
INHERITANCE
(download slides and .py files to follow along)

6.100L Lecture 19
Ana Bell

1

 Mimic real life
 Group different objects part of the same type

6.100L Lecture 19

WHY USE OOP AND
CLASSES OF OBJECTS?

Images © sources unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

2

https://ocw.mit.edu/help/faq-fair-use/

WHY USE OOP AND
CLASSES OF OBJECTS?

 Mimic real life
 Group different objects part of the same type

6.100L Lecture 19

Images © sources unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

3

https://ocw.mit.edu/help/faq-fair-use/

GROUPS OF OBJECTS HAVE ATTRIBUTES
(RECAP)

 Data attributes
 How can you represent your object with data?
 What it is

for a coordinate: x and y values
for an animal: age

 Procedural attributes (behavior/operations/methods)
 How can someone interact with the object?
 What it does

for a coordinate: find distance between two
for an animal: print how long it’s been alive

6.100L Lecture 19
4

HOW TO DEFINE A CLASS (RECAP)

class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

myanimal = Animal(3)

6.100L Lecture 19
5

GETTER AND SETTER METHODS

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

 Getters and setters should be used outside of class to
access data attributes

6.100L Lecture 19
6

GETTER AND SETTER METHODS

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

 Getters and setters should be used outside of class to
access data attributes

6.100L Lecture 19
7

AN INSTANCE and
DOT NOTATION (RECAP)

 Instantiation creates an instance of an object
a = Animal(3)

 Dot notation used to access attributes (data and methods)
though it is better to use getters and setters to access data
attributes
a.age

a.get_age()

6.100L Lecture 19
8

INFORMATION HIDING

 Author of class definition may change data attribute variable
names

class Animal(object):
def __init__(self, age):

self.years = age
def get_age(self):

return self.years

 If you are accessing data attributes outside the class and class
definition changes, may get errors
 Outside of class, use getters and setters instead
 Use a.get_age() NOT a.age

 good style
 easy to maintain code
 prevents bugs

6.100L Lecture 19
9

CHANGING INTERNAL REPRESENTATION

class Animal(object):
def __init__(self, age):

self.years = age
self.name = None

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

def get_age(self):
return self.years

def set_age(self, newage):
self.years = newage

a.get_age() # works
a.age # error

 Getters and setters should be used outside of class to
access data attributes

6.100L Lecture 19
10

PYTHON NOT GREAT AT
INFORMATION HIDING

 Allows you to access data from outside class definition
print(a.age)

 Allows you to write to data from outside class definition
a.age = 'infinite'

 Allows you to create data attributes for an instance from
outside class definition
a.size = "tiny"

 It’s not good style to do any of these!

6.100L Lecture 19
11

USE OUR NEW CLASS

def animal_dict(L):
""" L is a list
Returns a dict, d, mappping an int to an Animal object.
A key in d is all non-negative ints, n, in L. A value
corresponding to a key is an Animal object with n as its age. """
d = {}
for n in L:

if type(n) == int and n >= 0:
d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

6.100L Lecture 19
12

USE OUR NEW CLASS

 Python doesn’t know how to call print recursively
def animal_dict(L):

""" L is a list
Returns a dict, d, mappping an int to an Animal object.
A key in d is all non-negative ints n L. A value corresponding
to a key is an Animal object with n as its age. """
d = {}
for n in L:

if type(n) == int and n >= 0:
d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

animals = animal_dict(L)
print(animals)

6.100L Lecture 19
13

USE OUR NEW CLASS

def animal_dict(L):
""" L is a list
Returns a dict, d, mappping an int to an Animal object.
A key in d is all non-negative ints n L. A value corresponding
to a key is an Animal object with n as its age. """
d = {}
for n in L:

if type(n) == int and n >= 0:
d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

animals = animal_dict(L)
for n,a in animals.items():

print(f'key {n} with val {a}')

6.100L Lecture 19
14

YOU TRY IT!
 Write a function that meets this spec.
def make_animals(L1, L2):

""" L1 is a list of ints and L2 is a list of str

L1 and L2 have the same length

Creates a list of Animals the same length as L1 and L2.

An animal object at index i has the age and name

corresponding to the same index in L1 and L2, respectively. """

#For example:

L1 = [2,5,1]

L2 = ["blobfish", "crazyant", "parafox"]

animals = make_animals(L1, L2)

print(animals) # note this prints a list of animal objects

for i in animals: # this loop prints the individual animals

print(i)

6.100L Lecture 19
15

BIG IDEA
Access data attributes
(stuff defined by self.xxx)

through methods – it’s
better style.

