N 

∑ (ax , j )ave Δx j . (13.3.8) 
j=1 

The average acceleration over each interval is equal to 
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Δv (v − v )x , j x , j+1 x , j(a ) = = , (13.3.9) x , j ave Δt j Δt j 

and so the contribution in each integral can be calculated as above and we have that 

1 1 2(a ) = v 2 − v . (13.3.10) x , j ave x , j x , j−1Δx j 2 2 

When we sum over all the terms only the last and first terms survive, all the other terms 
cancel in pairs, and we have that 

j= N 1 2 1 2∑ (ax , j )ave Δx j = 
2 

vx , f − 
2 

vx ,i . (13.3.11) 
j=1 

In the limit as N →∞ and Δx j → 0 for all j (both conditions must be met!), the limit of 
the sum is the definition of the definite integral of the acceleration with respect to the 
position, 

x=x fj=N 

lim ∑ (a ) Δx j ≡ a ( x) dx . (13.3.12) x , j xN→∞ ave ∫ 
j=1Δx j →0 x=xi 

Therefore In the limit as N →∞ and → 0 for all j , with v → v , Eq. (13.3.11) Δx j x , N x , f 

becomes 
x=x f 1
∫ ax ( x)dx = 

2
(vx 

2
, f − vx 

2
,i ) (13.3.13) 

x=xi 

This integral result is consequence of the definition that ax ≡ dvx / dt . The integral in Eq. 
(13.3.13) is an integral with respect to space, while our previous integral 

t = t f 

a (t) dt = v − v (13.3.14) ∫ x x , f x ,i . 
t = ti 

requires integrating acceleration with respect to time. Multiplying both sides of Eq. 
(13.3.13) by the mass m yields 

x=x f 

∫ ma x ( x) dx = 
1
2 

m(vx 
2
, f − vx 

2
,i ) = K f − Ki . (13.3.15) 

x=xi 

When we introduce Newton’s Second Law in the form Fx = ma x , then Eq. (13.3.15) 
becomes 
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x= x f 

F (x) dx = K − K (13.3.16) ∫ x f i . 
x = xi 

The integral of the x -component of the force with respect to displacement in Eq.  
(13.3.16) applies to the motion of a point-like object. For extended bodies, Eq. (13.3.16) 
applies to the center of mass motion because the external force on a rigid body causes the 
center of mass to accelerate. 

13.4 Work done by Constant Forces 

We will begin our discussion of the concept of work by analyzing the motion of an object 
in one dimension acted on by constant forces. Let’s consider the following example: push 
a cup forward with a constant force along a desktop. When the cup changes velocity (and 
hence kinetic energy), the sum of the forces acting on the cup must be non-zero according 
to Newton’s Second Law. There are three forces involved in this motion: the applied      pushing force Fa ; the contact force C ≡ N + fk ; and gravity Fg = mg . The force diagram 
on the cup is shown in Figure 13.2. 

Figure 13.2 Force diagram for cup. 

Let’s choose our coordinate system so that the +x -direction is the direction of the 
forward motion of the cup. The pushing force can then be described by 

 
Fa a= Fx î . (13.4.1) 

Suppose a body moves from an initial point xi to a final point x f so that the 

displacement of the point the force acts on is Δx ≡ x f − xi . The work done by a 
 

constant force Fa = Fx
a î acting on the body is the product of the component of 

the force Fx
a and the displacement Δx , 

W a = Fx
a Δx . (13.4.2) 
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Work is a scalar quantity; it is not a vector quantity. The SI unit for work is 

-2 2 -2 [1 N ⋅ m] = [1 kg ⋅ m ⋅s ][1 m] = [1 kg ⋅ m ⋅s ] = [1 J] . (13.4.3) 

Note that work has the same dimension and the same SI unit as kinetic energy. Because 
our applied force is along the direction of motion, both Fx

a > 0 and Δx > 0 . In this 
example, the work done is just the product of the magnitude of the applied force and the 
distance through which that force acts and is positive. In the definition of work done by a 
force, the force can act at any point on the body. The displacement that appears in 
Equation (13.4.2) is not the displacement of the body but the displacement of the point of 
application of the force. For point-like objects, the displacement of the point of 
application of the force is equal to the displacement of the body. However for an 
extended body, we need to focus on where the force acts and whether or not that point of 
application undergoes any displacement in the direction of the force as the following 
example illustrates. 

Example 13.2 Work Done by Static Fiction 

Suppose you are initially standing and you start walking by pushing against the ground 
with your feet and your feet do not slip. What is the work done by the static friction force 
acting on you? 

Solution: When you apply a contact force against the ground, the ground applies an 
equal and opposite contact force on you. The tangential component of this constant force 
is the force of static friction acting on you. Since your foot is at rest while you are 
pushing against the ground, there is no displacement of the point of application of this 
static friction force. Therefore static friction does zero work on you while you are 
accelerating. You may be surprised by this result but if you think about energy 
transformation, chemical energy stored in your muscle cells is being transformed into 
kinetic energy of motion and thermal energy. 

When forces are opposing the motion, as in our example of pushing the cup, the 
kinetic friction force is given by 

! 
F f = fk ,x î = −µk N î = −µkmg î . (13.4.4) 

Here the component of the force is in the opposite direction as the displacement. The 
work done by the kinetic friction force is negative, 

W f = −µkmgΔx . (13.4.5) 

Since the gravitation force is perpendicular to the motion of the cup, the gravitational 
force has no component along the line of motion. Therefore the gravitation force does 
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zero work on the cup when the cup is slid forward in the horizontal direction. The 
normal force is also perpendicular to the motion, and hence does no work. 

We see that the pushing force does positive work, the kinetic friction force does 
negative work, and the gravitation and normal force does zero work. 

Example 13.3 Work Done by Force Applied in the Direction of Displacement 

Push a cup of mass 0.2 kg along a horizontal table with a force of magnitude 2.0 N for a 
distance of 0.5 m. The coefficient of friction between the table and the cup is µk = 0.10 . 
Calculate the work done by the pushing force and the work done by the friction force. 

Solution: The work done by the pushing force is 

W a = Fx
a Δx = (2.0 N)(0.5 m) = 1.0 J . (13.4.6) 

The work done by the friction force is 

W f = −µkmgΔx = −(0.1)(0.2 kg)(9.8 m ⋅s-2 )(0.5 m)= − 0.10 J . (13.4.7) 

Example 13.4 Work Done by Force Applied at an Angle to the Direction of 
Displacement 

Suppose we push the cup in the previous example with a force of the same magnitude but 
at an angle θ = 30o upwards with respect to the table. Calculate the work done by the 
pushing force. Calculate the work done by the kinetic friction force. 

