
SORTING ALGORITHMS
(download slides and .py files to follow along)

6.100L Lecture 24
Ana Bell

1

SEARCHING A SORTED LIST
-- n is len(L)

 Using linear search, search for an element is Θ(n)
 Using binary search, can search for an element in Θ(logn)

• assumes the list is sorted!

 When does it make sense to sort first then search?

SORT + Θ(log n) < Θ(n) implies SORT < Θ(n) – Θ(log n)

When sorting is less than Θ(n)!?!? This is never true!

6.100L Lecture 24
2

AMORTIZED COST
-- n is len(L)

 Why bother sorting first?
 Sort a list once then do many searches
 AMORTIZE cost of the sort over many searches

 SORT + K * Θ(log n) < K * Θ(n)
 for large K, SORT time becomes irrelevant

6.100L Lecture 24
3

SORTING ALGORITHMS

4

BOGO/RANDOM/MONKEY SORT

 aka bogosort,
stupidsort, slowsort,
randomsort,
shotgunsort
 To sort a deck of cards

• throw them in the air
• pick them up
• are they sorted?
• repeat if not sorted

6.100L Lecture 24

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

5

https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF BOGO SORT

def bogo_sort(L):

while not is_sorted(L):

random.shuffle(L)

 Best case: Θ(n) where n is len(L) to check if sorted
 Worst case: Θ(?) it is unbounded if really unlucky

6.100L Lecture 24
6

BUBBLE SORT

 Compare consecutive
pairs of elements
 Swap elements in pair

such that smaller is first
 When reach end of list,

start over again
 Stop when no more

swaps have been made

Donald Knuth, in “The Art of Computer Programming”, said:
"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems"

6.100L Lecture 24

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

7

COMPLEXITY OF BUBBLE SORT

def bubble_sort(L):
did_swap = True
while did_swap:

did_swap = False
for j in range(1, len(L)):

if L[j-1] > L[j]:
did_swap = True
L[j],L[j-1] = L[j-1],L[j]

 Inner for loop is for doing the comparisons
 Outer while loop is for doing multiple passes until no

more swaps
 Θ(n2) where n is len(L)

to do len(L)-1 comparisons and len(L)-1 passes
6.100L Lecture 24

8

SELECTION SORT

 First step
• Extract minimum element
• Swap it with element at index 0

 Second step
• In remaining sublist, extract minimum element
• Swap it with the element at index 1

 Keep the left portion of the list sorted
• At ith step, first i elements in list are sorted
• All other elements are bigger than first i elements

6.100L Lecture 24

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

9

https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF SELECTION SORT

def selection_sort(L):

for i in range(len(L)):

for j in range(i, len(L)):

if L[j] < L[i]:

L[i], L[j] = L[j], L[i]

 Complexity of selection sort is 𝚯𝚯(n2) where n is len(L)
 Outer loop executes len(L) times
 Inner loop executes len(L) – i times, on avg len(L)/2

 Can also think about how many times the comparison
happens over both loops: say n = len(L)
 Approx 1+2+3+…+n = (n)(n+1)/2 = n2/2+n/2 = Θ(n2)

6.100L Lecture 24
10

VARIATION ON SELECTION SORT:
don’t swap every time

6.100L Lecture 24
11

6.0001 LECTURE 10

MERGE SORT

 Use a divide-and-conquer approach:
 If list is of length 0 or 1, already sorted
 If list has more than one element,

split into two lists, and sort each
 Merge sorted sublists
 Look at first element of each,

move smaller to end of the result
 When one list empty, just

copy rest of other list

6.100L Lecture 24
12

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj1uvPioOLdAhVFWrwKHSnwAhwQjRx6BAgBEAU&url=https://www.videoblocks.com/video/vehicles-slowly-merge-into-traffic-rpyosmadiqv16uhh&psig=AOvVaw3OWWpk6ENNJqmJvZu0CLtn&ust=1538380678448859

MERGE SORT

 Divide and conquer

 Split list in half until have sublists of only 1 element

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

merge merge merge merge merge merge merge merge

6.100L Lecture 24
13

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

 Divide and conquer

 Merge such that sublists will be sorted after merge

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

sort sort sort sort sort sort sort sort

merge merge merge merge

6.100L Lecture 24
14

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

 Divide and conquer

 Merge sorted sublists
 Sublists will be sorted after merge

unsorted

unsorted unsorted

sorted sorted sorted sorted

merge merge

6.100L Lecture 24
15

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

 Divide and conquer

 Merge sorted sublists
 Sublists will be sorted after merge

unsorted

sorted sorted

merge

6.100L Lecture 24
16

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

MERGE SORT

 Divide and conquer – done!

sorted

6.100L Lecture 24
17

Merge_sort_animation2.gif (280×237) - Google Chrome

Microsoft Game DVR

6.0001 LECTURE 10

MERGE SORT DEMO

1. Recursively divide into subproblems
2. Sort each subproblem using linear merge
3. Merge (sorted) subproblems into output list

6.100L Lecture 24
18

CLOSER LOOK AT THE
MERGE STEP (EXAMPLE)

