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Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points

– Which assignment statements produced value of 
variable at this point?

– Which variables contain values that are no longer 
used after this program point?

– What is the range of possible values of variable at 
this program point?



Program Representation

• Control Flow Graph
– Nodes N – statements of program
– Edges E – flow of control

• pred(n) = set of all predecessors of n
• succ(n) = set of all successors of n

– Start node n0

– Set of final nodes Nfinal



Program Points

• One program point before each node
• One program point after each node
• Join point – point with multiple predecessors
• Split point – point with multiple successors



Basic Idea

• Information about program represented using 
values from algebraic structure called lattice

• Analysis produces lattice value for each 
program point

• Two flavors of analysis
– Forward dataflow analysis
– Backward dataflow analysis



Forward Dataflow Analysis
• Analysis propagates values forward through control 

flow graph with flow of control
– Each node has a transfer function f

• Input – value at program point before node
• Output – new value at program point after node

– Values flow from program points after predecessor 
nodes to program points before successor nodes

– At join points, values are combined using a merge 
function 

• Canonical Example: Reaching Definitions



Backward Dataflow Analysis
• Analysis propagates values backward through control 

flow graph against flow of control
– Each node has a transfer function f

• Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor 
nodes to program points after predecessor nodes

– At split points, values are combined using a merge 
function

– Canonical Example: Live Variables



Partial Orders

• Set P
• Partial order ≤ such that ∀x,y,z∈P

– x ≤ x (reflexive)
– x ≤ y and y ≤ x implies x = y (asymmetric)
– x ≤ y and y ≤ z implies x ≤ z (transitive)

• Can use partial order to define
– Upper and lower bounds
– Least upper bound
– Greatest lower bound



Upper Bounds

• If S ⊆ P then
– x∈P is an upper bound of S if ∀y∈S. y ≤ x
– x∈P is the least upper bound of S if

• x is an upper bound of S, and 
• x ≤ y for all upper bounds y of S

– ∨ - join, least upper bound, lub, supremum, sup
• ∨ S is the least upper bound of S
• x ∨ y is the least upper bound of {x,y}



Lower Bounds

• If S ⊆ P then
– x∈P is a lower bound of S if ∀y∈S. x ≤ y
– x∈P is the greatest lower bound of S if

• x is a lower bound of S, and 
• y ≤ x for all lower bounds y of S

– ∧ - meet, greatest lower bound, glb, infimum, inf
• ∧ S is the greatest lower bound of S
• x ∧ y is the greatest lower bound of {x,y}



Covering

• x< y if x ≤ y and x≠y 
• x is covered by y (y covers x) if

– x < y, and
– x ≤ z < y implies x = z

• Conceptually, y covers x if there are no 
elements between x and y



Example
• P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
• x ≤ y if (x bitwise and y) = x

Hasse Diagram
• If y covers x

111

011
101

110

010
001 100

• Line from y to x
• y above x in diagram

000



Lattices

• If x ∧ y and x ∨ y exist for all x,y∈P, 
then P is a lattice.

• If ∧S and ∨S exist for all S ⊆ P, 
then P is a complete lattice.

• All finite lattices are complete



Lattices
• If x ∧ y and x ∨ y exist for all x,y∈P, 

then P is a lattice.
• If ∧S and ∨S exist for all S ⊆ P, 

then P is a complete lattice.
• All finite lattices are complete
• Example of a lattice that is not complete

– Integers I
– For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y)
– But ∨ I and ∧ I do not exist
– I ∪ {+∞,−∞ } is a complete lattice



Top and Bottom

• Greatest element of P (if it exists) is top
• Least element of P (if it exists) is bottom (⊥)



Connection Between ≤, ∧, and ∨
• The following 3 properties are equivalent:

– x ≤ y
– x ∨ y = y
– x ∧ y = x

• Will prove:
– x ≤ y implies x ∨ y = y and x ∧ y = x
– x ∨ y = y implies x ≤ y
– x ∧ y = x implies x ≤ y

• Then by transitivity, can obtain 
– x ∨ y = y implies x ∧ y = x 
– x ∧ y = x implies x ∨ y = y



Connecting Lemma Proofs

• Proof of x ≤ y implies x ∨ y = y
– x ≤ y implies y is an upper bound of {x,y}.
– Any upper bound z of {x,y} must satisfy y ≤ z.
– So y is least upper bound of {x,y} and x ∨ y = y

