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[SQUEAKING]

[RUSTLING]

[CLICKING]

All right, so let's begin today's lecture. We have only two lectures left, this one and next Monday. | realized that
there are no more deliverables for this class. No more quizzes after tonight, no more P sets. So | do appreciate
you coming to these lectures. They're intended to be a little bit more fun. No need to take notes. Just kind of sit
back and enjoy the content. Today, we're going to be talking about a library in Python that can help you do

plotting.

And the reason why we talk about this plotting library as opposed to something else that's maybe more machine
learning or something else like that is because at one point or another, if you decide to take any other course
that kind of builds upon this intro course, you'll probably want to create some graphs or visualize something.
Even if you do a UROP, you'll probably have to visualize some sort of data. And it's a really nice next step to show
you how to use a library that already exists. So somebody already put in the work in creating this library that can

plot things for us. So let's just try to use it.

And so it's just a really, really nice way for us to wrap up the course by showing you this visualization library. So
we're going to-- the library we're going to do to use is called matplotlib. And it's the most basic plotting
visualization library that we can have. And the way that we bring it into our code, just like we have in the past

few lectures, is with this import statement.

And the actual file that comes into our-- that we would bring into our program is called matplotlib.pyplot. Now,
that's kind of a mouthful. And a lot of times when we want to use this-- or when we want to use this library, you'd
have to basically say matplotlib.pyplot dot function name from that file. And so that's a lot of writing and a lot of

typing. So when we bring it into our-- when we bring in this library into our own file, we can actually rename it.

So "as plt" tells Python that now | would like to refer to this file and this library as the name plt. So if we ever
want to call functions or maybe objects and things like that from this file, we would do it using plt dot and then
the name of whatever we want to use. So it's just a much nicer way to grab the contents of the file instead of

always writing matplotlib.pyplot dot something else. Yeah, question.

Is plt a variable name?

You can think of it as a variable name. It's anything you want it to be. So you can import it matplotlib.pyplot as
ana. And then from there on, you can say ana dot process name, or plot, or whatever it is. So it's just whatever

name you want to give it.

OK, so there are other visualization libraries that exist out there. A lot of them-- or all of them build upon this
one. So this is the most basic library that you can get. And the other ones that exist build upon it by doing some
things behind the scenes to maybe make your lives easier or to do some really cool visualizations or maybe

things where you can hover the mouse over a coordinate and things like that.



But we don't need to do any of that at this time. It's just nice to take a look at this really basic visualization
library. So throughout the lecture, we're going to look a little bit at some code. We're going to run it on the
Python-- just from the Python file. Then we'll just talk about it on the slides. So whenever we're plotting things, we
need to tell Python a set of x values and a set of y values. That's pretty common. If you've used Matlab, you'll

know that that's kind of the way it's done-- same in Python.

So when we're creating the coordinates that we'd like to plot in a 2D plane, we're essentially just creating two

lists, where index by index we're going to have a list containing all the values that we want for the x coordinate
and a list-- and in a separate list all the values that we'd like for the y coordinate. So at index 0 in each of these
lists, you're basically creating x values at index 0, y values at index 0 becomes the coordinate-- one coordinate

point.

So one of the very simplest things that we can do is we can create a nice list of values that will be our x values.
So our x-axis will basically be the numbers 0 through 29. And then down here we can create four different lists
containing four different y value coordinates. So when we're plotting, we're going to plot this x value list against
all these linear points, this x value list against all these quadratic points, and this x value list against the cubic

points, and so on.

So the way we're creating these lists are a pretty familiar Python syntax. Our n is going through 0 to 29. And then
we're appending to the end of each one of these lists, linear, quadratic, cubic, and exponential, some function of
that n. So the linear list will just have all the values again. So we're plotting 0, 0, 1, 1, 2, 2, so on. The quadratic

list, we'll be plotting 0, 0, 1, 1, 2, 4, 3, 9, and so on. Same with the cubic and then this exponential.

| just chose randomly 1.5 to the power of n just because it kind of looked nice in the plot, but you can imagine
different number for the exponential in there. So the way we plot some values is by, not surprisingly, the plot
command. So plt was how we decided to import that library as, the name that we gave it, dot plot tells Python

we'd like to plot some list of x and y values.

So the parameters to the plot command are going to be two sequences of values. They can be lists typically, but
they could also be tuples. They could also be the keys you get from a dictionary that was also an iterable, things
like that. So we have to pass in a list of numerical things. So this will be typically the stuff on your x-axis. And the

second parameter is going to be the function of those values of the x-axis.

The lists have to be the same length, obviously, so Python knows which coordinates we're plotting. If they're not
the same length by accident, then Python will throw an error and then you don't-- it just won't plot anything. So
when we run the code, Python will generally plot the values in either a new window or directly in line in the

console, so right over here. So right in here, it could put the plot directly sort of in line with a bunch of stuff that

you might print out.

To toggle between that, just out of curiosity, you go to Tools, Preferences, iPython console, Graphics. And then
here you can choose either automatic, which will make a new window for us that's interactive, you can zoom in
and out, things like that, or inline, which will just put the plot that you tell Python to generate directly in the

console here. So | prefer the new window because it's easier for me to interact with it. So we'll do that.



So let's actually run one of the plot commands. So plt.plot, we're plotting here the x-axis as just the numbers 0
through 29. And the y-axis is just going to also be the value 0 through 29. So we've made a nice little linear plot.
And you notice it popped up a little window down here for me. And this is the plot that it generated. Yay, not

surprising. This is exactly what we expected out of it.

OK, so what do we notice about that plot? We notice how Python nicely fit the line within this frame. So it added
a little bit of wiggle room to the left and to the right of my line and to the below and above my line just so it fits
nicely within the frame. It didn't zoom out to some standard 0 to 100 value. It zoomed in to this 0 to 30-ish range,

0 to 30-ish on the y-axis range. So really, really nice that it did all that for us.

The order of the points does matter in the list. So you'll notice one of the other things in this plot here is we gave
it actual points that it needed to plot. But the plot command doesn't plot the points by default. Instead, it just
connects all the points by line. So it connects consecutive indices of points by a line. So connected the 0,0, 1, 1,

2, 2, and so on.

