
LIST COMPREHENSION,
FUNCTIONS AS OBJECTS,

TESTING, DEBUGGING
(download slides and .py files to follow along)

6.100L Lecture 12
Ana Bell

1

LIST COMPREHENSIONS

6.100L Lecture 12
2

LIST COMPREHENSIONS

 Applying a function to every element of a sequence, then
creating a new list with these values is a common concept
 Example:

def f(L):
Lnew = []
for e in L:

Lnew.append(e**2)
return Lnew

 Python provides a concise one-liner way to do this, called a list
comprehension
 Creates a new list
 Applies a function to every element of another iterable
 Optional, only apply to elements that satisfy a test

[expression for elem in iterable if test]

6.100L Lecture 12
3

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

Lnew = [e**2 for e in L]

4

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew

Lnew = [e**2 for e in L]

5

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

6

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

7

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

8

LIST COMPREHENSIONS

[expression for elem in iterable if test]

 This is equivalent to invoking this function (where expression is
a function that computes that expression)

def f(expr, old_list, test = lambda x: True):

new_list = []

for e in old_list:

if test(e):

new_list.append(expr(e))

return new_list

6.100L Lecture 12

[e**2 for e in range(6)]  [0, 1, 4, 9, 16, 25]

[e**2 for e in range(8) if e%2 == 0]  [0, 4, 16, 36]

[[e,e**2] for e in range(4) if e%2 != 0]  [[1,1], [3,9]]
9

YOU TRY IT!
 What is the value returned by this expression?

 Step1: what are all values in the sequence
 Step2: which subset of values does the condition filter out?
 Step3: apply the function to those values

[len(x) for x in ['xy', 'abcd', 7, '4.0'] if type(x) == str]

6.100L Lecture 12
10

FUNCTIONS: DEFAULT
PARAMETERS

6.100L Lecture 12
11

SQUARE ROOT with BISECTION

def bisection_root(x):
epsilon = 0.01
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x:
low = guess

else:
high = guess

guess = (high + low)/2.0
return guess

print(bisection_root(123))

6.100L Lecture 12
12

ANOTHER PARAMETER

Motivation: want a more accurate answer
def bisection_root(x)can be improved
 Options?

 Change epsilon inside function (all function calls are affected)
 Use an epsilon outside function (global variables are bad)
 Add epsilon as an argument to the function

6.100L Lecture 12
13

epsilon as a PARAMETER

def bisection_root(x, epsilon):

low = 0

high = x

guess = (high + low)/2.0

while abs(guess**2 - x) >= epsilon:

if guess**2 < x:

low = guess

else:

high = guess

guess = (high + low)/2.0

return guess

print(bisection_root(123, 0.01))

6.100L Lecture 12
14

KEYWORD PARAMETERS &
DEFAULT VALUES

def bisection_root(x, epsilon)can be improved
 We added epsilon as an argument to the function

 Most of the time we want some standard value, 0.01
 Sometimes, we may want to use some other value

 Use a keyword parameter aka a default parameter

6.100L Lecture 12
15

Epsilon as a KEYWORD
PARAMETER

def bisection_root(x, epsilon=0.01):

low = 0

high = x

guess = (high + low)/2.0

while abs(guess**2 - x) >= epsilon:

if guess**2 < x:

low = guess

else:

high = guess

guess = (high + low)/2.0

return guess

print(bisection_root(123))

print(bisection_root(123, 0.5))

6.100L Lecture 12
16

RULES for KEYWORD PARAMETERS

 In the function definition:
 Default parameters must go at the end

 These are ok for calling a function:
 bisection_root_new(123)
 bisection_root_new(123, 0.001)
 bisection_root_new(123, epsilon=0.001)
 bisection_root_new(x=123, epsilon=0.1)
 bisection_root_new(epsilon=0.1, x=123)

 These are not ok for calling a function:
 bisection_root_new(epsilon=0.001, 123) #error
 bisection_root_new(0.001, 123) #no error but wrong

