SORTING ALGORITHMS

(download slides and .py files to follow along)

6.100L Lecture 24
Ana Bell

SEARCHING A SORTED LIST
- nis len(L)

= Using linear search, search for an element is ©(n)

= Using binary search, can search for an element in ©(logn)
e assumes the list is sorted!

= \When does it make sense to sort first then search?

0 o ¢ 0
@ < <
A K e (oe? O e?
«© O \0,\(\3(\\ _(\63<
\

SORT +’®(log n)| <|®(n) | implies SORT<B(n)—-06(log n)

When sorting is less than 0(n)!?!? This is never true!

2
6.100L Lecture 24

AMORTIZED COST
- nis len(L)

» Why bother sorting first?
= Sort a list once then do many searches

= AMORTIZE cost of the sort over many searches

\
Qe
O(\

" SORT |+ K| *O(log n)<K |*O(n)

—> for large K, SORT time becomes irrelevant

3
6.100L Lecture 24

SORTING ALGORITHMS

BOGO/RANDOM/MONKEY SORT

= aka bogosort,
stupidsort, slowsort,
randomsort,
shotgunsort

= To sort a deck of cards
* throw them in the air
e pick them up
e are they sorted?
* repeat if not sorted

il L]
» L]
** *
& ¥ & &
L
- * * *
* ®
* ®
. . e
-
® . " *
- L]
¥ *
& e *
&
L 3 L) -
+ - **
L]
& “'__
- . ® *
L
- * *
® -
- _'_'I-
.
"I-

- -

B
Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF BOGO SORT

def bogo sort (L) :
while not 1s sorted(L):

random.shuffle (L)

" Best case: O(n) where n is len(L) to check if sorted

» Worst case: O(?) it is unbounded if really unlucky

6
6.100L Lecture 24

BUBBLE SORT

= Compare consecutive
pairs of elements

= Swap elements in pair ’ . . .
such that smaller is first 'Y *oe L e

= When reach end of list, * . ot . +

start over again . o T e
= Stop when no more *oe A RN
swaps have been made IR .o

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see

Donald Knuth, in “The Art of Computer Programming”, said: https://ocw.mit.edu/help/fag-fair-use/
"the bubble sort seems to have nothing to recommend it, except a catd}y name and the fact that it leads to some interesting theoretical problems"

6.100L Lecture 24

COMPLEXITY OF BUBBLE SORT

def bubble sort (L) :

did swap = True \\e“\\\\

while did swap: ©

did swap = False A

for j 1in range(l, len(L)): o\©

if L[j-1] > L[J]:

did swap = True
L[3],L03-1] = L[3-11,L[3]

" Inner for loop is for doing the comparisons

= Quter while loop is for doing multiple passes until no
more swaps

= O(n?) where n is len(L)
to do len(L)-1 comparisons and len(L)-1 passes

8
6.100L Lecture 24

SELECTION SORT e
= First step e, o,
* Extract minimum element . . Lt
* Swap it with element at index 0 « vt L. ‘
= Second step L -

* In remaining sublist, extract minimum element
* Swap it with the element at index 1

= Keep the left portion of the list sorted
* At ith step, first i elements in list are sorted
* All other elements are bigger than first i elements

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

9
6.100L Lecture 24

https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF SELECTION SORT

S

A
é&) v&»
def selection sort(L): 5© o\e)
— (O
for 1 1n range(len (L)) : VO
ge ((L)) e(\® 0®\
for j 1in range (i, len(L)): \2 o\©

if L[j] < L[i]:

= Complexity of selection sort is ®(n%) where n is len(L)
= Quter loop executes len(L) times
* |Inner loop executes len(L) —i times, on avg len(L)/2

= Can also think about how many times the comparison
happens over both loops: say n = len(L)

= Approx 1+2+3+...+n = (n)(n+1)/2 = n2/24+n/2 = B(n?)

10
6.100L Lecture 24

VARIATION ON SELECTION SORT:
don’t swap every time

MERGE SORT

= Use a divide-and-conquer approach:
= |f list is of length O or 1, already sorted

= |f list has more than one element,
split into two lists, and sort each

= Merge sorted sublists

= Look at first element of each,
move smaller to end of the result

= When one list empty, just
copy rest of other list

12

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj1uvPioOLdAhVFWrwKHSnwAhwQjRx6BAgBEAU&url=https://www.videoblocks.com/video/vehicles-slowly-merge-into-traffic-rpyosmadiqv16uhh&psig=AOvVaw3OWWpk6ENNJqmJvZu0CLtn&ust=1538380678448859

MERGE SORT

= Divide and conquer

~

~
merge merge merge merge merge merge merge merge

(

~

= Split list in half until have sublists of only 1 element

13
6.100L Lecture 24

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

= Divide and conquer

~_

merge merge merge merge

= Merge such that sublists will be sorted after merge

14
6.100L Lecture 24

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

= Divide and conquer

\/ v

merge merge

= Merge sorted sublists

= Sublists will be sorted after merge

15
6.100L Lecture 24

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

= Divide and conquer

= Merge sorted sublists

= Sublists will be sorted after merge

16
6.100L Lecture 24

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

" Divide and conquer — done!

sorted

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT DEMO

(»]

1. Recursively divide into subproblems
2. Sort each subproblem using linear merge
3. Merge (sorted) subproblems into output list