Solution: The force diagram on the cup and coordinate system is shown in Figure 13.3. 

Figure 13.3 Force diagram on cup. 

The x -component of the pushing force is now 
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aFx = F a cos(θ ) = (2.0 N)(cos(30 )) = 1.7 N . (13.4.8) 

The work done by the pushing force is 

W a = Fx
a Δx = (1.7 N)(0.5 m) = 8.7 ×10−1 J . (13.4.9) 

The kinetic friction force is  
F f = −µk N î . (13.4.10) 

In this case, the magnitude of the normal force is not simply the same as the weight of the 
cup. We need to find the y -component of the applied force, 

Fy
a = F a sin(θ ) = (2.0 N)(sin(30o ) = 1.0 N . (13.4.11) 

To find the normal force, we apply Newton’s Second Law in the y -direction, 

Fy
a + N − mg = 0 . (13.4.12) 

Then the normal force is 

aN = mg − Fy = (0.2 kg)(9.8 m ⋅s−2 ) − (1.0 N) = 9.6 ×10−1 N . (13.4.13) 

The work done by the kinetic friction force is 

W f = −µk N Δx = −(0.1)(9.6 ×10−1 N)(0.5 m) = 4.8 ×10−2 J . (13.4.14) 

Example 13.5 Work done by Gravity Near the Surface of the Earth 

Consider a point-like body of mass m near the surface of the earth falling directly 
towards the center of the earth. The gravitation force between the body and the earth is  nearly constant, Fgrav = mg . Let’s choose a coordinate system with the origin at the 
surface of the earth and the + y -direction pointing away from the center of the earth 
Suppose the body starts from an initial point yi and falls to a final point y f closer to the 
earth. How much work does the gravitation force do on the body as it falls? 

Solution: The displacement of the body is negative, Δy ≡ y f − yi < 0 . The gravitation 
force is given by  Fg = mg = Fy

g ĵ = −mg ĵ . (13.4.15) 

The work done on the body is then 
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W g = Fy
g Δy = −mgΔy . (13.4.16) 

For a falling body, the displacement of the body is negative, Δy ≡ y f − yi < 0 ; therefore 

the work done by gravity is positive, W g > 0 . The gravitation force is pointing in the 
same direction as the displacement of the falling object so the work should be positive. 

When an object is rising while under the influence of a gravitation force, 
Δy ≡ y f − yi > 0 . The work done by the gravitation force for a rising body is negative, 

W g < 0 , because the gravitation force is pointing in the opposite direction from that in 
which the object is displaced. 

It’s important to note that the choice of the positive direction as being away from the 
center of the earth (“up”) does not make a difference. If the downward direction were 
chosen positive, the falling body would have a positive displacement and the 
gravitational force as given in Equation (13.4.15) would have a positive downward 
component; the product Fy

g Δy would still be positive. 

13.5 Work done by Non-Constant Forces 

Consider a body moving in the x -direction under the influence of a non-constant force in  
the x -direction, F = ˆF i The body from initial position xmoves an . ix to a final position 
x f . In order to calculate the work done by a non-constant force, we will divide up the 
displacement of the point of application of the force into a large number N of small 

j th displacements Δx j where the index j marks the displacement and takes integer 
values from 1 to N . Let (Fx, j )ave denote the average value of the x -component of the 

j th force in the displacement interval [x j−1, x j ] . For the displacement interval we 
calculate the contribution to the work 

Wj = (F ) Δx j (13.5.1) x , j ave 

This contribution is a scalar so we add up these scalar quantities to get the total work 

j=N j=N 

WN = ∑Wj = ∑ (F ) Δx j . (13.5.2) x , j ave 
j=1 j=1 

The sum in Equation (13.5.2) depends on the number of divisions N and the width of the 
intervals Δx j . In order to define a quantity that is independent of the divisions, we take 

the limit as N →∞ and → 0 for all j . The work is then Δx j 
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x=x fj= N 

W = lim ∑ (Fx , j )ave Δx j = ∫ Fx (x) dx (13.5.3) 
N→∞ 

j=1 x=xi→0Δx j 

This last expression is the definite integral of the x -component of the force with respect 
to the parameter x . In Figure 13.5 we graph the x -component of the force as a function 
of the parameter x . The work integral is the area under this curve between x = xi and 
x = x f . 

Figure 13.5 Plot of x -component of a sample force Fx (x) as a function of x . 

Example 13.6 Work done by the Spring Force 

Connect one end of an unstretched spring of length l0 with spring constant k to an object 
resting on a smooth frictionless table and fix the other end of the spring to a wall. Choose 
an origin as shown in the figure. Stretch the spring by an amount xi and release the 
object. How much work does the spring do on the object when the spring is stretched by 
an amount x f ? 

xi x fl0 

x = 0 

î l0 î l0 î 

x = 0 x = 0 

Figure 13.6 Equilibrium, initial and final states for a spring 

Solution: We first begin by choosing a coordinate system with our origin located at the 
position of the object when the spring is unstretched (or uncompressed). We choose the î 
unit vector to point in the direction the object moves when the spring is being stretched. 
We choose the coordinate function x to denote the position of the object with respect to 
the origin. We show the coordinate function and free-body force diagram in the figure 
below. 
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l0 

x = 0 

î 
x 

x = 0 

î 
x 

F = F x ̂i = kx î 

Figure 13.6a Spring force 

The spring force on the object is given by (Figure 13.6a) 

! 
F = Fx î = −k x î (13.5.4) 

In Figure 13.7 we show the graph of the x -component of the spring force, Fx (x) , as a 
function of x . 

F x (x) 

xix f +x 

F x (x) = k x 

Figure 13.7 Plot of spring force Fx (x) vs. displacement x 

The work done is just the area under the curve for the interval xi to x f , 

x′=x f x′=x f 1
W = ∫ Fx (x′)dx′ = ∫ −kx′ dx′ = − 

2 
k(x2 

f − xi 
2 ) (13.5.5) 

x′=xi x′=xi 

This result is independent of the sign of xi and x f because both quantities appear as 
squares. If the spring is less stretched or compressed in the final state than in the initial 
state, then the absolute value, , and the work done by the spring force is positive. 

The spring force does positive work on the body when the spring goes from a state of 
“greater tension” to a state of “lesser tension.” 

