
STRINGS, INPUT/OUTPUT, 
and BRANCHING

(download slides and .py files to follow along)
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RECAP

 Objects
 Objects in memory have types. 
 Types tell Python what operations you can do with the objects.
 Expressions evaluate to one value and involve objects and operations.
 Variables bind names to objects.
 = sign is an assignment, for ex. var = type(5*4)

 Programs
 Programs only do what you tell them to do.
 Lines of code are executed in order.
 Good variable names and comments help you read code later.
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pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

var intvar = type(5*4)
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STRINGS
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STRINGS

 Think of a str as a sequence of case sensitive characters
 Letters, special characters, spaces, digits

 Enclose in quotation marks or single quotes
 Just be consistent about the quotes
a = "me"
z = 'you' 

 Concatenate and repeat strings
b = "myself"
c = a + b
d = a + " " + b
silly = a * 3
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a "me"

b "myself"

c "memyself"

d "me myself"

silly "mememe"
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YOU TRY IT!
What’s the value of s1 and s2?
 b = ":"
c = ")"
s1 = b + 2*c

 f = "a"
g = " b"
h = "3"
s2 = (f+g)*int(h)
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STRING OPERATIONS

 len() is a function used to retrieve the length of a string in 
the parentheses

s = "abc"

len(s)  evaluates to 3
chars = len(s)
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SLICING to get 
ONE CHARACTER IN A STRING

 Square brackets used to perform indexing
into a string to get the value at a certain
index/position
s = "abc"

s[0]  evaluates to "a"
s[1]  evaluates to "b"
s[2]  evaluates to "c"
s[3]  trying to index out of

bounds, error
s[-1]  evaluates to "c"
s[-2]  evaluates to "b"
s[-3]  evaluates to "a"
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index:        0  1  2      indexing always starts at 0
index:       -3 -2 -1     index of last element is len(s) - 1 or -1
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SLICING to get a SUBSTRING

 Can slice strings using [start:stop:step]
 Get characters at start

up to and including stop-1
taking every step characters

 If give two numbers, [start:stop], step=1 by default
 If give one number, you are back to indexing for the character

at one location (prev slide)
 You can also omit numbers and leave just colons (try this out!)
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SLICING EXAMPLES

 Can slice strings using [start:stop:step]
 Look at step first. +ve means go left-to-right

-ve means go right-to-left

s = "abcdefgh"

s[3:6]  evaluates to "def", same as s[3:6:1]

s[3:6:2]  evaluates to "df"

s[:]  evaluates to "abcdefgh", same as s[0:len(s):1]
s[::-1]  evaluates to "hgfedcba"

s[4:1:-2] evaluates to "ec"
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index:        0   1    2    3    4   5    6   7
index: -8   -7  -6  -5  -4  -3   -2  -1
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YOU TRY IT!
s = "ABC d3f ghi"

s[3:len(s)-1]

s[4:0:-1]

s[6:3] 
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IMMUTABLE STRINGS

 Strings are “immutable” – cannot be modified
 You can create new objects that are versions of the original one
 Variable name can only be bound to one object

s = "car"

s[0] = 'b'  gives an error
s = 'b'+s[1:len(s)]  is allowed,

s bound to new object
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s

"car"

"bar"
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BIG  IDEA

If you are wondering 
“what happens if”…
Just try it out in the console!
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INPUT/OUTPUT
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PRINTING

 Used to output stuff to console
In [11]: 3+2
Out[11]: 5
 Command is print
In [12]: print(3+2)
5

 Printing many objects in the same command
 Separate objects using commas to output them separated by spaces

 Concatenate strings together using + to print as single object
 a = "the"
b = 3
c = "musketeers"
print(a, b, c)
print(a + str(b) + c)
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INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)
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SHELL:

Type anything:  
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INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)
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SHELL:

Type anything: howdy  
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INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)
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SHELL:

Type anything: howdy  "howdy"
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INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)
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text "howdy"

SHELL:

Type anything: howdy  

18



INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)
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text "howdy"

SHELL:

Type anything: howdy
howdyhowdyhowdyhowdyhowdy
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INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)
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num1 "3"

SHELL:

Type a number: 3
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INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)
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num1 "3"

SHELL:

Type a number: 3
33333
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INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)
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num1 "3"

SHELL:

Type a number: 3
33333
Type a number: 3
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INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)
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num1 "3"

SHELL:

Type a number: 3
33333
Type a number: 3num2 3
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INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)
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num1 "3"

SHELL:

Type a number: 3
33333
Type a number: 3
15

num2 3
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YOU TRY IT!
 Write a program that

 Asks the user for a verb
 Prints “I can _ better than you” where you replace _ with the verb.
 Then prints the verb 5 times in a row separated by spaces.
 For example, if the user enters run, you print:

I can run better than you!
run run run run run
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AN IMPORTANT ALGORITHM:
NEWTON’S METHOD

 Finds roots of a polynomial
 E.g., find g such that f(g, x) = g3 – x = 0

 Algorithm uses successive approximation
 next_guess = guess - 𝑓𝑓(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

𝑓𝑓′(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

 Partial code of algorithm that gets input and finds next guess
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#Try Newton Raphson for cube root
x = int(input('What x to find the cube root of? '))
g = int(input('What guess to start with? '))
print('Current estimate cubed = ', g**3)

next_g = g - ((g**3 - x)/(3*g**2))
print('Next guess to try = ', next_g)
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F-STRINGS