• Proof of x ≤ y implies x ∧ y = x
– x ≤ y implies x is a lower bound of {x,y}.
– Any lower bound z of {x,y} must satisfy z ≤ x.
– So x is greatest lower bound of {x,y} and x ∧ y = x



Connecting Lemma Proofs

• Proof of x ∨ y = y implies x ≤ y
– y is an upper bound of {x,y} implies x ≤ y

• Proof of x ∧ y = x implies x ≤ y
– x is a lower bound of {x,y} implies x ≤ y



Lattices as Algebraic Structures

• Have defined ∨ and ∧ in terms of ≤
• Will now define ≤ in terms of ∨ and ∧

– Start with ∨ and ∧ as arbitrary algebraic operations 
that satisfy associative, commutative, idempotence, 
and absorption laws

– Will define ≤ using ∨ and ∧
– Will show that ≤ is a partial order

• Intuitive concept of ∨ and ∧ as information 
combination operators (or, and)



Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
– (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
– (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
– x ∨ y = y ∨ x (commutativity of ∨)
– x ∧ y = y ∧ x (commutativity of ∧)
– x ∨ x = x (idempotence of ∨)
– x ∧ x = x (idempotence of ∧)
– x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
– x ∧ (x ∨ y) = x (absorption of ∧ over ∨)



Connection Between ∧ and ∨

• x ∨ y = y if and only if x ∧ y = x
• Proof of x ∨ y = y implies x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

• Proof of x ∧ y = x implies y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)



Properties of ≤

• Define x ≤ y if x ∨ y = y
• Proof of transitive property. Must show that

x ∨ y = y and y ∨ z = z implies x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)

= (x ∨ y) ∨ z (by associativity)
= y ∨ z (by assumption)
= z (by assumption)



Properties of ≤

• Proof of asymmetry property. Must show that
x ∨ y = y and y ∨ x = x implies x = y

x = y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption)

• Proof of reflexivity property. Must show that
x ∨ x = x

x ∨ x = x (by idempotence)



Properties of ≤

• Induced operation ≤ agrees with original 
definitions of ∨ and ∧, i.e., 
– x ∨ y = sup {x, y}
– x ∧ y = inf {x, y}



Proof of x ∨ y = sup {x, y}

• Consider any upper bound u for x and y.
• Given x ∨ u = u and y ∨ u = u, must show 

x ∨ y ≤ u, i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)



Proof of x ∧ y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x ∧ l = l and y ∧ l = l, must show 

l ≤ x ∧ y, i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)



Chains

• A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y 
• P has no infinite chains if every chain in P is 

finite
• P satisfies the ascending chain condition if     

for all sequences x1 ≤ x2 ≤ …there exists n   
such that xn = xn+1 = …



Application to Dataflow Analysis

• Dataflow information will be lattice values
– Transfer functions operate on lattice values
– Solution algorithm will generate increasing 

sequence of values at each program point
– Ascending chain condition will ensure termination

• Will use ∨ to combine values at control-flow 
join points



Transfer Functions

• Transfer function f: P→P for each node in 
control flow graph

• f models effect of the node on the program 
information



Transfer Functions
Each dataflow analysis problem has a set F of 

transfer functions f: P→P
– Identity function i∈F
– F must be closed under composition:             
∀f,g∈F. the function h = λx.f(g(x)) ∈F

– Each f ∈F must be monotone:
x ≤ y implies f(x) ≤ f(y)

– Sometimes all f ∈F are distributive:                       
f(x ∨ y) = f(x) ∨ f(y)

– Distributivity implies monotonicity



Distributivity Implies Monotonicity

• Proof of distributivity implies monotonicity
• Assume f(x ∨ y) = f(x) ∨ f(y)
• Must show: x ∨ y = y implies f(x) ∨ f(y) = f(y)

f(y) = f(x ∨ y) (by assumption)
= f(x) ∨ f(y) (by distributivity)



Putting Pieces Together

• Forward Dataflow Analysis Framework
• Simulates execution of program forward with 

flow of control



Forward Dataflow Analysis
• Simulates execution of program forward with 

flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given inn, computes outn)

• Require that solution satisfy
– ∀n. outn = fn(inn)
– ∀n ≠ n0. inn = ∨ { outm . m in pred(n) }
– inn0 = I
– Where I summarizes information at start of program



Dataflow Equations

• Compiler processes program to obtain a set of 
dataflow equations

outn := fn(inn)
inn := ∨ { outm . m in pred(n) }

• Conceptually separates analysis problem from 
program



Worklist Algorithm for Solving 
Forward Dataflow Equations

for each n do outn := fn(⊥)
inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }
while worklist ≠ ∅ do

remove a node n from worklist
inn := ∨ { outm . m in pred(n) }
outn := fn(inn)
if outn changed then 

worklist := worklist ∪ succ(n)



Correctness Argument

• Why result satisfies dataflow equations
• Whenever process a node n, set outn := fn(inn) 

Algorithm ensures that outn = fn(inn) 
• Whenever outm changes, put succ(m) on worklist. 