So the order of the points does actually matter. If we have a function, for example, in this case, n and n squared--
so n being 0 through 29 and n squared being 0, 1, 2, 4-- 0, 1, 4, 9, and so on-- but they're in-- but they're out of
order, Python will just take consecutive pairs from those lists and connect them with a line. So here's an example.

I've got my x values list is this testSamples. It's all the numbers 0 through 29 but out of order.

And the test values associated with each one of those, again, they are correct. This is 0 squared. This 25 is 5
squared. This 9 is 3 squared. But they're out of order. So if we run that just with a pure plot command, we're
going to get some garbage plot. It doesn't look very nice, and we already know what's wrong, right? Python just

connected 0, 0, 5, 25, and then 3, 9 by a line-- not really very nice.

Instead, what we'd like to do is to just tell Python to plot the points. So | don't care about connecting them with a
line. In this case, | would tell Python, instead of just plotting it, to create a scatter plot for me. So plt.scatter with
the same list of x and y values is going to just create for me this nice plot where it plots the coordinates. It
doesn't matter that they're out of order because they just get plotted without anything connecting them. So

pretty nice.

So that's this example that we just did here. And then this is us doing a scatter plot giving us this nice plot. OK,
one of the other things that you might want to do is to have a whole bunch of lines being plotted on one window.
So to do that, all you have to tell Python is just a sequence of all the commands, all the plotting commands or
everything that you'd like to plot on the one figure. So without telling Python you'd like to create a new figure,
anytime it sees a plot command, it will just keep adding whatever points get generated or whatever lines get

generated to the current figure that's open.

So we just have one thing that's open right now. So it'll just keep adding stuff to our figure. So here I've got four
plotting commands in a row. | never explicitly told Python to create a new figure for me. So it's just going to add
all four of these lines to the same plot. So it just doesn't create a new figure. It just keeps adding stuff to my plot.

So you can imagine if | added a scatter plot as well, it would just add the individual dots to this plot.



OK, so again, what do we notice? Well, Python nicely framed everything for me to make sure that every line that
| have fits within this graph. So my x-axis is comfortably between 0 and 30. And my y-axis is also comfortably
between 0 and 120,000. So there's a little bit of gap up at that top of that exponential line. But this leads us, if

we were presented this graph, to kind of mistakenly not know what's going on with these bottom lines here.

So this is our linear, the blue line. And the orange one is the quadratic. We're not really sure what's going on
down there because the scales are just-- the y scale is just too high. So in this particular case, it would be better

to visualize the data in separate, different windows.

So instead of having everything be plotted in one window, we're going to tell Python to create a new window and
plot some stuff in it. So the way we tell Python to create a new window for us is with the command plt.figure. So
as soon as Python sees plt.figure, it will create a new window, bring it to the foreground. And any further plotting

commands will be added to this new figure.

So there's a parameter that this figure can take. And that's going to be the name of the figure. So you know like
when you have a window at the top, it has a name for the name of the program or whatever is running? Well, the
string that you put in there is going to be the name that you give to that figure. If Python doesn't have a figure
with that name already there, it creates a new figure, brings it to the foreground. But if there's a figure with that
name already there and you just happen to call plt.figure with that same name, it'll just rebring that window up to

the foreground again to readd more stuff to it.

So we're going to look at this example here. We've got a whole bunch of stuff being plotted. So the first two lines
of code here, first we've got a new figure being created. And we called it expo. And then this plot command here
coming up right after the figure will add this exponential that we created to that expo figure. Then we've got a

plt.figure right after that. So Python will bring this new figure to the foreground.

And the plot command that comes right after that will add the linear, this line, to this new figure-- one that we
called lin. A couple more times we're going to create and do the same thing to create this quad and this cube.
And those will each get one line added to them. And then down here, we're going to say, well, let me just go back
to that exponential figure and add another different exponential curve to it. So we're going to create the

exponential curve, this time 1.6 to the power of i instead of 1.5 to the power of i.

Then we're going to tell Python to bring the figure called expo back up to the foreground. So remember, we
created it up here. So it doesn't create a new figure. It'll just bring that one back up. And it already has a curve in
it. And then we're going to tell Python to plot a second curve to it. So let's see that. That's all this code right here.

Run it.

OK, so not just one figure-- one window got created, but four. So this is my cube. And you can see up in the top
here, a little hard to see, but that's the name that we gave it. This is my quad. This is my lin, my linear. And this
is my exponential. So we see the exponential one has two lines in it because we added one way at the beginning

and then we brought it back for processing to add another line to it.



So again, so these graphs are actually on the slide. This is the quad one. This is the cube one. This is the linear
one. And this is the exponential one. The blue line was our original curve, 1.5 to the power of x. And the orange
one is 1.6 to the power of x. So they both got added to the same plot. Cool. So again, just something to note,
you'll see how Python nicely framed our lines so that it's able to fit everything that it needs to plot within this

graph.

So what we're going to do next-- | know, that was a little bit tedious. What we're going to do next is we're start
looking at some real examples, some real-world data. So first we're going to do some toy real-world data. And
then soon we're going to start dealing with some actual data sets that we're going to read in, we're going to plot,
we're going to investigate, try to answer some questions about them, and things like that. So first, let's look at

this real-life example where we've got months and temperatures for each of those months.

So notice the months here is actually the value that this range returns, which is like an iterable, like a tuple. So
it's still a sequence of values. It's not a list but totally fine to be passed in as an argument to the plot. And temps,

of course, are going to be temperatures corresponding to each of those months as a list.

So the plot looks something like this if we actually run that code. What do we notice? Well, just like before,
matplotlib nicely framed our data. It's got a little bit of wiggle room left and right, top and bottom. And it

automatically selected the scales, how low to go, how high to go, and the tick marks for this.

But let's say that you're the advisor to a student and they came to you with a plot that looked like this. Would
you be able to tell anything about this plot without knowing exactly what the code that generated this plot is? Not
really, right? It just looks like a bump. It could be any sort of data. So what we'd like to do before actually-- for
your apps and things like that in the future, before presenting a plot to somebody else, you'll want to add a title,

and you'll want to label your axes.

