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 Mimic real life
 Group different objects part of the same type

6.100L Lecture 19

WHY USE OOP AND 
CLASSES OF OBJECTS?
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WHY USE OOP AND 
CLASSES OF OBJECTS?

 Mimic real life
 Group different objects part of the same type
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GROUPS OF OBJECTS HAVE ATTRIBUTES 
(RECAP)

 Data attributes
 How can you represent your object with data?
 What it is

for a coordinate: x and y values
for an animal: age

 Procedural attributes (behavior/operations/methods)
 How can someone interact with the object?
 What it does

for a coordinate: find distance between two
for an animal: print how long it’s been alive
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HOW TO DEFINE A CLASS (RECAP)

class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

myanimal = Animal(3)
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GETTER AND SETTER METHODS

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

 Getters and setters should be used outside of class to
access data attributes
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GETTER AND SETTER METHODS

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

 Getters and setters should be used outside of class to
access data attributes
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AN INSTANCE and 
DOT NOTATION (RECAP)

 Instantiation creates an instance of an object
a = Animal(3)

 Dot notation used to access attributes (data and methods)
though it is better to use getters and setters to access data
attributes
a.age

a.get_age()
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INFORMATION HIDING

 Author of class definition may change data attribute variable
names

class Animal(object):
def __init__(self, age):

self.years = age
def get_age(self):

return self.years

 If you are accessing data attributes outside the class and class
definition changes, may get errors
 Outside of class, use getters and setters instead
 Use a.get_age() NOT a.age

 good style
 easy to maintain code
 prevents bugs
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CHANGING INTERNAL REPRESENTATION

class Animal(object):
def __init__(self, age):

self.years = age
self.name = None

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

def get_age(self):
return self.years

def set_age(self, newage):
self.years = newage

a.get_age()   # works
a.age # error

 Getters and setters should be used outside of class to
access data attributes
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PYTHON NOT GREAT AT 
INFORMATION HIDING

 Allows you to access data from outside class definition
print(a.age)

 Allows you to write to data from outside class definition
a.age = 'infinite'

 Allows you to create data attributes for an instance from
outside class definition
a.size = "tiny"

 It’s not good style to do any of these!
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USE OUR NEW CLASS

def animal_dict(L):
""" L is a list
Returns a dict, d, mappping an int to an Animal object. 
A key in d is all non-negative ints, n, in L. A value 
corresponding to a key is an Animal object with n as its age. """
d = {}
for n in L:

if type(n) == int and n >= 0:
d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

6.100L Lecture 19
12



USE OUR NEW CLASS

 Python doesn’t know how to call print recursively
def animal_dict(L):

""" L is a list 
Returns a dict, d, mappping an int to an Animal object. 
A key in d is all non-negative ints n L. A value corresponding 
to a key is an Animal object with n as its age. """
d = {}
for n in L:

if type(n) == int and n >= 0:
d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

animals = animal_dict(L)
print(animals)

6.100L Lecture 19
13



USE OUR NEW CLASS

def animal_dict(L):
""" L is a list 
Returns a dict, d, mappping an int to an Animal object. 
A key in d is all non-negative ints n L. A value corresponding 
to a key is an Animal object with n as its age. """
d = {}
for n in L:

if type(n) == int and n >= 0:
d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

animals = animal_dict(L) 
for n,a in animals.items(): 

print(f'key {n} with val {a}')
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YOU TRY IT!
 Write a function that meets this spec.
def make_animals(L1, L2):

""" L1 is a list of ints and L2 is a list of str

L1 and L2 have the same length

Creates a list of Animals the same length as L1 and L2.

An animal object at index i has the age and name

corresponding to the same index in L1 and L2, respectively. """

#For example:

L1 = [2,5,1]

L2 = ["blobfish", "crazyant", "parafox"]

animals = make_animals(L1, L2)

print(animals)  # note this prints a list of animal objects

for i in animals:  # this loop prints the individual animals

print(i)
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BIG  IDEA
Access data attributes 
(stuff defined by self.xxx) 

through methods – it’s 
better style. 
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HIERARCHIES

6.100L Lecture 19
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Animal

Cat RabbitPerson

HIERARCHIES

 Parent class
(superclass)

 Child class
(subclass)
• Inherits all data and

behaviors of parent
class

• Add more info
• Add more behavior
• Override behavior Student
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INHERITANCE:
PARENT CLASS

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)
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SUBCLASS CAT
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class Cat(Animal):

def speak(self):

print("meow")

def __str__(self):

return "cat:"+str(self.name)+":"+str(self.age)

 Add new functionality with speak()
 Instance of type Cat can be called with new methods
 Instance of type Animal throws error if called with Cat’s new

method

 __init__ is not missing, uses the Animal version

INHERITANCE: 
SUBCLASS 

6.100L Lecture 19
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WHICH METHOD 
TO USE?