Consider any node n ∈ succ(m). It will eventually come 
off worklist and algorithm will set 

inn := ∨ { outm . m in pred(n) } 
to ensure that inn = ∨ { outm . m in pred(n) }

• So final solution will satisfy dataflow equations 



Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by inn or outn is a 

chain. If values stop increasing, worklist
empties and algorithm terminates.

• If lattice has ascending chain property, 
algorithm terminates
– Algorithm terminates for finite lattices
– For lattices without ascending chain property, use 

widening operator



Widening Operators
• Detect lattice values that may be part of infinitely 

ascending chain
• Artificially raise value to least upper bound of chain
• Example: 

– Lattice is set of all subsets of integers
– Could be used to collect possible values taken on by 

variable during execution of program
– Widening operator might raise all sets of size n or 

greater to TOP (likely to be useful for loops)



Reaching Definitions
• P = powerset of set of all definitions in program (all 

subsets of set of definitions in program)
• ∨ = ∪ (order is ⊆)
• ⊥ = ∅
• I = inn0 = ⊥
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of definitions that node kills
– a is set of definitions that node generates

• General pattern for many transfer functions
– f(x) = GEN ∪ (x-KILL)



Does Reaching Definitions 
Framework Satisfy Properties?

• ⊆ satisfies conditions for ≤
– x ⊆ y and y ⊆ z implies x ⊆ z (transitivity)
– x ⊆ y and y ⊆ x implies y = x (asymmetry)
– x ⊆ x (idempotence)

• F satisfies transfer function conditions
– λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
– Will show f(x ∪ y) = f(x) ∪ f(y) (distributivity)

f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b)
= f(x ∪ y)



Does Reaching Definitions 
Framework Satisfy Properties?

• What about composition?
– Given f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2)
– Must show f1(f2(x)) can be expressed as a ∪ (x - b)

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

– Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1

– Then f1(f2(x)) = a ∪ (x – b)



General Result

All GEN/KILL transfer function frameworks 
satisfy
– Identity
– Distributivity
– Composition

Properties



Available Expressions

• P = powerset of set of all expressions in 
program (all subsets of set of expressions)

• ∨ = ∩ (order is ⊇)
• ⊥ = P 
• I = inn0 = ∅
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of expressions that node kills
– a is set of expressions that node generates

• Another GEN/KILL analysis



Concept of Conservatism

• Reaching definitions use ∪ as join
– Optimizations must take into account all definitions 

that reach along ANY path
• Available expressions use ∩ as join

– Optimization requires expression to reach along 
ALL paths

• Optimizations must conservatively take all 
possible executions into account. Structure of 
analysis varies according to way analysis used.



Backward Dataflow Analysis
• Simulates execution of program backward against 

the flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given outn, computes inn)

• Require that solution satisfies
– ∀n. inn = fn(outn)
– ∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) }
– ∀n ∈ Nfinal = outn = O
– Where O summarizes information at end of program



Worklist Algorithm for Solving 
Backward Dataflow Equations

for each n do inn := fn(⊥)
for each n ∈ Nfinal do outn := O; inn := fn(O)
worklist := N - Nfinal
while worklist ≠ ∅ do

remove a node n from worklist
outn := ∨ { inm . m in succ(n) }
inn := fn(outn)
if inn changed then 

worklist := worklist ∪ pred(n)



Live Variables

• P = powerset of set of all variables in program 
(all subsets of set of variables in program)

• ∨ = ∪ (order is ⊆)
• ⊥ = ∅
• O = ∅
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of variables that node kills
– a is set of variables that node reads



Meaning of Dataflow Results
• Concept of program state s for control-flow graphs

• Program point n where execution located                     
(n is node that will execute next)

• Values of  variables in program
• Each execution generates a trajectory of states:

– s0;s1;…;sk,where each si ∈ST
– si+1 generated from si by executing basic block to 