So what we want to do, in addition to actually plotting the data, is to tell Python to add for us a title and labels for
our axes. So we do this using these three lines of code here. So since we haven't told Python to create a new
figure or anything like that, any commands that we do with regards to plotting will just get added on to this

figure. So here I've got Python adding this title, these two labels to our axis-- to our axes.

So here I've got this and this plot. So | run it, and ta-da, we have something that looks much nicer. So now we
can hand this plot to somebody, and they'll know what it's about. Now, that's fine, but since it's temperatures
what I'd really like to do is to say, well, the temperature-- the lowest temperature | have should really start at the
y-axis here, this intersect with the y-axis. And the highest temperature I've got, | don't really want that wiggle

room because this is my last temperature value. Let's just have the frame just end there.

So we can do that little change by setting limits on our x-axis. So here I'm going to limit the x-axis to say that it
starts from 1, and it ends at 12. So if | do that, again, that's just a little command we put in, a continuation with
the rest of the commands. And it gets applied to this plot. So as soon as | do that, Python now creates for me the

same plot, except that the x-axis starts at 1 and ends at 12 nicely framed within here, so no more wiggle room.

Still some improvements to be made to this plot as in here the months skip. So Python decided that it's best to
just show 2, 4, 6, 8, 10, 12 as the ticks on the x-axis. But | decide that | would-- since I'm showing all the months
of the year and their temperatures, | would really like to have ticks for every single month. So again, a little

command will do that for us.
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So plt.xticks takes in a tuple of all of the places where you'd like one of those little ticks to be created. So if we do
that-- again, just another little command in series here-- if we do that, Python now fills in the ticks for every single

spot that we told it to fill in. So it's looking way better already.

What's still not quite right-- | promise, this will be the last improvement we make. | personally find it hard to map
numbers to the months. | still count my fingers. So what would be nice is to say, well, instead of having numbers
on my x-axis, | would like to have the actual names of my months, Jan, Feb, Mar, and so on. So to do that, we're

going to make one small change to our xticks command here.

We're going to give it a second parameter. So first one is, of course, what we had before, saying these are all the
ticks that | would like to have. And the second parameter is the labels for each one of those ticks. So one by one,
they'll be mapped. So 1 will be mapped to Jan, 2 will be mapped to February, and so on. So instead of using the

numerical values, Python will create for us the string values that I've told it to do.

So here it is. Run creates for me this very nice-looking plot. So this | would be happy to receive as an advisor
compared to that very first one that we had. All right, questions so far? We seem all right? OK. The other thing
that you can do is potentially add grid lines if you wanted to. So plt.grid will either toggle the grid lines on and
off. So if there's already grid lines, it'll toggle them off when it sees that command. If there are no grid lines, it'll

toggle them on.

So you could potentially have a bunch of plt.grid commands that keep toggling things on and off and so on. OK,
so that was us plotting one city's temperature values for a year, let's say, an average. Let's say that we wanted

to plot two different cities. The code to do that is as follows.

So again, we've got months being this range, 1 through 12, inclusive. I've got a list of all the Boston
temperatures here, | plot that, a list of all the Phoenix temperatures here, and | plot that. And of course I'm going

to add some labels to my graph. So like that. So if | run that, we get something that looks like this.

Now, of course, | could remove those little wiggle rooms on the left and right, but for now it's fine. What's missing

from this plot? Let's say you didn't see the code and you were just given this plot.

You wouldn't know which city is which.

Yeah, exactly. | don't know what-- yes, these are different temperatures from the title and the labels, but you
don't know which city is which, exactly. So what we'd like to do is tell Python how to label these two lines. So to
do that, it's just an extra parameter here in the plot command. So when you tell it which data to plot, you can

also tell it what label that data should get.

So here I've got Boston label for the first one, Phoenix label for the second one. And then you tell Python to add a
legend to your plot. So here the parameter is the location for the legend. And best just means Python should
decide where to put the legend, top left, top right, middle, wherever, so it doesn't really interfere much with the

data. Or you can just tell it where to put that legend. So you can force the legend to be in a particular spot.

So here I've got already labeled data. And then we add the legend. And now you can see in this particular case, it
decided to put it in the top right. But again, you can force it to go somewhere else. Bottom middle seemed like a
fine choice as well. OK, very nice. So now we've got Python-- it automatically did the x and y-axes for us, as we

told it to do, but the colors that it picked were random.



Now, we can specify a bunch of different details for the plot. So we're going to do that next just to show you that
you can. So we're going to choose different colors and different styles for our plots. We're going to choose

different widths for our lines. And then maybe we can-- and then we'll also add some markers, so where exactly--
each data point we have, we're going to mark. And then I'll show you how you can create subplots. So instead of

creating new windows, you can actually have one window with different little subplots within.

OK, so the first thing we're going to see is how to customize the data to have a certain line style and a certain
color. So there's a shorthand notation to do this. Instead of actually passing in the parameter name in the plot
command, we can do a shorthand notation. So you might have already noticed this little extra bit here. So the

more you use it, the more you'll get used to it.

But this basically tells Python that | would like this plot, this line corresponding to this data to be blue, that's what
the b stands for, and to be a solid line. That's what that little dash means. The Phoenix one, you may have

guessed, tells Python that | would like this one to be red, r for red, and to be a dashed line. And then the last one,
I'm going to add one more temperature here, temperature data for Minneapolis-- | would like this one to be green

and a dash-dot-dash line.

So we can run that. And it looks something like this. All right, so I've got my solid blue line for Boston, my dashed

line for Phoenix, and my dash-dot-dash line for Minneapolis. Very nice.

Now, instead of doing that shorthand notation where we've got this one parameter that just somehow magically
knows the color and the style based on just being passed in, we can actually tell Python the parameter values
that correspond to the color, so here I've got color equals b for blue, and then that correspond to the line style. Sc

here line style equals-- and then you explicitly pass in the line style that you'd like.