<x f xi 

13.6 Work-Kinetic Energy Theorem 
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There is a direct connection between the work done on a point-like object and the change 
in kinetic energy the point-like object undergoes. If the work done on the object is non-
zero, this implies that an unbalanced force has acted on the object, and the object will 
have undergone acceleration. For an object undergoing one-dimensional motion the left 
hand side of Equation (13.3.16) is the work done on the object by the component of the 
sum of the forces in the direction of displacement, 

x=x f 1 1 2W = F dx = mv f mvi = K f − Ki = ΔK (13.6.1) ∫ x 2
2 − 

2 x=xi 

When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed. In fact, the work-energy relationship is quite 
precise; the work done by the applied force on an object is identically equal to the change 
in kinetic energy of the object. 

Example 13.7 Gravity and the Work-Energy Theorem 

Suppose a ball of mass m = 0.2 kg starts from rest at a height y0 = 15 m above the 
surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the change in the kinetic energy? Find the final velocity using the work-energy 
theorem. 

Solution: As only one force acts on the ball, the change in kinetic energy is the work 
done by gravity, 

W g = −mg( y f − y0 ) 
(13.6.2) 

= (−2.0 ×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0 ×101 J. 

The ball started from rest, vy ,0 = 0 . So the change in kinetic energy is 

1 1 2 1 2ΔK = mv 2 − mv = mv . (13.6.3) y , f y ,0 y , f2 2 2 

We can solve Equation (13.6.3) for the final velocity using Equation (13.6.2) 

v y , f = 
2ΔK 

m 
= 

2W g 

m 
= 

2(2.0 ×101 J) 
0.2 kg 

= 1.4 ×101 m ⋅s-1 . (13.6.4) 

For the falling ball in a constant gravitation field, the positive work of the gravitation 
force on the body corresponds to an increasing kinetic energy and speed. For a rising 
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body in the same field, the kinetic energy and hence the speed decrease since the work 
done is negative. 

Example 13.7 Final Kinetic Energy of Moving Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m as in 
Example 13.4. The coefficient of friction between the table and the cup is µk = 0.1. If the 
cup was initially at rest, what is the final kinetic energy of the cup after being pushed 0.5 
m? What is the final speed of the cup? 

Solution: The total work done on the cup is the sum of the work done by the pushing 
force and the work done by the friction force, as given in Equations (13.4.9) and 
(13.4.14), 

W = W a +W f = (F a − µk N )(x f )x − xi . (13.6.5) 
= (1.7 N − 9.6 ×10−2 N)(0.5 m) = 8.0 ×10−1 J 

The initial velocity is zero so the change in kinetic energy is just 

1 1 2 1 2ΔK = mv 2 − mv = mv . (13.6.6) y , f y ,0 y , f2 2 2 

Thus the work-kinetic energy theorem, Eq.(13.6.1)), enables us to solve for the final 
kinetic energy, 

1 2K f = mv f = ΔK = W = 8.0 ×10−1 J . (13.6.7) 
2 

We can solve for the final speed, 

v y , f = 
2K f 

m 
= 

2W 
m 

= 
2(8.0 ×10−1 J) 

0.2 kg 
= 2.9 m ⋅s-1 . (13.6.8) 

13.7 Power Applied by a Constant Force 
 

Suppose that an applied force Fa acts on a body during a time interval Δt , and the 
displacement of the point of application of the force is in the x -direction by an amount 
Δx . The work done, ΔW a , during this interval is 

ΔW a = Fx
a Δx . (13.7.1) 

where Fx
a is the x -component of the applied force. (Equation (13.7.1) is the same as 

Equation (13.4.2).) 

13-17 



  

 
            

 
 

 
  

  

 
 

           
           

     
     

 
           

   
 

 
  

  

 
             

 
 

  
 

                   
              

          
                 

 
 

        
                

              
 

 

 
  

  

  
 

 
  

  

The average power of an applied force is defined to be the rate at which work is 
done, 

ΔW a a Δxa Fx aP = = = F v . (13.7.2) ave x ave,xΔt Δt 

The average power delivered to the body is equal to the component of the force in the 
direction of motion times the component of the average velocity of the body. Power is a 
scalar quantity and can be positive, zero, or negative depending on the sign of work. The 

-1] .SI units of power are called watts [W] and [1 W] = [1 J ⋅ s 

The instantaneous power at time t is defined to be the limit of the average power 
as the time interval [t,t + Δt] approaches zero, 

ΔW a F a Δx a ⎛ Δx ⎞ a 
x x . (13.7.3) = lim = lim = F lim 

⎠⎟ 
= Fx vPa 

Δt→0 Δt Δt→0 
x 

Δt ⎝⎜ Δt→0 Δt 

The instantaneous power of a constant applied force is the product of the component of 
the force in the direction of motion and the instantaneous velocity of the moving object. 

Example 13.8 Gravitational Power for a Falling Object 

Suppose a ball of mass m = 0.2 kg starts from rest at a height y0 = 15 m above the 
surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the average power exerted by the gravitation force? What is the instantaneous 
power when the ball is at a height y f = 5.0 m above the surface of the Earth? Make a 
graph of power vs. time. You may ignore the effects of air resistance. 

Solution: There are two ways to solve this problem. Both approaches require calculating 
the time interval Δt for the ball to fall. Set t0 = 0 for the time the ball was released. We 
can solve for the time interval Δt = t f that it takes the ball to fall using the equation for a 
freely falling object that starts from rest, 

1 2y f = y0 − gt f . (13.7.4) 
2 

Thus the time interval for falling is 

2 2t = ( y − y ) = (15 m − 5 m) = 1.4 s . (13.7.5) f 0 f -2 g 9.8 m ⋅ s 
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First approach: we can calculate the work done by gravity, 

W g = −mg( y f − y0 ) 
(13.7.6) 

= (−2.0 ×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0 ×101 J. 

Then the average power is 
g ΔW 2.0 ×101 JP ave = = = 1.4 ×101 W . (13.7.7) 

Δt 1.4 s 

Second Approach. We calculate the gravitation force and the average velocity. The 
gravitation force is 

gFy = −mg = −(2.0 ×10−1 kg)(9.8 m ⋅s-2 ) = −2.0 N . (13.7.8) 

The average velocity is 
Δy 5 m −15 m -1 v = = = −7.0 m ⋅s . (13.7.9) ave,y Δt 1.4 s 

The average power is therefore 

Pg = F g v = (−mg)v ave y ave,y ave,y (13.7.10) 
= (−2.0 N)(−7.0 m ⋅s-1) = 1.4 ×101 W. 