18

CLOSER LOOK AT THE
MERGE STEP (EXAMPLE)

Left in list 1 Left in list 2
(1)5,12,18,19,20] (2)3,4,17]
(5)12,18,19,20] (2)3,4,17]
(5)12,18,19,20] (3)4,17]
5,12,18,19,20 4,17]
5,12,18,19,20 17]
12,18,19,20] 17]
18,19,20] [17]
18,19,20]]

] []

[1,2,3,4,5,12,17,18,19,20]

Compare Result
@) RO

5(2) 210

53) (5240

5,4 1,2,3]

5,17 [1,2,3,4]

12,17 1,2,3,4,5]

18, 17 [1,2,3,4,5,12]
18, -- [1,2,3,4,5,12,17]

19

6.100L Lecture 24

MERGING SUBLISTS STEP

def merge(left, right): 90\N§5
result = [] 6(-\%‘(\‘
i,3 =0, 0 \’e&“a(\ (66 6‘\0(N
while 1 < len(left) and j < len(right): - O(de. 6‘\(,e 6\0% e*\.
if left[i] < right[j]: AN O\\e\(\dege‘\ o\d @
result.append(left[i]) - YNSG) ‘NSCQQF&
i4+=1 SR o e
else: N\(\ ,a\\e(’&
result.append(right[j]) SGA
J +=1 X
while (1 < len(left)): \Ne Oépeﬁﬁjﬂ
result.append(left[i]) ‘QA QS‘ﬁ’
i4=1 °
while (3 < len(right)): “5‘ ««ﬁﬂ
result.append(right[]J]) ‘QNQQQGXVae
J o= 1 °

return result

20

COMPLEXITY OF
MERGING STEP

= Go through two lists, only one pass

= Compare only smallest elements in each sublist
= O(len(left) + len(right)) copied elements

= Worst case O(len(longer list)) comparisons

= Linear in length of the lists

21
6.100L Lecture 24

FULL MERGE SORT ALGORITHM

-- RECURSIVE
def merge sort(L): o

if len(L) < 2: ba‘v"'@
return LJ[:]

else:
middle = len(L)//2
left = merge sort(L[:middle]) 6@©9
right = merge sort (L[middle:]) g*ﬁs@Q
return merge(left, right) dﬁmi@ﬁgs

N\

= Divide list successively into halves

= Depth-first such that conquer smallest pieces down one
branch first before moving to larger pieces

22
6.100L Lecture 24

8416

5920

Merge

base
case

23
6.100L Lecture 24

/ 1468 &0259 N
/ 01245689 \
Merge Merge
48 &16 59 &02
/ 1468 /| 0259
d 16 slo 1 .20
Merge Merge Merge
16 59 02
4 1 6 5 9 2
base base base | base base base
case case case | case case case

base
case

COMPLEXITY OF MERGE SORT

= Each level
= At first recursion level
* n/2 elements in each list, 2 lists
* One merge =2 O(n) + O(n) = O(n) where n is len(L)
= At second recursion level
* n/4 elements in each list, 4 lists
* Two merges =2 0O(n) where n is len(L)
= And so on...

Dividing list in half with each recursive call gives our levels
* O(log n) where nis len(L)
* Like bisection search: 1 = n/2' tells us how many splits to get to one element

= Each recursion level does ®(n) work and there are O(log n) levels,
where n is len(L)

* Overall complexity is @(n log n) where n is len(L)

24
6.100L Lecture 24

SORTING SUMMARY
- nis len(L)

= Bogo sort
 Randomness, unbounded ©()

= Bubble sort
« O(n?)

= Selection sort

* O(n?)

e Guaranteed the first i elements were sorted
= Merge sort

* O(nlogn)

" O(n log n) is the fastest a sort can be

25
6.100L Lecture 24

COMPLEXITY SUMMARY

= Compare efficiency of algorithms
* Describe asymptotic order of growth with Big Theta
* Worst case analysis

» Saw different classes of complexity
* Constant
* Log
* Linear
* Log linear
* Polynomial
* Exponential
* A priori evaluation (before writing or running code)

e Assesses algorithm independently of machine and
implementation

* Provides direct insight to the design of efficient algorithms

26

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.reddit.com%2Fr%2FProgrammerHumor%2Fduplicates%2Fbark1r%2Falternative_big_o_notation%2F&psig=AOvVaw3mcBDXbNxK3sHmOBuw-vdM&ust=1600886991640000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIiKk5G3_esCFQAAAAAdAAAAABAJ

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

27

https://ocw.mit.edu
https://ocw.mit.edu/terms

	SORTING ALGORITHMS�(download slides and .py files to follow along)
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	SORTING ALGORITHMS
	BOGO/RANDOM/MONKEY SORT
	COMPLEXITY OF BOGO SORT
	BUBBLE SORT
	COMPLEXITY OF BUBBLE SORT
	SELECTION SORT
	COMPLEXITY OF SELECTION SORT
	VARIATION ON SELECTION SORT: �don’t swap every time
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT DEMO
	CLOSER LOOK AT THE �MERGE STEP (EXAMPLE)
	MERGING SUBLISTS STEP
	COMPLEXITY OF �MERGING STEP
	FULL MERGE SORT ALGORITHM�-- RECURSIVE
	Slide Number 24
	COMPLEXITY OF MERGE SORT
	SORTING SUMMARY�-- n is len(L)
	COMPLEXITY SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