So this may be more intuitive, according to what we've learned. But Python does allow you the option to do it all
in one. So if we do-- if we run it with these specific, explicit parameters, then we'll get the exact same graph as

before-- no surprise.

So there's a lot of options that we can have here. So these are all the line style options. So you can also add a
dotted line, which | didn't show. These are all the color options plus many more. You could also pass in the RGB
values or maybe the hex values if you want a very specific shade of magenta or something. And then we can also

add markers to our lines. We haven't seen this yet, but let's do that next.

So let's say that | would like to have the actual data points that I've plotted show up in my lines. Right now, the
lines just get connected-- or the data points just get connected with our lines, dashed or dotted or whatever we
chose, but the marker-- the data points themselves don't show up with markers. So again, in shorthand notation,

we can tell Python, hey, let's add these markers.

So here I'm telling Python to just do a dot for this blue solid line. Here I'm telling Python to do a larger dot for this
red dashed line. And here I'm telling it to do a star for the green dash dot dash dot line. All right, so that's down

here. Run it.



And now we see nice little markers for every one of our data points. So we can also do triangles, we can do
squares. There's lots of other marker options, and they all exist in the documentation for matplotlib. So this is
what we got, perfect. The last thing that we can do is to add thickness to our lines. So oftentimes, it's good to,

first of all, delineate the lines using dashes or dots and things like that but also width.

So here another parameter passed in, the line width, this is going to be a skinny line, this is going to be maybe a
thicker line, and this one's going to be unreasonably thick. So let's see exactly what this will look like. It's going to
look super weird. As | said, unreasonably thick line. But there it is. And then you can see that the legend itself

also adjusted to whatever you chose for your line styles.

So yeah, that's exactly what | said. Cool. Last thing | want to talk about is subplots. So right now, the only things
that we've kind of learned about plotting is you either plot every line that you have on one figure, or you create a

new figure and then it becomes a new window that you have to switch between for whatever you'd like to plot.

Oftentimes, what's really nice to do is to create only one figure. So you have only one thing that pops up, like one
window. And within that window with some name here-- and within that window, you can create a bunch of
different subplots. So here I've created six different subplots. So we can tell that to Python. And we do that using

the subplot command.

So in this particular case, I've told Python to create for me a subplot with two rows, that's what the first
parameter says, and one column. That's what the second parameter says. So here, this is one window with two
positions in it. The third parameter tells Python which one of these positions to open for adding lines to or data to.

So 1 means this is the one that you're opening, and 2 means this is the second one that you're opening.

So you can see here the very top subplot command tells Python to open up this one for editing, basically. So
we're going to add to it the Boston temperature. So this is all the plotting commands and all the labels and
everything after it belong to this top subplot here. And then subplot command down here tells Python that on this
figure with two rows and one column | would like to now open position number 2 for editing. And then everything

that | have thereafter gets added to the subplot at this position.

So the way that this is going to look is as follows. So I've got-- this is just one window that gets created. And you

can see the top one has the Boston temperature, and the bottom one has the Phoenix temperature.

At first glance, does this look right in terms of temperatures, if you were just to look at the pictures themselves? |
don't know about you, but at first glance, | thought that the temperatures for Boston and Phoenix were the same

because | didn't look closely at the y-axes. It kind of looked like, hey, they both bottom out in the same way, they
both top out in the same way. So they look very similar to me. But if we inspect the y-axes closer, we see that the

Boston temperature starts at 30, goes to 70. But the Phoenix one starts at, what is this, 50 and goes to 90.

So if we're presenting plots in one figure what would be really nice to do is to make sure that the axes are both
bounded in a similar way, especially if we're plotting similar data, temperature in this particular case. So in our
code what we'd also like to do is set limits on our axes, and just the y-axis because the x-axis is the same. So

here | can limit the y-axis from 0 to 100, a reasonable set of temperatures in Fahrenheit.



So if | fix these temperature limits from 0 to 100 and now | plot, | get something that looks like this. And now at
first glance, this makes a lot more sense to me. I've got-- the Phoenix temperatures seem to be on for this year,

on average, higher than the Boston temperatures.

So we can plot now multiple-- we can create multiple subplots. So here in the previous example, | just had two,
top and bottom. But | can create as many subplots as I'd like within my window. So when | create them and | tell
Python how many rows and columns | have-- in this particular example | just drew here, | have three rows and
two columns. So the third parameter that | pass in will basically tell Python which one of these subplots to open

up for processing.

So this will be the first one, this will be the second one-- kind of the way we read-- third, fourth, fifth, and sixth.
So that third parameter to these subplot commands will be either 1, 2, 3, 4, 5, or 6, telling Python which one of

these sections I'm going to add plots to.

In this particular case, | had a Boston, Phoenix, and Minneapolis temperature. So I'm just creating a two-by-two
matrix. So here | just have this thing that looks like this, a figure with these four subplots. And | am going to add
the Boston one over here, the Phoenix one over here, and then the Minneapolis down here, so 1, 2, and 3 as my

subplots that I'm opening. Nothing in four, so that fourth spot will just be empty.

So the plots will look something like this. And | haven't changed the line widths in this particular case. | didn't
need to. And you can see everything's plotted with the heights, again, limited from 0 to 100 just so everything's
comparable. And notice the empty spot here because | had nothing to fill in with. Questions about this? Is this

interesting? OK.

All right, so that finishes up just some really basic things that we can do with plotting, basic customizations. Now
what I'd like to do is just open up a few different data sets for processing. We can start by just plotting the pure
values on a regular plot. And then we can start to investigate things that we visualize, ask more questions, and

see where we go from there.

So the first thing I'd like to do is open up a file on the US population. So this particular file contains 40 different
numbers. So it has a population value over about 400 years, every 10 years. So that's 40 different values for the

temperatures, starting from, | don't know, a really long time ago till about 2010 or something like that.

So the file looks something like this. So it starts at 1610 and goes down to 2010. So this is 40 lines for 40 years--
400 years, every 10 years. Then there's a space in the file. And then I've got the population value. So it starts at

350, increases, goes down to 300,000 in 2010.