In order to find the instantaneous power at any time, we need to find the instantaneous 
velocity at that time. The ball takes a time t f = 1.4 s to reach the height y f = 5.0 m . The 
velocity at that height is given by 

vy = −gt f = −(9.8 m ⋅ s-2 )(1.4 s) = −1.4 × 101 m ⋅ s-1 . (13.7.11) 

So the instantaneous power at time t f = 1.4 s is 

gPg = Fy vy = (−mg)(−gt f ) = mg 2t f (13.7.12) 
= (0.2 kg)(9.8 m ⋅s-2 )2(1.4 s) = 2.7 ×101 W 

If this problem were done symbolically, the answers given in Equation (13.7.11) and 
Equation (13.7.12) would differ by a factor of two; the answers have been rounded to two 
significant figures. 

13-19 



  

       
          

    
 

 
 

   
 

  
 

              

                
           

             
  

 
           

        
 

 
  

  
 

        
 

 

   

 
 

 

 
  

  

 
    

 

 
  

  

The instantaneous power grows linearly with time. The graph of power vs. time is shown 
in Figure 13.8. From the figure, it should be seen that the instantaneous power at any 
time is twice the average power between t = 0 and that time. 

Figure 13.8 Graph of power vs. time 

Example 13.9 Power Pushing a Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m , as in 
Example 13.4. The coefficient of friction between the table and the cup is µk = 0.1. What 
is the average power of the pushing force? What is the average power of the kinetic 
friction force? 

Solution: We will use the results from Examples 13.4 and 13.7 but keeping extra 
significant figures in the intermediate calculations. The work done by the pushing force 
is 

W a = F a (x f ) = (1.732 N)(0.50 m) = 8.660 ×10−1 J . (13.7.13) x − x0 

The final speed of the cup is vx, f = 2.860 m ⋅s-1 . Assuming constant acceleration, the 
time during which the cup was pushed is 

2(x f − x0 )t f = = 0.3496s . (13.7.14) 
vx, f 

The average power of the pushing force is then, with Δt = t f , 

ΔW a 8.660 ×10−1 JP ave 
a = = = 2.340 W , (13.7.15) 

Δt 0.3496 s 

or 2 3W to two significant figures. The work done by the friction force is . 

W f = fk (x f − x0 ) 
(13.7.16) 

= −µk N (x f − x0 ) = −(9.6 ×10−2 N)(0.50 m) = −(4.8 ×10−2 J). 
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The average power of kinetic friction is 

ΔW f −4.8 ×10−2 JP ave 
f = = = −1.4 ×10−1 W. (13.7.17) 

Δt 0.3496 s 

The time rate of change of the kinetic energy for a body of mass m moving in the x -
direction is 

dK d ⎛ 1 2 ⎞ dvx= ⎜ mvx ⎟ = m vx = maxvx . (13.7.18) 
dt dt ⎝ 2 ⎠ dt 

By Newton’s Second Law, Fx = max , and so Equation (13.7.18) becomes 

dK 
= Fxvx = P . (13.7.19) 

dt 

The instantaneous power delivered to the body is equal to the time rate of change of the 
kinetic energy of the body. 

13.8 Work and the Scalar Product 

We shall introduce a vector operation, called the scalar product or “dot product” that 
takes any two vectors and generates a scalar quantity (a number). We shall see that the 
physical concept of work can be mathematically described by the scalar product between 
the force and the displacement vectors. 

13.8.1 Scalar Product 

  
Let A and B be two vectors. Because any two non-collinear vectors form a plane, we   
define the angle θ to be the angle between the vectors A and B as shown in Figure 
13.9.  Note that θ can vary from 0 to π . 

Figure 13.9 Scalar product geometry. 

    
The scalar product A ⋅ B of the vectors A and B is defined to be product of the   
magnitude of the vectors A and B with the cosine of the angle θ between the 
two vectors: 
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  
A ⋅ B = ABcos(θ) , (13.8.1) 

    
where A = | A | and B =| B | represent the magnitude of A and B respectively.  
The scalar product can be positive, zero, or negative, depending on the value of 
cosθ . The scalar product is always a scalar quantity. 

The angle formed by two vectors is therefore 


A

A 
⋅ 

B

B 

⎛ ⎞ 
θ = cos−1 ⎜⎜⎝ 

⎟⎟ 
. 

⎠ 
(13.8.2) 

 
The magnitude of a vector A is given by the square root of the scalar product of the  
vector A with itself. 

A = (

A ⋅ 

A)1/ 2 . (13.8.3) 

We can give a geometric interpretation to the scalar product by writing the definition as 
  
A ⋅ B = ( Acos(θ)) B . (13.8.4) 


B 

 
B 

 
B 

In this formulation, the term Acosθ is the projection of the vector 
. This projection is shown in Figure 13.10a. So the scalar product is the 

in the direction of 

Bthe vector  

product of the projection of the length of A in the direction of with the length of . 
Note that we could also write the scalar product as 

  
A ⋅ B = A(Bcos(θ)) . (13.8.5) 

  
Now the term Bcos(θ) is the projection of the vector B in the direction of the vector A 

 
B 

as shown in Figure 13.10b. From this perspective, the scalar product is the product of the   
projection of the length of in the direction of A with the length of A . 

(a) (b) 
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Figure 13.10 (a) and (b) Projection of vectors and the scalar product 

From our definition of the scalar product we see that the scalar product of two vectors 
that are perpendicular to each other is zero since the angle between the vectors is π / 2 
and cos(π / 2) = 0 . 

We can calculate the scalar product between two vectors in a Cartesian coordinates  
system as follows. Consider two vectors A = A î + x ĵ + y A Az k̂ and 
 
B = B î + B ĵ + B k̂ . Recall that x y z 

î ⋅ ̂i = ĵ⋅ ĵ = k̂ ⋅ k̂ = 1 
(13.8.6) 

î ⋅ ̂j = ĵ⋅ k̂ = î ⋅ k̂ = 0. 

  
The scalar product between A and B is then 

  
A ⋅ B = BAx + By A y + BAz . (13.8.7) x z 

The time derivative of the scalar product of two vectors is given by 

d 

dt 
(

A ⋅ 

B) = 

d 

dt 
(Ax Bx + Ay By + Az Bz ) 

d d d d d d = (Ax )Bx + (Ay )By + ( Az )Bz + Ax ( Bx ) + Ay ( By ) + Az ( Bz ) (13.8.8) 
dt dt dt dt dt dt 

= ⎛ ⎝⎜ 
d 

dt 

A⎞ ⎠⎟ ⋅ 

B+ 

A ⋅⎛ ⎝⎜ 

d 

dt 

B⎞ ⎠⎟ . 