Left in list 1 Left in list 2 Compare Result
[1,5,12,18,19,20] [2,3,4,17] 1, 2 []
[5,12,18,19,20] [2,3,4,17] 5, 2 [1]
[5,12,18,19,20] [3,4,17] 5, 3 [1,2]
[5,12,18,19,20] [4,17] 5, 4 [1,2,3]
[5,12,18,19,20] [17] 5, 17 [1,2,3,4]
[12,18,19,20] [17] 12, 17 [1,2,3,4,5]
[18,19,20] [17] 18, 17 [1,2,3,4,5,12]
[18,19,20] [] 18, -- [1,2,3,4,5,12,17]
[] []

[1,2,3,4,5,12,17,18,19,20]
6.100L Lecture 24

19

MERGING SUBLISTS STEP

def merge(left, right):

result = []

i,j = 0, 0

while i < len(left) and j < len(right):

if left[i] < right[j]:

result.append(left[i])

i += 1

else:

result.append(right[j])

j += 1

while (i < len(left)):

result.append(left[i])

i += 1

while (j < len(right)):

result.append(right[j])

j += 1

return result

6.100L Lecture 24
20

6.0001 LECTURE 10

COMPLEXITY OF
MERGING STEP

 Go through two lists, only one pass
 Compare only smallest elements in each sublist
 Θ(len(left) + len(right)) copied elements
 Worst case Θ(len(longer list)) comparisons
 Linear in length of the lists

6.100L Lecture 24
21

FULL MERGE SORT ALGORITHM
-- RECURSIVE

def merge_sort(L):

if len(L) < 2:

return L[:]

else:

middle = len(L)//2

left = merge_sort(L[:middle])

right = merge_sort(L[middle:])

return merge(left, right)

 Divide list successively into halves
 Depth-first such that conquer smallest pieces down one

branch first before moving to larger pieces

6.100L Lecture 24
22

6.100L Lecture 24

8 4 1 6 5 9 2 0

8 4 1 6

8 4

8

base
case

4

base
case

1 6

1

base
case

6

base
case

Merge
4 8

Merge
4 8 & 1 6

1 4 6 8

Merge
1 6

5 9 2 0

5 9

5

base
case

9

base
case

2 0

2

base
case

0

base
case

Merge
5 9

Merge
5 9 & 0 2

0 2 5 9

Merge
0 2

Merge
1 4 6 8 & 0 2 5 9

0 1 2 4 5 6 8 9

23

COMPLEXITY OF MERGE SORT

 Each level
 At first recursion level

• n/2 elements in each list, 2 lists
• One merge  Θ(n) + Θ(n) = Θ(n) where n is len(L)

 At second recursion level
• n/4 elements in each list, 4 lists
• Two merges  Θ(n) where n is len(L)

 And so on…

 Dividing list in half with each recursive call gives our levels
• Θ(log n) where n is len(L)
• Like bisection search: 1 = n/2i tells us how many splits to get to one element

 Each recursion level does Θ(n) work and there are Θ(log n) levels,
where n is len(L)
 Overall complexity is 𝚯𝚯(n log n) where n is len(L)

6.100L Lecture 24
24

SORTING SUMMARY
-- n is len(L)

 Bogo sort
• Randomness, unbounded Θ()

 Bubble sort
• Θ(n2)

 Selection sort
• Θ(n2)
• Guaranteed the first i elements were sorted

 Merge sort
• Θ(n log n)

 𝚯𝚯(n log n) is the fastest a sort can be

6.100L Lecture 24
25

6.0001 LECTURE 9

COMPLEXITY SUMMARY

 Compare efficiency of algorithms
• Describe asymptotic order of growth with Big Theta
• Worst case analysis

• Saw different classes of complexity
• Constant
• Log
• Linear
• Log linear
• Polynomial
• Exponential

• A priori evaluation (before writing or running code)
• Assesses algorithm independently of machine and
implementation
• Provides direct insight to the design of efficient algorithms

10/6/20 6.100L Lecture 24
26

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.reddit.com%2Fr%2FProgrammerHumor%2Fduplicates%2Fbark1r%2Falternative_big_o_notation%2F&psig=AOvVaw3mcBDXbNxK3sHmOBuw-vdM&ust=1600886991640000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIiKk5G3_esCFQAAAAAdAAAAABAJ

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

27

https://ocw.mit.edu
https://ocw.mit.edu/terms

	SORTING ALGORITHMS�(download slides and .py files to follow along)
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	SORTING ALGORITHMS
	BOGO/RANDOM/MONKEY SORT
	COMPLEXITY OF BOGO SORT
	BUBBLE SORT
	COMPLEXITY OF BUBBLE SORT
	SELECTION SORT
	COMPLEXITY OF SELECTION SORT
	VARIATION ON SELECTION SORT: �don’t swap every time
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT DEMO
	CLOSER LOOK AT THE �MERGE STEP (EXAMPLE)
	MERGING SUBLISTS STEP
	COMPLEXITY OF �MERGING STEP
	FULL MERGE SORT ALGORITHM�-- RECURSIVE
	Slide Number 24
	COMPLEXITY OF MERGE SORT
	SORTING SUMMARY�-- n is len(L)
	COMPLEXITY SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