So that's what the file looks like. It's important to know what the file looks like because you're going to have to
read in this data and save it in some sort of data structure that's easy to manipulate. So in our case, a data

structure that's really easy to manipulate where you have a whole sequence of values is a list.

So what we can do is we can open up this file for processing, read in the years as a list, and then read in the
population values as a list as well. We could use a dictionary also if we wanted to. But in this case, | just used two
lists. So let's look at the code to do that. It looks like a lot, but I'll go through it. So here is the function that's

going to read in the file.



It just opens up the file, creates two empty lists. One will contain the dates. The other will contain the
populations. It iterates through each line in the file. So I've put up what a line in the file kind of looks like up here.
So it's got some number, space, some other number. But when we read and file-- when we read in a line from a

file, Python actually reads it as a string.

So what that means for us is we're going to have to take this string, each line being the string, "1640 space
26,634," something like that, and somehow separate it so that we have the date and then the number of the

population and then somehow save those two pieces to lists.

So the first thing to notice is that we have a pesky comma in our population values. Those values are human-

readable, so it makes it easy for us to read, but the computer is not so happy about them.

So if I have a number like 11,345, whatever, this is read in as a string, right? And if | just try to cast that as an
integer, straight without doing any sort of processing on it, Python is very unhappy. So what we need to do is
remove that comma. Because as long as | don't have a comma there, Python can convert that string number into

a regular integer number for us to then plot.

So that's what this bit of the code is doing. It's doing it in a weird way. It's saying, hey, take this entire line of
characters and only keep characters that are either a digit or a space. So in doing so, it effectively removes the
comma because it creates a new version of that line containing only digits and spaces. So it'll just take the 2, 6

and then the 6, 3, 4 right after. So it just creates this new line that looks like that.

And then after it has this new line, we're going to split on the space because we note that every single-- after
every date, every year, we've got a space that separates our population value and our date. So if we split on the
space using the split command, the thing before the space, so the line at index 0, gives us the date. We'll just

cast that to an int and append it to dates.

And then the line at index 1 is the thing after the space, again without the comma because we did that trick. And
then we cast that to an integer and append that to our populations value. So that's what we do there. And that's
what we do there. And then, from there on out, we just return the dates and the populations. The dates become

my X values for my plot, and the populations become the y values for my plot.

And then we plot it, and it looks something like this. So much easier to read or to tell what's going on than just
looking at pure numbers. Always nicer to visualize things than to just read a whole bunch of numbers, even if it's
just 40. And in fact, we can tell a couple things that we weren't able to tell-- we definitely couldn't have been able

to tell from just pure looking at pure numbers.

The first is that we notice a little bump right here in the population. This is the impact of World War Il on the
population. Second, a little harder to tell is another little bump down here. And that's the impact of the Civil War

on the population. So nicer to visualize. It exposes some interesting things.

The other thing to notice is, well, what's going on down here? It kind of looks like the population is not really
growing much. And then maybe from 1750 onward, it starts to grow exponentially. It's hard to tell what exactly is
going on in that lower part. So let's think about a different way of showing this data. Instead of having a linear

scale on our y-axis, let's see about doing it in a logarithmic scale.



So we're going to add a command that tells Python to make our y-axis a logarithmic scale, instead of linear. So if
we do that, then that means that every regular increment in our y-- on our y-axis is going to imply an exponential

increase in the population.

OK, so let's plot that. And if we plot that, we get something that looks like this. The x-axis remains unchanged.
We're still incrementing the years linearly. But the y-axis is now logarithmic. So what do we notice? Well, | see a

line here, and | see another line here.

Again, linear growth on a log scale means exponential growth on a linear scale. So what we notice is that there's
these two time periods of exponential growth. And in fact, those early years actually seem to be growing-- the
population seems to be growing at a faster rate than the later years. And that was not readily visible on the

previous graph that we had.

So the question-- | have a question for you. Which one of those did you find more informative? Well, it kind of
depends on what we're interested in finding out. If we're interested in big trends in the data, where in the top left
one we spotted here the impacts of wars on the population, well, then the top left one is the one to look at. But if
we visualize the data in a slightly different way, it gives us different insights into what's happened to the

population.

That wasn't as apparent in the previous graph. So it really kind of just depends on what you're interested in
finding out which one of these plots you find more informative. And sometimes both are probably necessary to

figure out exactly what happened. OK, so that finishes our example on the US population.

Now let's look at a slightly different file. In this particular file, we're going to look at country populations. So these
are the populations in a whole bunch of different countries-- or sorry, all the countries, ordered from countries
with the highest population up at the top of the file down to the countries with the lowest population at the

bottom of the file. So they are basically ranked in this order. So | know that this order is correct.

So there's 237 lines in this file. What do we notice about the data? So we need to know what the data looks like in
order to read the file in. And again, we're going to be interested in extracting certain parts of it. For the particular
analysis I'm going to do next, I'm actually only interested in the population itself. So | don't care about the rank.

And | don't actually care about the country either.

So all that my-- the code that's going to read in the file will only be interested in extracting the population value.
And notice, once again, we've got our commas here in the population values right. So we're going to use the
same trick to get rid of those. Again, nice human-readable format here but not so good for reading in the file and

dealing with the data itself. So we're going to have to take care of that when we read in.

So here's the function that reads in the file. It's going to have a very similar feel to the previous one. Again, I've
got a little sample of our file up here just to remind ourselves what it looks like. So this particular file, I'm only
interested in grabbing the population value. And it's actually a tab-separated file. So I've got rank, tab, country,

tab, population, tab, and then the date.

So when | take a line of code what I'm first going to do is split it on the tab character. And the tab character is
this backslash t thing. So once | split it on the tab character, the thing at index 0 is my rank, the thing at index 1

is my country, and the thing at index 2 is my population. The thing at index 3 is my date.



So if I'm only interested in grabbing the population, I'm going to look at the thing at index 2, and this gives me
the population as a string here. And then we do the exact same trick as before to eliminate the commas. There's
no space in this particular case because I've just got the number saved because of my tab split. So all | need to

do is keep digits. And then if | keep the digits, then I'm just going to keep that number as a population.