  
In particular when A = B , then the time derivative of the square of the magnitude of the  
vector A is given by 

d d d d d(

A ⋅ 

A) = 


A⎞ 
⎠⎟ 
⋅ 

A + 

A ⋅ 


A


A⎞ 
⎠⎟ 
⋅ 

A . (13.8.9) ⎛ ⎛ ⎞ ⎛A2 = 2

⎝⎜ ⎝⎜ ⎠⎟ ⎝⎜
= 

dt dt dt dt dt 

Az Ax 

13.8.2 Kinetic Energy and the Scalar Product 

For an object undergoing three-dimensional motion, the velocity of the object in 
Cartesian components is given by v  = v î + v ĵ + v k̂ . Recall that the magnitude of a x y z 

vector is given by the square root of the scalar product of the vector with itself, 

2 + A 2 )1/ 2 

A 


A 

A)1/ 2 2 +A ≡ ≡ ( ⋅ = ( . (13.8.10) y 

Therefore the square of the magnitude of the velocity is given by the expression 
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2v2 ≡ (v  ⋅ v  ) = v2 + v2 + v . (13.8.11) x y z 

Hence the kinetic energy of the object is given by 

1  1
K = m(v ⋅ v  ) = m(v2 + v2 + v2 ) . (13.8.12) x y z2 2 

13.8.2 Work and the Scalar Product 

Work is an important physical example of the mathematical operation of taking the scalar 
product between two vectors. Recall that when a constant force acts on a body and the 
point of application of the force undergoes a displacement along the x -axis, only the 
component of the force along that direction contributes to the work, 

W = Fx Δx . (13.8.13) 

 
Suppose we are pulling a body along a horizontal surface with a force F . Choose  

coordinates such that horizontal direction is the x -axis and the force F forms an angle 
β with the positive x -direction. In Figure 13.11 we show the force vector 
 
F = Fx î + Fy ĵ and the displacement vector of the point of application of the force 
 Δx = Δx î . Note that Δx = Δx î is the component of the displacement and hence can be 

greater, equal, or less than zero (but is shown as greater than zero in the figure for  clarity). The scalar product between the force vector F and the displacement vector Δx 
is   ˆ ˆ ˆF ⋅Δx = (F i + F j) (⋅ Δx i) = F Δx . (13.8.14) x y x 

Figure 13.11 Force and displacement vectors 

The work done by the force is then ! 
W = F ⋅ Δx ! . (13.8.15) 
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In general, the angle β takes values within the range −π ≤ β ≤ π (in Figure 13.11, 
 

0 ≤ β ≤ π / 2 ). Because the x -component of the force is Fx = F cos(β) where F = | F | 
 

denotes the magnitude of F , the work done by the force is 

 W = F ⋅Δx = (F cos(β ))Δx . (13.8.16) 

Example 13.10 Object Sliding Down an Inclined Plane 

An object of mass m = 4.0 kg , starting from rest, slides down an inclined plane of length 
l = 3.0 m . The plane is inclined by an angle of θ = 300 to the ground. The coefficient of 
kinetic friction is µk = 0.2 . (a) What is the work done by each of the three forces while 
the object is sliding down the inclined plane? (b) For each force, is the work done by the 
force positive or negative? (c) What is the sum of the work done by the three forces? Is 
this positive or negative? 

Solution: (a) and (b) Choose a coordinate system with the origin at the top of the inclined 
plane and the positive x -direction pointing down the inclined plane, and the positive y -
direction pointing towards the upper right as shown in Figure 13.12. While the object is 
sliding down the inclined plane, three uniform forces act on the object, the gravitational 
force which points downward and has magnitude Fg = mg , the normal force N which is 
perpendicular to the surface of the inclined plane, and the friction force which opposes 
the motion and is equal in magnitude to fk = µk N . A force diagram on the object is 
shown in Figure 13.13. 

Figure 13.12 Coordinate system for Figure 13.13 Free-body force diagram 
object sliding down inclined plane for object 

In order to calculate the work we need to determine which forces have a component in 
the direction of the displacement. Only the component of the gravitational force along the 
positive x -direction Fgx = mg sinθ and the friction force are directed along the 
displacement and therefore contribute to the work. We need to use Newton’s Second Law 
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to determine the magnitudes of the normal force. Because the object is constrained to 
move along the positive x -direction, ay = 0 , Newton’s Second Law in the ĵ -direction 
N − mg cosθ = 0 . Therefore N = mg cosθ and the magnitude of the friction force is 
fk = µk mg cosθ . 

With our choice of coordinate system with the origin at the top of the inclined plane and 
the positive x -direction pointing down the inclined plane, the displacement of the object 
is given by the vector Δr  = Δx î (Figure 13.14). 

Figure 13.14 Force vectors and displacement vector for object 

 
The vector decomposition of the three forces are Fg = mgsinθ ̂i − mgcosθ ĵ , 
  
F f = −µkmgcosθ î , and FN = mgcosθ ĵ . The work done by the normal force is zero 
because the normal force is perpendicular the displacement 

 
W N = FN ⋅ Δr  = mgcosθ ĵ⋅ l î = 0 . 

Then the work done by the friction force is negative and given by 

 
W f = F f ⋅ Δr  = −µkmgcosθ î ⋅ l î = −µkmgcosθl < 0 . 

Substituting in the appropriate values yields 

W f = −µkmg cosθl = −(0.2)(4.0kg)(9.8m ⋅s-2 )(3.0m)(cos(30o )(3.0m) = −20.4 J . 

The work done by the gravitational force is positive and given by 

 
W g = Fg ⋅ Δr  = (mgsinθ î − mgcosθ ĵ) ⋅ l î = mglsinθ > 0 . 

Substituting in the appropriate values yields 

W g = mglsinθ = (4.0kg)(9.8 m ⋅s-2 )(3.0m)(sin(30o ) = 58.8 J . 
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(c) The scalar sum of the work done by the three forces is then 

W = W g +W f = mgl(sinθ − µk cosθ ) 

W = (4.0kg)(9.8m ⋅s-2 )(3.0m)(sin(30o ) − (0.2)(cos(30o )) = 38.4 J. 

13.9 Work done by a Non-Constant Force Along an Arbitrary Path 
 

r 

 

≡ 
 

i 

FSuppose that non-constant force point-like body of while the body acts ma on a mass 
is moving three dimensional curved path. The position of the body at time tvector on a 
with choice of origin is ( ) In Figure 13.15 show the orbit of the body trespect to ra we . 

[ ]for time interval t t moving from initial position ra an ,i f (t = ti ) at time t = ti to a 

final position r  f ≡ r (t = t f ) at time t = t f . 

Figure 13.15 Path traced by the motion of a body. 

