SORTING ALGORITHMS

(download slides and .py files to follow along)

6.100L Lecture 24
Ana Bell



SEARCHING A SORTED LIST
- nis len(L)

= Using linear search, search for an element is ©(n)

= Using binary search, can search for an element in ©(logn)
e assumes the list is sorted!

= \When does it make sense to sort first then search?
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SORT +’®(log n)| <|®(n) | implies SORT<B(n)—-06(log n)

When sorting is less than 0(n)!?!? This is never true!
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AMORTIZED COST
- nis len(L)

» Why bother sorting first?
= Sort a list once then do many searches

= AMORTIZE cost of the sort over many searches

\
Qe
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" SORT |+ K| *O(log n)<K |*O(n)

—> for large K, SORT time becomes irrelevant
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SORTING ALGORITHMS



BOGO/RANDOM/MONKEY SORT

= aka bogosort,
stupidsort, slowsort,
randomsort,
shotgunsort

= To sort a deck of cards
* throw them in the air
e pick them up
e are they sorted?
* repeat if not sorted
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Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/



https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF BOGO SORT

def bogo sort (L) :
while not 1s sorted(L):

random.shuffle (L)

" Best case: O(n) where n is len(L) to check if sorted

» Worst case: O(?) it is unbounded if really unlucky
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BUBBLE SORT

= Compare consecutive
pairs of elements

= Swap elements in pair ’ . . .
such that smaller is first 'Y *oe L e

= When reach end of list, * . ot . +

start over again . o T e
= Stop when no more *oe A RN
swaps have been made IR .o

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see

Donald Knuth, in “The Art of Computer Programming”, said: https://ocw.mit.edu/help/fag-fair-use/
"the bubble sort seems to have nothing to recommend it, except a catd}y name and the fact that it leads to some interesting theoretical problems"
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COMPLEXITY OF BUBBLE SORT

def bubble sort (L) :

did swap = True \\e“\\\\

while did swap: ©

did swap = False A

for j 1in range(l, len(L)): o\©

if L[j-1] > L[J]:

did swap = True
L[3],L03-1] = L[3-11,L[3]

" Inner for loop is for doing the comparisons

= Quter while loop is for doing multiple passes until no
more swaps

= O(n?) where n is len(L)
to do len(L)-1 comparisons and len(L)-1 passes
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SELECTION SORT e
= First step e, o,
* Extract minimum element . . Lt
* Swap it with element at index 0 « vt L. ‘
= Second step L -

* In remaining sublist, extract minimum element
* Swap it with the element at index 1

= Keep the left portion of the list sorted
* At ith step, first i elements in list are sorted
* All other elements are bigger than first i elements

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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COMPLEXITY OF SELECTION SORT

S

A
é&) v&»
def selection sort(L): 5© o\e )
— (O
for 1 1n range(len (L)) : VO
ge ( (L)) e(\® 0®\
for j 1in range (i, len(L)): \2 o\©

if L[j] < L[i]:

= Complexity of selection sort is ®(n%) where n is len(L)
= Quter loop executes len(L) times
* |Inner loop executes len(L) —i times, on avg len(L)/2

= Can also think about how many times the comparison
happens over both loops: say n = len(L)

= Approx 1+2+3+...+n = (n)(n+1)/2 = n2/24+n/2 = B(n?)
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VARIATION ON SELECTION SORT:
don’t swap every time







MERGE SORT

= Use a divide-and-conquer approach:
= |f list is of length O or 1, already sorted

= |f list has more than one element,
split into two lists, and sort each

= Merge sorted sublists

= Look at first element of each,
move smaller to end of the result

= When one list empty, just
copy rest of other list
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MERGE SORT

= Divide and conquer

~

~
merge merge merge merge merge merge merge merge

(

~

= Split list in half until have sublists of only 1 element
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Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR




MERGE SORT

= Divide and conquer

~_

merge merge merge merge

= Merge such that sublists will be sorted after merge
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Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR




MERGE SORT

= Divide and conquer

\/ v

merge merge

= Merge sorted sublists

= Sublists will be sorted after merge
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Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR




MERGE SORT

= Divide and conquer

= Merge sorted sublists

= Sublists will be sorted after merge
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Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR




MERGE SORT

" Divide and conquer — done!

sorted




Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR




MERGE SORT DEMO

(»]

1. Recursively divide into subproblems
2. Sort each subproblem using linear merge
3. Merge (sorted) subproblems into output list
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CLOSER LOOK AT THE
MERGE STEP (EXAMPLE)

Left in list 1 Left in list 2
(1)5,12,18,19,20] (2)3,4,17]
(5)12,18,19,20]  (2)3,4,17]
(5)12,18,19,20]  (3)4,17]
5,12,18,19,20 4,17]
5,12,18,19,20 17]
12,18,19,20] 17]
18,19,20] [17]
18,19,20] ]

] []

[1,2,3,4,5,12,17,18,19,20]

Compare Result
@) RO

5(2) 210

53) (5240

5,4 1,2,3]

5,17 [1,2,3,4]

12,17 1,2,3,4,5]

18, 17 [1,2,3,4,5,12]
18, -- [1,2,3,4,5,12,17]
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MERGING SUBLISTS STEP

def merge(left, right): 90\N§5
result = [] 6(-\%‘(\‘
i,3 =0, 0 \’e&“a(\ (66 6‘\0( N
while 1 < len(left) and j < len(right): - O(de. 6‘\(,e 6\0% e*\.
if left[i] < right[j]: AN O\\e\(\dege‘\ o\d @
result.append(left[i]) - YNSG) ‘NSCQQF&
i4+=1 SR o e
else: N\(\ ,a\\e(’&
result.append(right[j]) SGA
J +=1 X
while (1 < len(left)): \Ne Oépeﬁﬁjﬂ
result.append(left[i]) ‘QA QS‘ﬁ’
i4=1 °
while (3 < len(right)): “5‘ ««ﬁﬂ
result.append(right[]J]) ‘QNQQQGXVae
J o= 1 °

return result
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COMPLEXITY OF
MERGING STEP

= Go through two lists, only one pass

= Compare only smallest elements in each sublist
= O(len(left) + len(right)) copied elements

= Worst case O(len(longer list)) comparisons

= Linear in length of the lists
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FULL MERGE SORT ALGORITHM

-- RECURSIVE
def merge sort(L): o

if len(L) < 2: ba‘v"'@
return LJ[:]

else:
middle = len(L)//2
left = merge sort(L[:middle]) 6@©9
right = merge sort (L[middle:]) g*ﬁs@Q
return merge(left, right) dﬁmi@ﬁgs

N\

= Divide list successively into halves

= Depth-first such that conquer smallest pieces down one
branch first before moving to larger pieces
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8416

5920

Merge

base
case
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COMPLEXITY OF MERGE SORT

= Each level
= At first recursion level
* n/2 elements in each list, 2 lists
* One merge =2 O(n) + O(n) = O(n) where n is len(L)
= At second recursion level
* n/4 elements in each list, 4 lists
* Two merges =2 0O(n) where n is len(L)
= And so on...

Dividing list in half with each recursive call gives our levels
* O(log n) where nis len(L)
* Like bisection search: 1 = n/2' tells us how many splits to get to one element

= Each recursion level does ®(n) work and there are O(log n) levels,
where n is len(L)

* Overall complexity is @(n log n) where n is len(L)
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SORTING SUMMARY
- nis len(L)

= Bogo sort
 Randomness, unbounded ©()

= Bubble sort
« O(n?)

= Selection sort

* O(n?)

e Guaranteed the first i elements were sorted
= Merge sort

* O(nlogn)

" O(n log n) is the fastest a sort can be
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COMPLEXITY SUMMARY

= Compare efficiency of algorithms
* Describe asymptotic order of growth with Big Theta
* Worst case analysis

» Saw different classes of complexity
* Constant
* Log
* Linear
* Log linear
* Polynomial
* Exponential
* A priori evaluation (before writing or running code)

e Assesses algorithm independently of machine and
implementation

* Provides direct insight to the design of efficient algorithms
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