6.100L Lecture 19
16

HIERARCHIES

6.100L Lecture 19

Images © sources unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

17

https://ocw.mit.edu/help/faq-fair-use/

Animal

Cat RabbitPerson

HIERARCHIES

 Parent class
(superclass)

 Child class
(subclass)
• Inherits all data and

behaviors of parent
class

• Add more info
• Add more behavior
• Override behavior Student

6.100L Lecture 19
18

INHERITANCE:
PARENT CLASS

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

6.100L Lecture 19
19

SUBCLASS CAT

6.100L Lecture 19
20

class Cat(Animal):

def speak(self):

print("meow")

def __str__(self):

return "cat:"+str(self.name)+":"+str(self.age)

 Add new functionality with speak()
 Instance of type Cat can be called with new methods
 Instance of type Animal throws error if called with Cat’s new

method

 __init__ is not missing, uses the Animal version

INHERITANCE:
SUBCLASS

6.100L Lecture 19
21

WHICH METHOD
TO USE?

 Subclass can have methods with same name as superclass
 For an instance of a class, look for a method name in current

class definition
 If not found, look for method name up the hierarchy (in parent,

then grandparent, and so on)
 Use first method up the hierarchy that you found with that

method name

6.100L Lecture 19
22

SUBCLASS PERSON

6.100L Lecture 19
23

class Person(Animal):

def __init__(self, name, age):

Animal.__init__(self, age)

self.set_name(name)

self.friends = []

def get_friends(self):

return self.friends.copy()

def add_friend(self, fname):

if fname not in self.friends:

self.friends.append(fname)

def speak(self):

print("hello")

def age_diff(self, other):

diff = self.age - other.age

print(abs(diff), "year difference")

def __str__(self):

return "person:"+str(self.name)+":"+str(self.age)

6.100L Lecture 19

24

YOU TRY IT!
 Write a function according to this spec.
def make_pets(d):

""" d is a dict mapping a Person obj to a Cat obj

Prints, on each line, the name of a person, a colon, and the

name of that person's cat """

pass

p1 = Person("ana", 86)

p2 = Person("james", 7)

c1 = Cat(1)

c1.set_name("furball")

c2 = Cat(1)

c2.set_name("fluffsphere")

d = {p1:c1, p2:c2}

make_pets(d) # prints ana:furball

james:fluffsphere

6.100L Lecture 19
25

BIG IDEA
A subclass can
use a parent’s attributes,
override a parent’s attributes, or
define new attributes.
Attributes are either data or methods.

6.100L Lecture 19
26

SUBCLASS STUDENT

6.100L Lecture 19
27

import random

class Student(Person):

def __init__(self, name, age, major=None):

Person.__init__(self, name, age)

self.major = major

def change_major(self, major):

self.major = major

def speak(self):

r = random.random()

if r < 0.25:

print("i have homework")

elif 0.25 <= r < 0.5:

print("i need sleep")

elif 0.5 <= r < 0.75:

print("i should eat")

else:

print("i'm still zooming")

def __str__(self):
return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

6.100L Lecture 19

28

SUBCLASS RABBIT

6.100L Lecture 19
29

CLASS VARIABLES AND THE Rabbit
SUBCLASS

 Class variables and their values are shared between all
instances of a class

class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None,parent2=None):

Animal.__init__(self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

 tag used to give unique id to each new rabbit instance

6.100L Lecture 19

30

6.100L Lecture 19

r1 = Rabbit(8)

Rabbit.tag 1

r1
Age: 8
Parent1: None
Parent2: None
Rid: 1

2

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

31

6.100L Lecture 19

r1 = Rabbit(8)
r2 = Rabbit(6)

Rabbit.tag 1

r1
Age: 8
Parent1: None
Parent2: None
Rid: 1

r2
Age: 6
Parent1: None
Parent2: None
Rid: 2

23

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

32

6.100L Lecture 19

r1 = Rabbit(8)
r2 = Rabbit(6)

r3 = Rabbit(10)

Rabbit.tag 1

r1
Age: 8
Parent1: None
Parent2: None
Rid: 1

r2
Age: 6
Parent1: None
Parent2: None
Rid: 2

23

r3
Age: 10
Parent1: None
Parent2: None
Rid: 3

4

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

33

Rabbit GETTER METHODS

class Rabbit(Animal):
tag = 1
def __init__(self, age, parent1=None, parent2=None):

Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

def get_rid(self):
return str(self.rid).zfill(5)

def get_parent1(self):
return self.parent1

def get_parent2(self):
return self.parent2

6.100L Lecture 19
34

WORKING WITH YOUR OWN
TYPES

def __add__(self, other):

returning object of same type as this class

return Rabbit(0, self, other)

 Define + operator between two Rabbit instances
 Define what something like this does: r4 = r1 + r2

where r1 and r2 are Rabbit instances
 r4 is a new Rabbit instance with age 0
 r4 has self as one parent and other as the other parent
 In __init__, parent1 and parent2 are of type Rabbit

6.100L Lecture 19

recall Rabbit’s __init__(self, age, parent1=None, parent2=None)

35

6.100L Lecture 19

r1 = Rabbit(8)
r2 = Rabbit(6)

r3 = Rabbit(10)

Rabbit.tag 1

r1
Age: 8
Parent1: None
Parent2: None
Rid: 1

r2
Age: 6
Parent1: None
Parent2: None
Rid: 2

23

r3
Age: 10
Parent1: None
Parent2: None
Rid: 3

4

r4 = r1 + r2

r4

Age: 0
Parent1: obj bound to r1
Parent2: obj bound to r2
Rid: 4

5

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

36

SPECIAL METHOD TO COMPARE TWO
Rabbits

 Decide that two rabbits are equal if they have the same two
parents

def __eq__(self, other):

parents_same = (self.p1.rid == oth.p1.rid and self.p2.rid == oth.p2.rid)

parents_opp = (self.p2.rid == oth.p1.rid and self.p1.rid == oth.p2.rid)

return parents_same or parents_opp

 Compare ids of parents since ids are unique (due to class var)
 Note you can’t compare objects directly

 For ex. with self.parent1 == other.parent1
 This calls the __eq__ method over and over until call it on None and

gives an AttributeError when it tries to do None.parent1

6.100L Lecture 19
37

BIG IDEA
Class variables are
shared between all
instances.
If one instance changes it, it’s changed for every instance.

6.100L Lecture 19
38

OBJECT ORIENTED
PROGRAMMING

 Create your own collections of data
 Organize information
 Division of work
 Access information in a consistent manner

 Add layers of complexity
 Hierarchies
 Child classes inherit data and methods from parent classes

 Like functions, classes are a mechanism for decomposition and
abstraction in programming

6.100L Lecture 19
39

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

40

https://ocw.mit.edu
https://ocw.mit.edu/terms

	INHERITANCE�(download slides and .py files to follow along)
	WHY USE OOP AND �CLASSES OF OBJECTS?
	WHY USE OOP AND �CLASSES OF OBJECTS?
	GROUPS OF OBJECTS HAVE ATTRIBUTES (RECAP)
	HOW TO DEFINE A CLASS (RECAP)
	GETTER AND SETTER METHODS
	GETTER AND SETTER METHODS
	AN INSTANCE and �DOT NOTATION (RECAP)
	INFORMATION HIDING
	CHANGING INTERNAL REPRESENTATION
	PYTHON NOT GREAT AT INFORMATION HIDING
	USE OUR NEW CLASS
	USE OUR NEW CLASS
	USE OUR NEW CLASS
	Slide Number 15
	Access data attributes �(stuff defined by self.xxx) �through methods – it’s better style.
	Slide Number 18
	HIERARCHIES
	INHERITANCE:�PARENT CLASS
	SUBCLASS CAT
	INHERITANCE: �SUBCLASS
	WHICH METHOD �TO USE?
	SUBCLASS PERSON
	Slide Number 27
	Slide Number 28
	A subclass can �use a parent’s attributes, �override a parent’s attributes, or define new attributes.
	SUBCLASS STUDENT
	Slide Number 32
	SUBCLASS RABBIT
	CLASS VARIABLES AND THE Rabbit SUBCLASS
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Rabbit GETTER METHODS
	WORKING WITH YOUR OWN TYPES
	Slide Number 40
	SPECIAL METHOD TO COMPARE TWO Rabbits
	Class variables are shared between all instances.
	OBJECT ORIENTED PROGRAMMING
	cover-slides.pdf
	cover_h.pdf
	Blank Page