We divide the time interval [ti ,t f ] into N smaller intervals with [t , t ] , j = 1,⋅⋅⋅, Nj−1 j 
 ≡ 
 ≡ 

with tN = t f . Consider two position vectors rj r(t = t j ) and rj −1 r(t = t j −1 ) the 

displacement vector during the corresponding time interval as Δrj = 
rj −
rj −1 . 

 
Let F 

denote the force acting on the body during the interval [t j−1, t j ] . The average force in this 
 

interval is (Fj ) and the average work ΔWj done by the force during the time interval ave 

[t j−1, t j ] is the scalar product between the average force vector and the displacement 
vector,  

ΔWj = (Fj )ave ⋅ Δr  j . (13.8.17) 

The force and the displacement vectors for the time interval [t j−1, t j ] are shown in Figure 
 

13.16 (note that the subscript “ave” on (Fj )ave has been suppressed). 
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Figure 13.16 An infinitesimal work element. 

We calculate the work by adding these scalar contributions to the work for each 
interval [t j−1, t j ] , for j = 1 to N , 

j = N j = N 

∑ ( 

Fj )ave ⋅ Δ 

 rj . (13.8.18) WN = ∑ΔWj = 
j =1 j =1 

We would like to define work in a manner that is independent of the way we 
Δrjdivide the interval, so we take the limit as N →∞ and → 0 for all j . In this limit, 

as the intervals become smaller and smaller, the distinction between the average force 
and the actual force vanishes. Thus if this limit exists and is well defined, then the work 
done by the force is 

j = N 
Fj )ave ⋅ Δ 

rj = ∫i 

f 
F ⋅ dr . (13.8.19) W = 

r 

lim ∑ (
N →∞ 

j =1Δ →0j 

Notice that this summation involves adding scalar quantities. This limit is called the line  integral of the force F . The symbol dr is called the infinitesimal vector line element. At time t , dr is tangent to the orbit of the body and is the limit of the displacement   vector Δr = r(t + Δt) − r( )t as Δt approaches zero. In this limit, the parameter t does not 
appear in the expression in Equation (13.8.19). 

In general this line integral depends on the particular path the body takes between  the initial position ri and the final position rf , which matters when the force F is non-
constant in space, and when the contribution to the work can vary over different paths in 
space. We can represent the integral in Equation (13.8.19) explicitly in a coordinate system by specifying the infinitesimal vector line element dr and then explicitly 
computing the scalar product. 

13.9.1 Work Integral in Cartesian Coordinates 

In Cartesian coordinates the line element is 
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 ˆ ˆ ˆdr = dx i + dy j + dz k , (13.8.20) 

where dx , dy , and dz represent arbitrary displacements in the î -, ĵ -, and k̂ -directions 
respectively as seen in Figure 13.17. 

Figure 13.17 A line element in Cartesian coordinates. 

The force vector can be represented in vector notation by 

 ˆ ˆ ˆF = F i + F j + F k . (13.8.21) x y z 

The infinitesimal work is the sum of the work done by the component of the force times 
the component of the displacement in each direction, 

dW = F dx + F dy + F dz . (13.8.22) x y z 

Eq. (13.8.22) is just the scalar product 

 
dW = F ⋅ dr  = (F î + F ĵ + F k̂) ⋅(dx î + dy ĵ + dz k̂)x y z , (13.8.23) 

= F dx + F dy + F dz x y z 

The work is 

r= 
r r= 

r r= 
r r= 

r r= 
rf 

F ⋅ dr = 
f f f f 

∫ 
r0 

∫ ∫ ∫ ∫x 
r r r r 

= F dx + Fydy + 
0 0 0 0 

W = (F dx + F dy + F dz)x y z Fzdz . (13.8.24) 
r r r r r= = = = = 

13.9.2 Work Integral in Cylindrical Coordinates 

In cylindrical coordinates the line element is 

dr  = dr r̂ + rdθ θ̂ + dz k̂ , (13.8.25) 

where dr , rdθ , and dz represent arbitrary displacements in the r̂ -, θ̂ -, and k̂ -
directions respectively as seen in Figure 13.18. 
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Figure 13.18 Displacement vector d s between two points 

The force vector can be represented in vector notation by 

 
F = Fr r̂ + Fθ 

θ̂ + Fz k̂ . (13.8.26) 

The infinitesimal work is the scalar product 

 
dW = F ⋅ dr  = (Fr r̂ + Fθ θ̂ + Fz k̂) ⋅(dr r̂ + rdθ θ̂ + dz k̂) 

(13.8.27) 
= Frdr + Fθ rdθ + Fzdz. 

The work is 

r= 
r r= 

r r= 
r r= 

r r= 
rf 

F ⋅ dr = 
f f f f 

W = ∫ ∫ ∫ ∫ ∫θ θz r 
r r r r 

rdθ + F dz) = F dr + F rdθ + 
0 0 0 0 

(Frdr + F Fzdz . (13.8.28) 
r r r0 

r r r= = = = = 

13.10 Worked Examples 

Example 13.11 Work Done in a Constant Gravitation Field 

The work done in a uniform gravitation field is a fairly straightforward calculation when 
the body moves in the direction of the field. Suppose the body is moving under the  
influence of gravity, F = −mg ̂j along a parabolic curve. The body begins at the point 
(x0 , y0 ) and ends at the point (x f , y f ) . What is the work done by the gravitation force on 
the body? 

Solution:  The infinitesimal line element dr is therefore 

dr  = dx ̂i + dy ̂j . (13.9.1) 
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The scalar product that appears in the line integral can now be calculated, 

 
F ⋅ d r  = −mg ĵ ⋅[dx î + dy ĵ] = −mgdy . (13.9.2) 

This result is not surprising since the force is only in the y -direction. Therefore the only 
non-zero contribution to the work integral is in the y -direction, with the result that 

r y= y y= yf f f 
W = F ⋅ dr  = F dy = −mgdy = −mg( y − y ) . (13.9.3) ∫ ∫ y ∫ f 0 

r y= y y= y0 0 0 

In this case of a constant force, the work integral is independent of path. 

Example 13.12 Hooke’s Law Spring-Body System 

Consider a spring-body system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to a body of mass m (Figure 13.19). 
Calculate the work done by the spring force on body as the body moves from some initial 
position to some final position. 

Figure 13.19 A spring-body system. 