 Subclass can have methods with same name as superclass
 For an instance of a class, look for a method name in current

class definition
 If not found, look for method name up the hierarchy (in parent,

then grandparent, and so on)
 Use first method up the hierarchy that you found with that

method name
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SUBCLASS PERSON
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class Person(Animal):

def __init__(self, name, age):

Animal.__init__(self, age)

self.set_name(name)

self.friends = []

def get_friends(self):

return self.friends.copy()

def add_friend(self, fname):

if fname not in self.friends:

self.friends.append(fname)

def speak(self):

print("hello")

def age_diff(self, other):

diff = self.age - other.age

print(abs(diff), "year difference")

def __str__(self):

return "person:"+str(self.name)+":"+str(self.age)
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YOU TRY IT!
 Write a function according to this spec.
def make_pets(d):

""" d is a dict mapping a Person obj to a Cat obj

Prints, on each line, the name of a person, a colon, and the 

name of that person's cat """

pass

p1 = Person("ana", 86)

p2 = Person("james", 7)

c1 = Cat(1)

c1.set_name("furball")

c2 = Cat(1)

c2.set_name("fluffsphere")

d = {p1:c1, p2:c2}

make_pets(d)  # prints ana:furball

# james:fluffsphere
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BIG  IDEA
A subclass can 
use a parent’s attributes, 
override a parent’s attributes, or 
define new attributes.
Attributes are either data or methods.
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SUBCLASS STUDENT
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import random

class Student(Person):

def __init__(self, name, age, major=None):

Person.__init__(self, name, age)

self.major = major

def change_major(self, major):

self.major = major

def speak(self):

r = random.random()

if r < 0.25:

print("i have homework")

elif 0.25 <= r < 0.5:

print("i need sleep")

elif 0.5 <= r < 0.75:

print("i should eat")

else:

print("i'm still zooming")

def __str__(self):
return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)
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SUBCLASS RABBIT

6.100L Lecture 19
29



CLASS VARIABLES AND THE Rabbit
SUBCLASS

 Class variables and their values are shared between all
instances of a class

class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None,parent2=None):

Animal.__init__(self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

 tag used to give unique id to each new rabbit instance

6.100L Lecture 19
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r1 = Rabbit(8)

Rabbit.tag 1

r1
Age: 8
Parent1: None 
Parent2: None
Rid:  1

2

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1
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r1 = Rabbit(8)
r2 = Rabbit(6)

Rabbit.tag 1

r1
Age: 8
Parent1: None 
Parent2: None
Rid:  1

r2
Age: 6
Parent1: None 
Parent2: None
Rid:  2

23

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1
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r1 = Rabbit(8)
r2 = Rabbit(6)

r3 = Rabbit(10)

Rabbit.tag 1

r1
Age: 8
Parent1: None 
Parent2: None
Rid:  1

r2
Age: 6
Parent1: None 
Parent2: None
Rid:  2

23

r3
Age: 10
Parent1: None 
Parent2: None
Rid:  3

4

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1
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Rabbit GETTER METHODS

class Rabbit(Animal):
tag = 1
def __init__(self, age, parent1=None, parent2=None):

Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

def get_rid(self):
return str(self.rid).zfill(5)

def get_parent1(self):
return self.parent1

def get_parent2(self):
return self.parent2
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WORKING WITH YOUR OWN 
TYPES

def __add__(self, other):

# returning object of same type as this class

return Rabbit(0, self, other)

 Define + operator between two Rabbit instances
 Define what something like this does: r4 = r1 + r2

where r1 and r2 are Rabbit instances
 r4 is a new Rabbit instance with age 0
 r4 has self as one parent and other as the other parent
 In __init__, parent1 and parent2 are of type Rabbit

6.100L Lecture 19

recall Rabbit’s __init__(self, age, parent1=None, parent2=None)

35



6.100L Lecture 19

r1 = Rabbit(8)
r2 = Rabbit(6)

r3 = Rabbit(10)

Rabbit.tag 1

r1
Age: 8
Parent1: None 
Parent2: None
Rid:  1

r2
Age: 6
Parent1: None 
Parent2: None
Rid:  2

23

r3
Age: 10
Parent1: None 
Parent2: None
Rid:  3

4

r4 = r1 + r2

r4

Age: 0
Parent1: obj bound to r1 
Parent2: obj bound to r2
Rid:  4

5

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1
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SPECIAL METHOD TO COMPARE TWO 
Rabbits

 Decide that two rabbits are equal if they have the same two
parents

def __eq__(self, other):

parents_same = (self.p1.rid == oth.p1.rid and self.p2.rid == oth.p2.rid)

parents_opp = (self.p2.rid == oth.p1.rid and self.p1.rid == oth.p2.rid)

return parents_same or parents_opp

 Compare ids of parents since ids are unique (due to class var)
 Note you can’t compare objects directly

 For ex. with  self.parent1 == other.parent1
 This calls the __eq__ method over and over until call it on None and

gives an AttributeError when it tries to do None.parent1
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BIG  IDEA
Class variables are 
shared between all 
instances.
If one instance changes it, it’s changed for every instance.
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OBJECT ORIENTED 
PROGRAMMING

 Create your own collections of data
 Organize information
 Division of work
 Access information in a consistent manner

 Add layers of complexity
 Hierarchies
 Child classes inherit data and methods from parent classes

 Like functions, classes are a mechanism for decomposition and
abstraction in programming
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