6.100L Lecture 12
17

FUNCTIONS RETURNING
FUNCTIONS

6.100L Lecture 12
18

OBJECTS IN A PROGRAM

6.100L Lecture 12

def is_even(i):
return i%2 == 0

r = 2

pi = 22/7

my_func = is_even

a = is_even(3)

b = my_func(4)

pi

function
object
named
is_even

int object 2

float object
3.14285714

is_even

r

my_func

a False

b True

19

FUNCTIONS CAN RETURN
FUNCTIONS

def make_prod(a):

def g(b):

return a*b

return g

6.100L Lecture 12

val = make_prod(2)(3)

print(val)

doubler = make_prod(2)

val = doubler(3)

print(val)

20

SCOPE DETAILS FOR WAY 1

6.100L Lecture 12

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)
print(val)

21

SCOPE DETAILS FOR WAY 1

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

22

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g

NOTE: definition
of g is done
within scope of
make_prod, so
binding of g is
within that
frame/scope

Since g is bound
in this frame,
cannot access it
by evaluation in
global frame

g can only be
accessed within
call to
make_prod, and
each call will
create a new,
internal g

23

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

Returns pointer
to g code

gg’s
code!

Evaluating make_prod(2) has
returned an anonymous procedure

24

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

g Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g scope

b
3

g’s
code!

25

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

g Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g scope

b
3

6

6val

g’s
code!

How does g get value for a?
Interpreter can move up hierarchy of frames to see both b and a values

Internal procedure only
accessible within scope from
parent procedure’s call

26

SCOPE DETAILS FOR WAY 2

6.100L Lecture 12

def make_prod(a):
def g(b):

return a*b
return g

doubler = make_prod(2)
val = doubler(3)
print(val)

27

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

g’s
code!

gdoubler

SCOPE DETAILS FOR WAY 2

28

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

g’s
code!

gdoubler

SCOPE DETAILS FOR WAY 2

29

SCOPE DETAILS FOR WAY 2

make_prod
scope

a

g Some
code

2

6.100L Lecture 12

Global scope

make_prod

doubler

val

Some
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

g’s
code!

doubler scope

b 3

6

Returns value

6

30

WHY BOTHER RETURNING
FUNCTIONS?

 Code can be rewritten without returning function objects
 Good software design

 Embracing ideas of decomposition, abstraction
 Another tool to structure code

 Interrupting execution
 Example of control flow
 A way to achieve partial execution and use result somewhere else

before finishing the full evaluation

6.100L Lecture 12
31

TESTING and
DEBUGGING

6.100L Lecture 12
32

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

6.100L Lecture 12

33

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING

 From the start, design code to ease this part
 Break program up into modules that can be tested and

debugged individually
 Document constraints on modules

• What do you expect the input to be?
• What do you expect the output to be?

 Document assumptions behind code design

6.100L Lecture 12

34

WHEN ARE YOU READY TO TEST?

 Ensure code runs
• Remove syntax errors
• Remove static semantic errors
• Python interpreter can usually find these for you

 Have a set of expected results
• An input set
• For each input, the expected output

6.100L Lecture 12

35

CLASSES OF TESTS

Unit testing
• Validate each piece of program
• Testing each function separately

 Regression testing
• Add test for bugs as you find them
• Catch reintroduced errors that were previously

fixed
 Integration testing

• Does overall program work?
• Tend to rush to do this

6.100L Lecture 12

36

TESTING APPROACHES

 Intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints
Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 If no natural partitions, might do random testing
• Probability that code is correct increases with more tests
• Better options below

 Black box testing
• Explore paths through specification

 Glass box testing
• Explore paths through code

6.100L Lecture 12

37

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 Designed without looking at the code
 Can be done by someone other than the implementer to

avoid some implementer biases
 Testing can be reused if implementation changes
 Paths through specification

• Build test cases in different natural space partitions
• Also consider boundary conditions (empty lists, singleton list, large

numbers, small numbers)

BLACK BOX TESTING

6.100L Lecture 12

38

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0 1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0 2.0**64.0
6.100L Lecture 12

39

GLASS BOX TESTING

 Use code directly to guide design of test cases
 Called path-complete if every potential path through

code is tested at least once
 What are some drawbacks of this type of testing?