Solution: Choose the origin at the position of the center of the body when the spring is 
relaxed (the equilibrium position). Let x be the displacement of the body from the origin. 
We choose the +î unit vector to point in the direction the body moves when the spring is 
being stretched (to the right of x = 0 in the figure). The spring force on the body is then 
given by  ˆ ˆF = Fx i = −kx i . (13.9.4) 

The work done by the spring force on the mass is 

x = x f 

Wspring = ∫ (−kx) dx = − 
2
1

k(x f 
2 − x0

2 ) . (13.9.5) 
x = x0 
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Example 13.13 Work done by the Inverse Square Gravitation Force 

Consider a body of mass m in moving in a fixed orbital plane about the sun. The mass of 
the sun is ms . How much work does the gravitation interaction between the sun and the 
body done on the body during this motion? 

Solution: Let’s assume that the sun is fixed and choose a polar coordinate system with 
the origin at the center of the sun. Initially the body is at a distance r0 from the center of 
the sun. In the final configuration the body has moved to a distance rf < r0 from the 
center of the sun. The infinitesimal displacement of the body is given by 
dr  = dr r̂ + rdθ θ̂ . The gravitation force between the sun and the body is given by 

 GmsmF = F r̂ = − r̂ . (13.9.6) grav grav 2r 

The infinitesimal work done work done by this gravitation force on the body is given by 

 F(r = grav ,r 

 
r̂) ⋅(dr r̂ + rdθ θ̂) = FdW = F ⋅ d dr . (13.9.7) grav grav ,r 

Therefore the work done on the object as the object moves from ri to rf is given by the 
integral 

rf rf rf  ⎛ Gm sun m⎞ 
W = ∫ F grav ⋅ dr = ∫ Fgrav ,r dr = ∫ ⎝⎜ − 2 ⎠⎟ 

dr . (13.9.8) 
rri ri ri 

Upon evaluation of this integral, we have for the work 

rf ⎛ ⎞rf ⎛ Gm m⎞ Gm m 1 1sun sun W = ∫ ⎝⎜ − 
r 2 ⎠⎟ 

dr = 
r 

= Gm m⎜ − ⎟ . (13.9.9) sun r r 
ri 

⎝ f i ⎠ri 

Because the body has moved closer to the sun, rf < ri , hence 1 / rf > 1 / ri . Thus the work 
done by gravitation force between the sun and the body, on the body is positive, 

⎛ ⎞1 1W = Gm m sun − > 0 (13.9.10) ⎜
⎝ 

⎟
⎠rf ri 

We expect this result because the gravitation force points along the inward radial 
direction, so the scalar product and hence work of the force and the displacement is 
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positive when the body moves closer to the sun. Also we expect that the sign of the work 
is the same for a body moving closer to the sun as a body falling towards the earth in a 
constant gravitation field, as seen in Example 4.7.1 above. 

Example 13.14 Work Done by the Inverse Square Electrical Force 

Let’s consider two point-like bodies, body 1 and body 2, with charges q1 and q2 

respectively interacting via the electric force alone. Body 1 is fixed in place while body 2 
is free to move in an orbital plane. How much work does the electric force do on the body 
2 during this motion? 

Solution: The calculation in nearly identical to the calculation of work done by the 
gravitational inverse square force in Example 13.13. The most significant difference is 
that the electric force can be either attractive or repulsive while the gravitation force is 
always attractive. Once again we choose polar coordinates centered on body 2 in the 
plane of the orbit. Initially a distance r0 separates the bodies and in the final state a 
distance rf separates the bodies. The electric force between the bodies is given by 

 1 q1q2ˆ r̂ = r̂ . (13.9.11) Felec = Felec r = Felec,r 24πε0 r 

The work done by this electric force on the body 2 is given by the integral 

rf rf rf  1 q q
W = F ⋅ dr = F dr = 1 2 dr . (13.9.12) ∫ elec ∫ elec ,r ∫ 24πε0 rri ri ri 

Evaluating this integral, we have for the work done by the electric force 

rf 1 q1q2 1 q1q2 

rf 1 ⎛ 1 1 ⎞ W = dr = − 2 = − q1q2 ⎜ − ⎟ . (13.9.13) ∫ 24πε r 4πε r 4πε r r ri 0 0 ri 
0 ⎝ f i ⎠ 

If the charges have opposite signs, q1q2 < 0 , we expect that the body 2 will move closer 
to body 1 so rf < ri , and 1 / rf > 1 / ri . From our result for the work, the work done by 
electrical force in moving body 2 is positive, 

1 1W = − q1q2 ( 
1 
− ) > 0 . (13.9.14) 

4πε0 rf ri 

Once again we see that bodies under the influence of electric forces only will naturally 
move in the directions in which the force does positive work. If the charges have the 
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same sign, then q1q2 > 0 . They will repel with rf > ri and 1 / rf < 1 / ri . Thus the work is 
once again positive: 

1 ⎛ 1 1 ⎞W = − q1q2 ⎜ − ⎟ > 0 . (13.9.15) 
4πε0 ⎝ rf ri ⎠ 

13.11 Work-Kinetic Energy Theorem in Three Dimensions 

Recall our mathematical result that for one-dimensional motion 

f f f fdvx dx 1 2 1 2m a dx = m dx = m dv = m v dv = mv − mv . (13.11.1) ∫ x ∫ ∫ x ∫ x x x , f x , idt dt 2 2i i i i 

Using Newton’s Second Law in the form Fx = ma x , we concluded that 

f 1 2 1 2∫ F dx = mv − mv x ,i (13.11.2) x x , f . 
i 2 2 

Eq. (13.11.2) generalizes to the y - and z -directions: 

f 1 2 1 2∫ Fy dy = mv y , f − mv y , i , (13.11.3) 
i 2 2 
f 1 2 1 2F dz = mv − mv z , i (13.11.4) ∫ z z , f 2

. 
i 2 

Adding Eqs. (13.11.2), (13.11.3), and (13.11.4) yields 

2 2 2 2 2 2∫ 
f 

(Fx dx + Fy dy + Fz dz) = 
1 

m(vx , f + vy , f + vz , f ) − 
1 

m(vx , i + vy , i + vz , i ) . (13.11.5) 
2i 2 

Recall (Eq. (13.8.24)) that the left hand side of Eq. (13.11.5) is the work done by the  
force F on the object 

f f f  
W = ∫ dW = ∫ (Fx dx + Fy dy + Fz dz) = ∫F ⋅ dr  (13.11.6) 

i i i 

The right hand side of Eq. (13.11.5) is the change in kinetic energy of the object 

1 1 1 12 2 2 2 2 2 2ΔK ≡ K f − Ki = mv f 
2 − mv0 = m(vx , f + vy , f + vz , f ) − m(vx , i + vy , i + vz , i ) . (13.11.7) 

2 2 2 2 
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Therefore Eq. (13.11.5) is the three dimensional generalization of the work-kinetic 
energy theorem 

∫ 
f 

F 
 
⋅ dr  = K f − Ki . (13.11.8) 

i 

When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed. 

