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LIST COMPREHENSIONS
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LIST COMPREHENSIONS

 Applying a function to every element of a sequence, then 
creating a new list with these values is a common concept
 Example: 

def f(L):
Lnew = []
for e in L:

Lnew.append(e**2)
return Lnew

 Python provides a concise one-liner way to do this, called a list 
comprehension
 Creates a new list 
 Applies a function to every element of another iterable
 Optional, only apply to elements that satisfy a test

[expression for elem in iterable if test]
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LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of 
another iterable that satisfies a test
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def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

Lnew = [e**2 for e in L]
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LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of 
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew

Lnew = [e**2 for e in L]
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LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of 
another iterable that satisfies a test
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def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]
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LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of 
another iterable that satisfies a test
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def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

7



LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of 
another iterable that satisfies a test
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def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]
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LIST COMPREHENSIONS

[expression for elem in iterable if test]

 This is equivalent to invoking this function (where expression is 
a function that computes that expression)

def f(expr, old_list, test = lambda x: True):

new_list = []

for e in old_list:

if test(e):

new_list.append(expr(e))

return new_list
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[e**2 for e in range(6)]  [0, 1, 4, 9, 16, 25]

[e**2 for e in range(8) if e%2 == 0]  [0, 4, 16, 36]

[[e,e**2] for e in range(4) if e%2 != 0]  [[1,1], [3,9]]
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YOU TRY IT!
 What is the value returned by this expression?

 Step1: what are all values in the sequence
 Step2: which subset of values does the condition filter out?
 Step3: apply the function to those values

[len(x) for x in ['xy', 'abcd', 7, '4.0'] if type(x) == str] 
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FUNCTIONS: DEFAULT 
PARAMETERS
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SQUARE ROOT with BISECTION

def bisection_root(x):
epsilon = 0.01
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x: 
low = guess

else: 
high = guess

guess = (high + low)/2.0
return guess

print(bisection_root(123))
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ANOTHER PARAMETER

Motivation: want a more accurate answer
def bisection_root(x)can be improved
 Options?

 Change epsilon inside function (all function calls are affected)
 Use an epsilon outside function (global variables are bad)
 Add epsilon as an argument to the function

6.100L Lecture 12
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epsilon as a PARAMETER

def bisection_root(x, epsilon):

low = 0

high = x

guess = (high + low)/2.0

while abs(guess**2 - x) >= epsilon:

if guess**2 < x: 

low = guess

else: 

high = guess

guess = (high + low)/2.0

return guess

print(bisection_root(123, 0.01))
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KEYWORD PARAMETERS & 
DEFAULT VALUES

def bisection_root(x, epsilon)can be improved
 We added epsilon as an argument to the function

 Most of the time we want some standard value, 0.01
 Sometimes, we may want to use some other value

 Use a keyword parameter aka a default parameter
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Epsilon as a KEYWORD 
PARAMETER

def bisection_root(x, epsilon=0.01):

low = 0

high = x

guess = (high + low)/2.0

while abs(guess**2 - x) >= epsilon:

if guess**2 < x: 

low = guess

else: 

high = guess

guess = (high + low)/2.0

return guess

print(bisection_root(123))

print(bisection_root(123, 0.5))
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RULES for KEYWORD PARAMETERS

 In the function definition:
 Default parameters must go at the end

 These are ok for calling a function:
 bisection_root_new(123)
 bisection_root_new(123, 0.001)
 bisection_root_new(123, epsilon=0.001)
 bisection_root_new(x=123, epsilon=0.1)
 bisection_root_new(epsilon=0.1, x=123)

 These are not ok for calling a function:
 bisection_root_new(epsilon=0.001, 123) #error
 bisection_root_new(0.001, 123) #no error but wrong
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FUNCTIONS RETURNING 
FUNCTIONS
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OBJECTS IN A PROGRAM
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def is_even(i):
return i%2 == 0

r = 2

pi = 22/7

my_func = is_even

a = is_even(3)

b = my_func(4)

pi

function 
object 
named 
is_even

int object 2

float object 
3.14285714

is_even

r

my_func

a False

b True
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FUNCTIONS CAN RETURN 
FUNCTIONS

def make_prod(a):

def g(b):

return a*b

return g
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val = make_prod(2)(3)

print(val)

doubler = make_prod(2)

val = doubler(3)

print(val)
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SCOPE DETAILS FOR WAY 1
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def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)
print(val)
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SCOPE DETAILS FOR WAY 1
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)
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SCOPE DETAILS FOR WAY 1

make_prod
scope

a

Some 
code

2
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g

NOTE: definition 
of g is done 
within scope of 
make_prod, so 
binding of g is 
within that 
frame/scope

Since g is bound 
in this frame, 
cannot access it 
by evaluation in  
global frame

g can only be 
accessed within 
call to 
make_prod, and 
each call will 
create a new, 
internal g
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SCOPE DETAILS FOR WAY 1

make_prod
scope

a

Some 
code

2
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

Returns pointer 
to  g code

gg’s 
code!