Again, | cast it to an integer because | would like to work with numbers in my lists as opposed to strings. That
would be very weird. And at the end of this function, I've got all of the populations in the same order that they
were in that file read in as a list, numbers not strings. And so if we plot the populations, just pure populations, I'm

going to have something like this.

If | plot just the pure populations, | see something that looks like this. Kind of hard to tell-- | mean, it's a big
exponential decrease, but is that really what it is? So again, we'll do a little semi-log plot on the y-axis to see
exactly if there's any sort of linear action going on on that log plot. And unsurprisingly, it kind of matches our
intuition. There are very few countries that have a really high population. There are very few countries that have
a low population. And then a bunch of countries that are kind of in the middle here where the population just

exponentially decreases.

All right, but that's not the analysis | would like to do on this data because that's kind of boring. So instead what
we're going to analyze is actually just the first digits from every country's population. So what I'd like to do from

that data set is once I've grabbed a list of all of the country populations, | am going to extract that first digit.

So the way we do it is if we have a population, | don't know, 2542136, whatever, I'm going to take this number,
cast it to a string. That's what this one line of code is doing all in one. It casts it to a string, extracts the element

at index 0. This becomes the string 2. And then we cast that to an integer to give us 2.

So that line of code does all of those steps in order. So at the end of this loop, I've got this first digits list that
contains all of the first digits of every single one of those country populations. So I'll print that for you, just to
give you a sense of what it looks like. So we see this. So we had two countries up at the top that had 1 billion
people-- 1 billion people. Then the next country down had 300 million people, then 200 million, then 200 million,

then 200 million, 100 million, and so on.

So just extracting that first digit, we see this pattern of values. So if we plot that-- so that's exactly what we do
down here, and I'll just do it in the slides. If we plot that list in that order, we get a plot that looks something like

this. It's a nice little sawtooth pattern.

And if we stare at it a bit, it makes sense because the numbers that we got right from the file were already in
ranked order highest population to the lowest population. So down here, we had-- sorry, down here, this little dot
right here had two countries that were 1 billion, so 1, 1, and then had one country that had 300 million. And then
it had three countries that had 200 million, then a bunch of countries that had 100 million something,so 1,1, 1,

1,1,1.

And then, since we're going in decreasing order in terms of rank, once we've finished going to that significant
digit, when we move down, then we're going to start looking at countries that have 90 million, 90 million, 90
million, 80 million, 80 million, and so on. So just the order of all of these values, the first digits of every one of
these values, it makes sense to have that sawtooth pattern, right? We basically have 9, 8,7, 6, 5,4, 3,2,1,9, 8,

7,6,5,4,3,2,1,and so on.



So we get this pattern. What I'd like to do is ask how many countries have their first digit a 1? It seems like
there's a lot, right? If we count how many of these countries are down here, it seems to be a lot. How many
countries have a first digit of 2? So again, we count how many countries are on this step of my sawtooth. How

many countries have the first digit 3? And so on.

And it kind of looks like, | don't know, maybe there are more countries that have a first digit of 1 than there are
countries that have a first digit of 9, right? There's only a couple here, maybe like five here, maybe one here, a

couple here, a couple here, whereas the number of countries that have a 1 are actually a lot.

So let's try to plot this data, the values here. So what I'm interested in doing is creating a histogram. So a
histogram on the x-axis has a bunch of bins. In this particular case, the way I'd like to bin my data is by saying
my bins are going to be the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9. That's the x-axis. And the y-axis is going to be a
count, a frequency of how many of my countries have the number 1 as their first digit, how many countries have

the number 2 as my first digit, and so on.

So in terms of this list containing all of the first digits of the countries, I'm essentially have-- | essentially have
one bin that counts how many ones | have in this list, another bin that counts how many twos | have in this list,

another bin that counts how many threes | have in this list, and so on.

So if | plot that histogram, it looks like this. Now, | would have expected this histogram to be about even, right?
Why does it matter the first digit? It seems like in this particular case, the first digit has a higher probability of
being a 1 than being a 9. But intuitively, | would've expected every digit to come out with equal probability, 11%,

1 over 9.

But instead what we get is this really surprising result, which is that the first digit seems to be about 30%. To
have the first-- sorry, to have the first digit of 1 seems to be about 30%. To have the first digit being a 2 seems to
be about 18 or something percent, and so on and so on. And then the first digit being a 9 is pretty low. It's going

to be about, what is this, 12 out of 200 countries. So pretty low probability.

So as it turns out, this graph actually follows something called Benford's law. And this is a well-proven law. It
applies to a bunch of different data sets that we find in nature, data sets that don't really have upper or lower
bounds, like country populations. So Benford's law effectively says the probability of the first digit in some big set

of numbers being a 1, a 2, a 3, whatever-- this d being the 1, a 2, or 3, or whatever-- is according to this formula.

So if we find the probability of that first digit being a 1, we basically find log base 10 of 2, which is about 0.28.
Probability of that first digit being a 2 is log base 10 of 1 and 1/2, which is about 0.17. So our data, the country

populations, if we look at just the first digit of our data, it also follows this law, which is pretty neat.

So a lot of data that we deal with on a daily basis follows this law, number of social media followers, number of
posts people make, stock values, grocery prices, sports statistics, building heights, income taxes, things like that

all follow this law, which is pretty cool.

As an aside, one of the ways that people figure out tax fraud on income taxes is by applying Benford's law to
income taxes submitted. People, when they submit fraudulent numbers, they tend to make every number come
up with an equal probability. They forget about Benford's law. And so they run this Benford's law on potentially
fraudulent tax submissions. And they figure out that whatever those people submitted don't actually follow this

law. And hence, it's fraudulent. So if you're making up numbers, just remember Benford's law.



Cool. So yeah, that's a really interesting thing that can come out of some data. And again, we got to visualize it
and see the law in action. OK, one last example | want to go through. This one will show a bunch of different
things. It's going to have a lot of code. I'm just going to briefly talk about it. But the code is in the slides-- or sorry,

in the Python file if you want to look at it more in depth.