 Available starting with Python 3.6
 Character f followed by a

formatted string literal
 Anything that can be appear in a

normal string literal
 Expressions bracketed by curly braces { }

 Expressions in curly braces evaluated at runtime, automatically
converted to strings, and concatenated to the string preceding
them
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num = 3000
fraction = 1/3
print(num*fraction, 'is', fraction*100, '% of', num)
print(num*fraction, 'is', str(fraction*100) + '% of', num)
print(f'{num*fraction} is {fraction*100}% of {num}')
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BIG  IDEA

Expressions can be 
placed anywhere.
Python evaluates them!
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CONDITIONS for 
BRANCHING
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BINDING VARIABLES and VALUES

 In CS, there are two notions of equal
 Assignment and Equality test

 variable = value
 Change the stored value of variable to value
 Nothing for us to solve, computer just does the action

 some_expression == other_expression
 A test for equality
 No binding is happening
 Expressions are replaced by values and computer just does the

comparison
 Replaces the entire line with True or False
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COMPARISON OPERATORS

 i and j are variable names
 They can be of type ints, float, strings, etc.

 Comparisons below evaluate to the type Boolean
 The Boolean type only has 2 values: True and False

i > j

i >= j

i < j

i <= j

i == j equality test, True if i is the same as j
i != j inequality test, True if i not the same as j
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LOGICAL OPERATORS on bool

 a and b are variable names (with Boolean values)
not a  True if a is False

False if a is True
a and b  True if both are True
a or b  True if either or both are True
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A B A and B A or B
True True True True
True False False True
False True False True
False False False False
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COMPARISON EXAMPLE

pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)
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pset_time 15

sleep_time 8

derive True

drink False

both False
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YOU TRY IT!
 Write a program that

 Saves a secret number in a variable.
 Asks the user for a number guess.
 Prints a bool False or True depending on whether the guess

matches the secret.
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WHY bool?

 When we get to flow of control, i.e. branching to different
expressions based on values, we need a way of knowing if a
condition is true
 E.g., if something is true, do this, otherwise do that
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INTERESTING ALGORITHMS 
INVOLVE DECISIONS

6.100L Lecture 2 41

It’s midnight

Go get it!

Free 
food 
email

Sleep
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If right clear,
go right 

If right blocked,
go forward

If right and 
front blocked,

go left

If right , front, 
left blocked,

go back
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BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Do code within if block if condition is True
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if <condition>:
<code>
<code>
...

<rest of program>

sion>
<expression>
...

else:
<expression>
<expression>
...

<rest of program>
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BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Do code within if block when condition is True or code within else

block when condition is False. 
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if <condition>:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>
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BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Run the first block whose corresponding  <condition> is True
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if <condition>:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

elif <condition>:
<code> 
<code>
...

elif <condition>:
<code>
<code>
...

<rest of program>
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BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Run the first block whose corresponding <condition> is True.

The else block runs when no conditions were True
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if <condition>:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

elif <condition>:
<code> 
<code>
...

else:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

elif <condition>:
<code> 
<code>
...

elif <condition>:
<code>
<code>
...

<rest of program>
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BRANCHING EXAMPLE

pset_time = ???

sleep_time = ???

if (pset_time + sleep_time) > 24:

print("impossible!")

elif (pset_time + sleep_time) >= 24:

print("full schedule!")

else:

leftover = abs(24-pset_time-sleep_time)

print(leftover,"h of free time!")

print("end of day")
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YOU TRY IT!
 Semantic structure matches visual structure
 Fix this buggy code (hint, it has bad indentation)!

x = int(input("Enter a number for x: "))
y = int(input("Enter a different number for y: "))
if x == y:

print(x,"is the same as",y)
print("These are equal!")
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INDENTATION and NESTED 
BRANCHING

 Matters in Python
 How you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")
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5
5
True
<-
True
<-

<-

5
0
False

False

<-
<-

0
0
True
<-
False

<-
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BIG  IDEA
Practice will help you 
build a mental model of 
how to trace the code
Indentation does a lot of the work for you!
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YOU TRY IT!
 What does this code print with

 y = 2
 y = 20
 y = 11

 What if  if x <= y: becomes  elif x <= y: ?

answer = ''
x = 11
if x == y:

answer = answer + 'M'
if x >= y:

answer = answer + 'i'
else:

answer = answer + 'T'
print(answer)
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YOU TRY IT!
 Write a program that

 Saves a secret number.
 Asks the user for a number guess.
 Prints whether the guess is too low, too high, or the same as the secret.
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BIG  IDEA

Debug early, 
debug often. 
Write a little and test a little. 
Don’t write a complete program at once. It introduces too many errors. 
Use the Python Tutor to step through code when you see something 
unexpected!
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SUMMARY

 Strings provide a new data type
 They are sequences of characters, the first one at index 0
 They can be indexed and sliced

 Input
 Done with the input command
 Anything the user inputs is read as a string object!

 Output
 Is done with the print command
 Only objects that are printed in a .py code file will be visible in the shell

 Branching
 Programs execute code blocks when conditions are true
 In an if-elif-elif… structure, the first condition that is True will

be executed
 Indentation matters in Python!
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