Evaluating make_prod(2) has 
returned an anonymous procedure
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SCOPE DETAILS FOR WAY 1

make_prod
scope

a

g Some 
code

2
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g scope

b
3

g’s 
code!

25



SCOPE DETAILS FOR WAY 1

make_prod
scope

a

g Some 
code

2
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g scope

b
3

6

6val

g’s 
code!

How does g get value for a?
Interpreter can move up hierarchy of frames to see both b and a values

Internal procedure only 
accessible within scope from 
parent procedure’s call
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SCOPE DETAILS FOR WAY 2
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def make_prod(a):
def g(b):

return a*b
return g

doubler = make_prod(2)
val = doubler(3)
print(val)
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make_prod
scope

a

Some 
code

2
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

g’s 
code!

gdoubler

SCOPE DETAILS FOR WAY 2
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make_prod
scope

a

Some 
code

2
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Global scope

make_prod Some 
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

g’s 
code!

gdoubler

SCOPE DETAILS FOR WAY 2
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SCOPE DETAILS FOR WAY 2

make_prod
scope

a

g Some 
code

2
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Global scope

make_prod

doubler

val

Some 
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

g’s 
code!

doubler scope

b 3

6

Returns value

6

30



WHY BOTHER RETURNING 
FUNCTIONS?

 Code can be rewritten without returning function objects
 Good software design

 Embracing ideas of decomposition, abstraction
 Another tool to structure code

 Interrupting execution
 Example of control flow
 A way to achieve partial execution and use result somewhere else

before finishing the full evaluation

6.100L Lecture 12
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TESTING and 
DEBUGGING
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DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

6.100L Lecture 12
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SET YOURSELF UP FOR EASY 
TESTING AND DEBUGGING

 From the start, design code to ease this part
 Break program up into modules that can be tested and

debugged individually
 Document constraints on modules

• What do you expect the input to be?
• What do you expect the output to be?

 Document assumptions behind code design

6.100L Lecture 12
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WHEN ARE YOU READY TO TEST?

 Ensure code runs
• Remove syntax errors
• Remove static semantic errors
• Python interpreter can usually find these for you

 Have a set of expected results
• An input set
• For each input, the expected output

6.100L Lecture 12
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CLASSES OF TESTS

Unit testing
• Validate each piece of program
• Testing each function separately

 Regression testing
• Add test for bugs as you find them
• Catch reintroduced errors that were previously

fixed
 Integration testing

• Does overall program work?
• Tend to rush to do this

6.100L Lecture 12
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TESTING APPROACHES

 Intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints
Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 If no natural partitions, might do random testing
• Probability that code is correct increases with more tests
• Better options below

 Black box testing
• Explore paths through specification

 Glass box testing
• Explore paths through code

6.100L Lecture 12
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def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 Designed without looking at the code
 Can be done by someone other than the implementer to

avoid some implementer biases
 Testing can be reused if implementation changes
 Paths through specification

• Build test cases in different natural space partitions
• Also consider boundary conditions (empty lists, singleton list, large

numbers, small numbers)

BLACK BOX TESTING

6.100L Lecture 12
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def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0     1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0     2.0**64.0
6.100L Lecture 12
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GLASS BOX TESTING

 Use code directly to guide design of test cases
 Called path-complete if every potential path through

code is tested at least once
 What are some drawbacks of this type of testing?

• Can go through loops arbitrarily many times
• Missing paths

 Guidelines
• Branches
• For loops
• While loops

6.100L Lecture 12
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GLASS BOX TESTING

def abs(x):
""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x

 Aa path-complete test suite could miss a bug
 Path-complete test suite: 2 and -2
 But abs(-1) incorrectly returns -1
 Should still test boundary cases

6.100L Lecture 12
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DEBUGGING

 Once you have discovered that your code does not run
properly, you want to:
 Isolate the bug(s)
 Eradicate the bug(s)
 Retest until code runs correctly for all cases
 Steep learning curve

 Goal is to have a bug-free program
 Tools

• Built in to IDLE and Anaconda
• Python Tutor
• print statement
• Use your brain, be systematic in your hunt

6.100L Lecture 12
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ERROR MESSAGES – EASY

 Trying to access beyond the limits of a list
test = [1,2,3] then      test[4]  IndexError

 Trying to convert an inappropriate type
int(test)  TypeError

 Referencing a non-existent variable
a  NameError

 Mixing data types without appropriate coercion
'3'/4  TypeError

 Forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print(a)  SyntaxError

6.100L Lecture 12
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LOGIC ERRORS - HARD

 think before writing new code
 draw pictures, take a break
 explain the code to

• someone else
• a rubber ducky

6.100L Lecture 12
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DEBUGGING STEPS

 Study program code
• Don’t ask what is wrong
• Ask how did I get the unexpected result
• Is it part of a family?

 Scientific method
• Study available data
• Form hypothesis
• Repeatable experiments
• Pick simplest input to test with

6.100L Lecture 12
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PRINT STATEMENTS

 Good way to test hypothesis
 When to print

• Enter function
• Parameters
• Function results

 Use bisection method
• Put print halfway in code
• Decide where bug may be depending on values

6.100L Lecture 12
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