• Can go through loops arbitrarily many times
• Missing paths

 Guidelines
• Branches
• For loops
• While loops

6.100L Lecture 12

40

GLASS BOX TESTING

def abs(x):
""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x

 Aa path-complete test suite could miss a bug
 Path-complete test suite: 2 and -2
 But abs(-1) incorrectly returns -1
 Should still test boundary cases

6.100L Lecture 12

41

DEBUGGING

 Once you have discovered that your code does not run
properly, you want to:
 Isolate the bug(s)
 Eradicate the bug(s)
 Retest until code runs correctly for all cases
 Steep learning curve

 Goal is to have a bug-free program
 Tools

• Built in to IDLE and Anaconda
• Python Tutor
• print statement
• Use your brain, be systematic in your hunt

6.100L Lecture 12

42

ERROR MESSAGES – EASY

 Trying to access beyond the limits of a list
test = [1,2,3] then test[4]  IndexError

 Trying to convert an inappropriate type
int(test)  TypeError

 Referencing a non-existent variable
a  NameError

 Mixing data types without appropriate coercion
'3'/4  TypeError

 Forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print(a)  SyntaxError

6.100L Lecture 12

43

LOGIC ERRORS - HARD

 think before writing new code
 draw pictures, take a break
 explain the code to

• someone else
• a rubber ducky

6.100L Lecture 12

44

https://www.youtube.com/watch?v=4AzsPnH488Q

DEBUGGING STEPS

 Study program code
• Don’t ask what is wrong
• Ask how did I get the unexpected result
• Is it part of a family?

 Scientific method
• Study available data
• Form hypothesis
• Repeatable experiments
• Pick simplest input to test with

6.100L Lecture 12

45

PRINT STATEMENTS

 Good way to test hypothesis
 When to print

• Enter function
• Parameters
• Function results

 Use bisection method
• Put print halfway in code
• Decide where bug may be depending on values

6.100L Lecture 12

46

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

47

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LIST COMPREHENSION, FUNCTIONS AS OBJECTS, TESTING, DEBUGGING�(download slides and .py files to follow along)
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	LIST COMPREHENSIONS
	Slide Number 10
	FUNCTIONS: DEFAULT PARAMETERS
	SQUARE ROOT with BISECTION
	ANOTHER PARAMETER
	epsilon as a PARAMETER
	Keyword parameters & default values
	Epsilon as a KEYWORD PARAMETER
	RULES for KEYWORD PARAMETERS
	FUNCTIONS RETURNING FUNCTIONS
	OBJECTS IN A PROGRAM
	FUNCTIONS CAN RETURN FUNCTIONS
	SCOPE DETAILS FOR WAY 1
	SCOPE DETAILS FOR WAY 1
	SCOPE DETAILS FOR WAY 1
	SCOPE DETAILS FOR WAY 1
	SCOPE DETAILS FOR WAY 1
	SCOPE DETAILS FOR WAY 1
	SCOPE DETAILS FOR WAY 2
	SCOPE DETAILS FOR WAY 2
	SCOPE DETAILS FOR WAY 2
	SCOPE DETAILS FOR WAY 2
	WHY BOTHER RETURNING FUNCTIONS?
	TESTING and DEBUGGING
	Slide Number 35
	SET YOURSELF UP FOR EASY TESTING AND DEBUGGING
	WHEN ARE YOU READY TO TEST?
	CLASSES OF TESTS
	TESTING APPROACHES
	BLACK BOX TESTING
	BLACK BOX TESTING
	GLASS BOX TESTING
	GLASS BOX TESTING
	DEBUGGING
	ERROR MESSAGES – EASY
	LOGIC ERRORS - HARD
	DEBUGGING STEPS
	PRINT STATEMENTS
	cover-slides.pdf
	cover_h.pdf
	Blank Page