I'm going to compare city temperatures again, but we're going to do a more in-depth analysis dealing with a
whole bunch more data. So this particular data set, I've got daily temperatures for 55 years for 21 different cities.
So the amount of data that | have here is going to be 365 times 55 times 21. So that's how many rows would

exist in my data set.

So that's a lot of numbers to look at manually. So instead, we're going to rely on aggregating it with averages
and things like that to make sense of all of this data. So this is what the file would look like. I've got three
columns, effectively, separated by commas. So the first one corresponds to the city. Second one corresponds to

the temperature in Celsius. And the third one is the date that it was taken.

So it's nicely in order. The date is delineated like this. So it's got year, year, year, year, month, month, day, day.
So this is 1961, January 4. That's how we would read that. So later, when we're trying to think about which one
of-- grabbing particular temperatures for a specific year or things like that, then we can use the format-- keep the

format in mind and use that to extract the relevant information.

OK, so the first thing we want to do is to grab this data and save it again in a nice data structure that allows us to
manipulate it to our heart's content. That is a list. So we're going to open up our file for reading. I'm creating two
lists here, one for the temperatures, the other one for the dates. I'm going to loop through each line in my file.

And | know it's comma-separated, so I'm going to split it on the comma. The thing at index 0 will be my date-- will

be my city. The thing at index 1 will be my temperature value. The thing at index 2 will be my date.

| would like to take the temperature value and save it as a number because | want to plot these numbers. This
specific function will get a list of all of the temperatures for a particular city. So the city here is going to be a
parameter. So as I'm reading the file, | would only like to grab the lines that match that city. So here I've got this
if statement. So I'm only going to do this stuff inside this if statement if the city is matching what I'm interested

in.

And then what do we do? Well, we're going to take our temperature value, which is the thing at index 1, because
I've split on the commas. Convert it to a float. There's no commas or anything weird like in that number. So it's
just a pure float, 0.55 as a string. If we cast it to a float, Python will happily do that for us. Then we're going to
run a Celsius to Fahrenheit function, throwback to lecture 1, to convert that Celsius to Fahrenheit value. And then

we're going to append all of these temperatures in a nice list.

And at the end of the function, we're going to return all the temperatures. So it's going to be 365 times 55. That's
how many temperature values we have for one city. And what we'd like to do as a first step is to just get a sense
of the average temperatures for each one of these different cities. So over every single data point that we have
for a particular city, what is the average temperature over all these days for all of these years? So | would one

number to represent the temperature per city.



So that's what this code is doing. It's going to first get all of the cities that are in my file, so all the unique values.
Then it's going to get the average temperature over all of those 365 times 55 years. Then it's going to grab the
name of my city as just the first two characters, and then it's going to create a nice scatter plot. So | don't want

to link all of these city values together. | would just like them to be dots in my plot.

If we do that, we get something that looks like this. So this point here represents the temperature in Seattle over
every day over 55 years. So one temperature point that represents the Seattle temperature for all of this data
that I've got. What does this tell us? Well, not much that we didn't already know. I've got these cities down here
that are super cold and those cities up there that are super warm. And then all the rest of my cities are

somewhere in the middle on average. So nothing that we didn't really know, nothing groundbreaking here.

What would be a nicer thing to look at is the temperature change over time. So here, my one data point tells me
the temperature that represents that city. But what | would like to do is grab the temperature that represents
that city for each year. So for each year, | would like to get the average temperature for that year. And maybe |
could see a trend for the temperatures getting warmer over time or cooling over time or something like-- or not

having any change at all.

So this is the code that does that. I've got get temperatures by year for city. This is kind of the function that gets
run. And it calls the one at the top. So here I've got the code from the previous slide. It gets a list of all the
temperatures for a particular city, so over all those 55 years. And then I'm interested in all of these different

years. So for each one of these years, I'm going to get a temperature value.

This getTempsForYear is the function up there. And all it does is it looks at that third column and grabs the year.
It matches those first four characters of the year entry. And as long as it matches that year, then it's going to get

added to this running sum. And at the end, I'm going to get the average for the year.

And let's say that I'm going to compare four different cities. So I've got 55 values for each city representing the
average temperature in those 55 years. And I've got four cities to compare. So this is what one plot would look
like for Boston-- sorry, so this is what the plot would look like. I've got one line for Boston, that's the blue; one line

for San Diego, the red; one line for Phoenix, the orange; and one line for Miami, the green.

What do we see? Well, yes, Boston on average is a lot colder than any of the three other cities. Cool. We knew
that. Miami and Phoenix are nicely hot there. I'd like to be there right now. And what about trends? This is why
we did this analysis. What do we see from the trends here? Well, the Boston temperature maybe increases a little

bit slightly over time. San Diego, it seems to stay about steady.

The Phoenix one seems to increase pretty dramatically as time has gone by, on average. And the Miami one
maybe also slightly increased. But this only tells us average temperatures. So one thing that we can do is check
out the extremes. In addition to plotting the average, let's also plot the minimum for Boston and the maximum

for Boston and see exactly how close that average is.

Is the average in the middle and then the minimum and maximums are super far away from the average? Or are
they all pretty much close to the average? So this is the code that does that. The function here is exactly the
same as on the previous slide. The only difference is instead of returning the average, we're also going to grab

the max and the min for that list of temperatures.



AUDIENCE:

ANA BELL:

And then we've got all of the different cities to plot this for. So we get something that looks like this. Again, at
first glance, | tend to ignore the y-axes at first glance. So at first glance again, it looks like, hey, the minimums
are pretty much the same, the maximumes are pretty much the same, averages are pretty much the same. So,

misleading to think about that. So once again, let's help the reader and set limits on our y-axes.

So here, I've got a limit to my function or to my code. It's going to have every one of my graphs start at 0 and top
out at 100. And now the plots are nicely comparable. So now I'm plotting the average temperature for each year.
So there's 55 of these data points, the minimum temperature for each year and the maximum temperature for

each year. So 55 data points being plotted.

What can we tell? A lot easier to infer information from this, right? So we could see that the average temperature
in Boston is the minimum temperature in Miami and San Diego. What else can we see? The variation in Boston is
pretty high. The variation in Miami and San Diego is a lot lower. San Diego goes from 40 to 80, whereas Boston

goes from 0 to 90, so pretty high variation.

