Recitation 10 (12/2)

Reminders:
e MQ10 on Monday (12/5)
e PSet5 due Wednesday (12/7) at 9pm

Lecture Recap: Writing Efficient Programs & Complexity

Writing Efficient Programs

e Until now, we’ve mostly talked about correctness, but we also need think about efficiency
when writing programs.

e When we talk about improving efficiency, we often mean writing a program in a different
way so that it is executed faster.

Some ways to evaluate the efficiency of programs
1. With a timer and using the time module

Example:
import time # import time module
tstart = time.time() # “start” timer
count = 0
for i in range(1000):
count += 1
tend = time.time() # “end” timer
dt = tend - tstart
print(dt) # print time to run program

2. Counting number of operations
The following steps take constant time:
a. Mathematical operations
b. Comparisons
c. Assignments
d. Accessing objects in memory

3. Abstraction of order of growth (see next section).

Complexity/Order of Growth

“Big-0” notation.
Gives us an idea of how long an algorithm will take to run with respect to the size of its
inputs (arguments), regardless of what machine it’s running on.
Gives the worst case scenario.
We don’t care about lower-order terms or constants. We are interested in trends as input
grows very large, so highest order terms dominate.
o Adding:
0(n?) + 0(n) + 0(1) » O(n’+ n + 1) -> 0(n?)
o Multiplicative or additive constants don’t matter
0(10*n) - 0(n)
0(n) * 0(n) -> 0(n?)
0(logz(n)) - 0(log(n)/log(2)) » 0(log(n))
O(n + 1) » 0(n)
We want the tightest bound possible. Technically, an algorithm that is 0(n) is also 0(n?),
0(2"), etc, since O is just <=, but we want the closest upper bound possible.
Big © bound is a lower and upper bound on the growth of some function — tighter bound:
f(x) = 0(x?) # 0(n?) # 0(29)
n“+ 2n + 6 -> 0(n?)

Common orders of growth ordered by increasing complexity. Ideally, we want to design
algorithms as close to the top of the table as possible.

Complexity Time Examples

0(1) Constant Adding two numbers together,
appending to a list — Independent of
input size!

O(log(n)) Logarithmic Binary search

O(n) Linear list.copy(), or scanning through an entire
list to look for a value

O(nlog(n)) Log-linear Merge-sort

0(n?), O(n3) Polynomial Nested for loops

etc...

0(2"), 0(3") exponential Trying to guess an n-character password

etc...

Complexity of Python methods/objects https://wiki.python.org/moin/TimeComplexity
e (Constant-time operations:

o Assigning a variable (x = 1)

o Performing basic operations (+, -, /, **, <, >, ==, etc.)

o Some built-in methods for data structures in Python are also constant-time, but
many are not. Although we don’t look at the underlying machinery of many
built-in methods, the complexity of their implementations affects the complexity
analysis of our own methods.

e Dictionaries (will depend on hash function)
o 0O(1): lookup, checking if key in dictionary, length, insert, delete
o 0Of(n): d.keys() or d.values() - list of length n must be generated

o O(1): append, length
o 0Of(n): insert, delete (move around elements), copy, check if item in (unsorted) list
o Of(nlog(n)): sort

Strategies for Order-of-Growth Analysis
e Loops: # of iterations times cost of each iteration
e Recursive functions
o How many recursive calls are being made?
o How much work does each recursive call take?
o Draw a tree connecting subproblems

Helpful Big-O Complexity Chart

Big-O Complexity Chart
[Rereote) (5od] Foi | Geod]

O(n"2)

O(n!) | O(2~n)

O(n log n)

Operations

O(n)

Oflog n), O(1)

Elements

https://wiki.python.org/moin/TimeComplexity

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to CS and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