13.11.1 Instantaneous Power Applied by a Non-Constant Force for Three 
Dimensional Motion 

Recall that for one-dimensional motion, the instantaneous power at time t is defined to 
be the limit of the average power as the time interval [t,t + Δt] approaches zero, 

P(t) = Fx
a (t)vx (t) . (13.11.9) 

A more general result for the instantaneous power is found by using the expression for 
dW as given in Equation (13.8.23), 

dW F 
 
⋅ d r  P = = = F ⋅ v . (13.11.10)

dt dt 

The time rate of change of the kinetic energy for a body of mass m is equal to the power, 

dK 1 d 

dt 
= 
2 
m 
dt 
( v ⋅ v) = m 

dv 
dt 

⋅ v = m a ⋅ v = 

F ⋅ v = P . (13.11.11) 

where the we used Eq. (13.8.9), Newton’s Second Law and Eq. (13.11.10). 
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Appendix 13A Work Done on a System of Two Particles 

We shall show that the work done by an internal force in changing a system of two 
particles of masses m1 and m2 respectively from an initial state A to a final state B is 
equal to 

W c = 
1
2 
µ(vB 

2 − vA 
2 ) (13.1.1) 

where vB 
2 is the square of the relative velocity in state B , vA 

2 is the square of the relative 
velocity in state A , and µ = m1m2 / (m1 + m2 ) . 

Consider two bodies 1 and 2 and an interaction pair of forces shown in Figure 13A.1. 

Figure 13A.1 System of two bodies interacting 

We choose a coordinate system shown in Figure 13A.2. 

r1 

Figure 13A.2 Coordinate system for two-body interaction 

Newton’s Second Law applied to body 1 is 

d 2
F2,1 = m1 dt2 (13.1.2) 

and applied to body 2 is 
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 d 2 r2= m2 . (13.1.3) 
dt2 

Divide each side of Equation (13.1.2) by m1 , 

 
d 2 

2,1 1r 

F1,2 

F 
(13.1.4) = 

m1 dt2 

and divide each side of Equation (13.1.3) by m2 , 

 
d 2F1,2 r 

= 2 (13.1.5) . 
m2 dt2 

rr 

Subtract Equation (13.1.5) from Equation (13.1.4) yielding 

rd 2 d 2 d 2 
2,1 1,2 1 2 2,1 

 
F 

 
F 

− − (13.1.6) = = ,
dt2 dt2 dt2m1 m2 

  
2 ,1 1 2 . 

Equation (13.1.6) to obtain 

r r r F2,1 = −F1, 2 where − 

r1 

Use Newton’s Third Law, 


F

d 2 

2,1 

the left hand side of= on 

rrd 2 d 2 
2 2,1 

dt2 dt2 

⎛ 1 1 ⎞ 
− (13.1.7) + 

⎠⎟ 
= 

m2 

= 
⎝⎜ 

. 
dt2m1 

2dt 


F r r 


F 

The quantity d 2r1,2 / dt
2 is the relative acceleration of body 1 with respect to body 2. 

Define 
1 1 1≡ + . (13.1.8) 
µ m m1 2 

The quantity µ is known as the reduced mass of the system. Equation (13.1.7) now takes 
the form 

F 
 

2,1 = µ 
d 2r  2,1 . (13.1.9) 

The work done in the system in displacing the two masses from an initial state A to a 
final state B is given by 

2,1 1 1,2 2 

B B 

W = ∫ ⋅ d + ∫ ⋅ d . (13.1.10) 
A A 
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Recall by the work energy theorem that the LHS is the work done on the system, 

B B 

= 2,1 1 1,2 2 
A A 

From Newton’s Third Law, the sum in Equation (13.1.10) becomes 

r 

Fr 


F∫ ∫W ⋅ d ⋅ d = ΔK . (13.1.11) + 

B B B B r 

F 

A A A A 

r 

d  

r 

(13.1.12), 

r 


F 

2d d2,1 2,1 
2,1 

r 

F r 

where is the relative displacement of the bodies. We substitute two r can now2 1, 

Newton’s Second Law, Equation (13.1.9), for the relative acceleration into Equation 

r2,1 1 2,1 2 2,1 1 2 2,1 2,1 

r 


F∫ ∫ ∫ ∫W ⋅ d ⋅ d ⋅(d − d ⋅ d (13.1.12) − )= = = , 

d 2 
2,1 

r 
dt2 

⎛ ⎞B B B 

2,1 2,1 
A A 

r 

F∫ ∫ ∫W ⋅ d ⋅ d ⎟ dt⋅ (13.1.13) ⎜µ = µ= = ,

dt2 dt⎝ ⎠A 

d r 2,1 where we have used the relation between the differential elements d = dt . The r2,1 dt 
product rule for derivatives of the scalar product of a vector with itself is given for this 
case by 

rd 2,1 

dt 
⋅ 
rd 2,1 

dt 
⎞ 
⎟
⎠ 
= 

rd 2 
2,1 

dt2 ⋅ 
rd 2,1 

dt 
. 

⎛1 d 
(13.1.14) ⎜

⎝2 dt 

Substitute Equation (13.1.14) into Equation (13.1.13), which then becomes 

d r2,1 

dt 
⋅ 
d r2,1 

dt 
⎛ ⎞B 1 d

∫W = µ dt . (13.1.15) ⎜
⎝

⎟
⎠2 dtA 

Equation (13.1.15) is now the integral of an exact derivative, yielding 

rd 2,1 

dt 
⋅ 
rd 2,1 

dt 

B
⎛ ⎞1 1 µ (v2,1 ⋅

v2,1 ) 
B 1 
= 

A 2 
µ(vB 

2 − vA 
2 ) ,W = (13.1.16) µ ⎜

⎝ 
⎟
⎠ 

= 
2 2 

A 

where is the relative velocity between the two bodies. It’s important to note that in v2,1 

the above derivation had we exchanged the roles of body 1 and 2 i.e. 1→ 2 and 2 → 1 , 
we would have obtained the identical result because 
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− 1 

 
F2,1
r 

= − 
r2 = − 

r1 

= 

1,2 

1,2 

d 1,2 

r 
r

 
F 

2,1 

) = −d 

r 
(13.1.17) 

2,1 

Equation (13.1.16) implies that the work done is the change in the kinetic energy of the 
system, which we can write in terms of the reduced mass and the change in the square of 
relative speed of the two objects 

ΔK = 
1 µ(vB 

2 − vA 
2 ) . (13.1.18) 

2 

r r2 
v 

= d( − 

= − 2,1.1,2 
v 
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