The average for Boston and San Diego seems to be almost the same, but that variation is very different between

these two cities. Yeah, question.

So what happens if there's a value that's lower than the minimum y value?

Oh, yeah, then it doesn't get plotted. Yeah, so that was a tenuous there, but it didn't go down. | could imagine
the minimum in Boston being below 0 for one year. But yeah, then it just wouldn't get plotted. So you could use
that to guide your limits. The code here could say y limit equals minimum of those three lists, and then you'll be

sure to make sure to-- you'll ensure that that minimum will be hitting the limits. Great question.

OK, so one other thing that we can look at is the distribution of temperatures. So this is a nice plot. It gives us
sort of an overview look at what happens year by year. But what if we focus on one specific year? And now, for
that year, let's think about what the temperature distribution looks like. So what I'm interested in plotting is

something like this.

So I've got on the x-axis maybe bins that correspond to different temperatures, so a temperature of 0,
temperature of 1, temperature of 2, 3, 4, and so on. And then this is going to be pretty big because maybe my
max temperature will be 100. So for one particular year, | would like to have 100 bins. And the height of each bin
is going to be a count of how many days within that year we reached a temperature of 0, how many days within

the year we reached a temperature of 1.

And we can average things, or we can round temperatures because obviously the temperature would be like 20.6
or something like that. And then we can just round it so it fits in one of these bins. So that's exactly what this
code is doing. So here it's looping over every single one of the dates. And we're creating this list of the

temperatures. And the list is for one specific year. So this year is my parameter here.

So here, this is just going through the data and ensuring that I'm grabbing only the rows that match that year.
And then down here is where I'm creating a list of 100 elements. So this down here, you can think of it as a list,
like this. And the index nicely-- it worked out really nicely-- the index is going to correspond to a temperature

value, which is weird to think. It only works in this particular scenario with Fahrenheit temperatures.



But the index in this list corresponds to a temperature. So as I'm iterating through my list of temperatures over
365 days in a year, I'm going to round that temperature. And I'm going to add it to the index that | believe it
belongs to. So in this way, I'm going to have-- if the temperature was 4 degrees, then that index 4, I'm going to
increment my count by one. And if further on in the list I've got another temperature that's 4, at index 4, I'm

going to increment it again.

So I've got this nice list, these nice counts of all of the temperatures at different-- sorry, all of the counts at all of
these different temperatures. So out of those 365 days, how many days had a temperature of 4? Out of 365
days, how many days had a temperature of 85?7 And then we can plot it. And we're not going to plot a regular

plot, because we don't want these connected.

We're not going to do a histogram, because we made our own histogram here. Instead, we're going to do a bar
plot. And the bar plot takes in my x-axis and my y-axis, the x-axis being this list 0 through 100 corresponding
temperatures and the y-axis being the count of how many days had each one of those temperatures. And we get

something that looks like this.

So this is only for one year. So if we count the sum of all of these bars, how many times they appear, it should
add up to 365 days. So this is the distribution, | think, in 1961. Left is Boston and right is San Diego. Already we
can tell some pretty interesting things from this. So 1961, what does the distribution look like for these two

cities?

Well, it looks like-- this is something we could already tell from the minimum and maximum-- it looks like
temperatures in Boston kind of went from about 0 to 85. But what the distribution tells us that the minimum and

maximum couldn't tell us is how many days were that low, how many days were that high.

Is it that we have some sort of nice-looking bell-curve-type distribution where most of our temperatures land
comfortably in this middle range? That's one option. Or maybe there is some city out there where it just has an
even distribution. So basically, they're going to have temperatures that-- sorry, the count of the temperatures
basically is even. So it doesn't really matter what temperature you're talking about, there will be an even number

of days throughout the year that are at that temperature.

So this kind of graph can tell us this. So it looks like the temperature in Boston kind of maybe follows a very wide
bell-shaped-curve kind of, maybe two bumps, a bimodal. The temperature in San Diego, again, much, much lower
variability but also seems to follow this bell-type-curve here, where-- bimodal with two bumps here, one with
temperatures that are just in the 55s, very few temperatures in the middle, and then a bunch of temperatures in

the 70s.

So this is the distribution for 1961. And then we can again ask what happens to the distribution in a later year. So
if we take more than one year that we plot, here I'm going to plot 1961 and 2015. So just two years, not
everything in between. That would be a very, very cluttered graph. I'm going to label the 1961 temperatures blue

and the 2015 temperatures red.

So then | get something that looks like this. A little hard to tell. So what we can do for this graph is we can
actually add something called an alpha value, so a transparency, so we can see what's behind the red. Does the
blue go all the way down here? Is the blue just slightly below the red? Hard to tell from this. One thing we can do

is to add that transparency, like | said. Another thing that we can do is to just plot them on two separate subplots.



And then we can try to compare them to see exactly what happened from 1961 in terms of the distribution to
2015, again, in terms of the distribution. So you can, if you want, play around with different cities, your home
city, and see exactly what happened to the temperatures over all those years. So it's kind of a cute thing to try.

Any questions?

OK, so that's the end. We've really just scratched the surface of the things that you can do with plotting today.
We saw how to customize our graphs. We saw how to create labels, some really, really basic things. But | hope

that sort of throughout all of this, you saw how useful it is to visualize the data.

The commands are not so important, because you can always look those up. But what's important is to take
some set of data, which you'll be working with in the real world, if you do a UROP, if you decide to take other
computer science courses in other departments, computation courses. You'll be working with data. And as soon
as you get it. It's important to just initialize it to see what it looks, get a general sense of it. And once you get a
sense of it, it can lead to more questions, which will cause you to visualize the data in a slightly different way,

which becomes more useful in answering questions and potentially posing new questions to investigate.

OK, so that's it for today. Next lecture, we'll be just tying up some loose ends regarding dictionaries and some
ideas on hash tables and how dictionaries are stored in memory, as well as doing a little bit of preview of
simulations, which is something that's a really useful technique. Again, if you're going to do some more

computation courses in other departments, a simulation is something that's going to be really, really helpful.