• Update variable values
• Obtain new program point n



Relating States to Analysis Result

• Meaning of analysis results is given by an 
abstraction function AF:ST→P

• Correctness condition: require that for all states s 
AF(s) ≤ inn

where n is the next statement to execute in state s



Sign Analysis Example

• Sign analysis - compute sign of each variable v
• Base Lattice: P = flat lattice on {-,0,+}

• Actual lattice records a value for each variable
– Example element: [a→+, b→0, c→-]

TOP

- 0 +

BOT



Interpretation of Lattice Values

• If value of v in lattice is:
– BOT: no information about sign of v
– -: variable v is negative
– 0: variable v is 0 
– +: variable v is positive
– TOP: v may be positive or negative

• What is abstraction function AF?
– AF([x1,…,xn]) = [sign(x1), …, sign(xn)]
– Where sign(x) = 0 if x = 0, + if x > 0, - if x < 0



Operation ⊗ on Lattice

⊗ BOT - 0 + TOP

BOT BOT - 0 + TOP

- - + 0 - TOP

0 0 0 0 0 0

+ + - 0 + TOP

TOP TOP TOP 0 TOP TOP



Transfer Functions

• If n of the form v = c
– fn(x) = x[v→+] if c is positive
– fn(x) = x[v→0] if c is 0
– fn(x) = x[v→-] if c is negative

• If n of the form v1 = v2*v3
– fn(x) = x[v1→x[v2] ⊗ x[v3]]

• I = TOP 
(uninitialized variables may have any sign)



Example
a = 1

[a→+] [a→+]

b = -1 b = 1

[a→+, b→+][a→+, b→-]

[a→+, b→TOP]
c = a*b

[a→+, b→TOP,c →TOP]



Imprecision In Example

b = -1 b = 1

a = 1

[a→+][a→+]

Abstraction Imprecision:
[a→1] abstracted as [a→+]

[a→+, b→+][a→+, b→-]

[a→+, b→TOP]
c = a*bControl Flow Imprecision:

[b→TOP] summarizes results of all executions. In any 
execution state s, AF(s)[b]≠TOP



General Sources of Imprecision
• Abstraction Imprecision

– Concrete values (integers) abstracted as lattice values (-,0, and +)
– Lattice values less precise than execution values
– Abstraction function throws away information

• Control Flow Imprecision
– One lattice value for all possible control flow paths
– Analysis result has a single lattice value to summarize results of 

multiple concrete executions
– Join operation ∨ moves up in lattice to combine values from 

different execution paths
– Typically if x ≤ y, then x is more precise than y



Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution

– Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states

– Abstracted by computing joins of different paths



Abstraction Function
• AF(s)[v] = sign of v

– AF(n,[a→5, b→0, c→-2]) = [a→+, b→0, c→-]
• Establishes meaning of the analysis results

– If analysis says variable has a given sign
– Always has that sign in actual execution

• Correctness condition: 
– ∀ v. AF(s)[v] ≤ inn[v] (n is node for s)
– Reflects possibility of imprecision



Abstraction Function Soundness

• Will show
∀ v. AF(s)[v] ≤ inn[v] (n is node for s)

by induction on length of computation that 
produced s

• Base case:
– ∀ v. inn0[v] = TOP, which implies that
– ∀ v. AF(s)[v] ≤ TOP



Induction Step
• Assume ∀ v. AF(s)[v] ≤ inn[v] for computations of length k
• Prove for computations of length k+1
• Proof:

– Given s (state), n (node to execute next), and inn
– Find p (the node that just executed), sp(the previous state), 

and inp
– By induction hypothesis ∀ v. AF(sp)[v] ≤ inp[v]
– Case analysis on form of n

• If n of the form v = c, then 
– s[v] = c and outp [v] = sign(c), so

AF(s)[v] = sign(c) = outp [v] ≤ inn[v]
– If x≠v, s[x] = sp [x] and outp [x] = inp[x], so

AF(s)[x] = AF(sp)[x] ≤ inp[x] = outp [x] ≤ inn[x]
• Similar reasoning if n of the form v1 = v2*v3



Augmented Execution States

• Abstraction functions for some analyses require 
augmented execution states
– Reaching definitions: states are augmented with 

definition that created each value
– Available expressions: states are augmented with 

expression for each value



Meet Over Paths Solution
• What solution would be ideal for a forward dataflow 

analysis problem? 
• Consider a path p = n0, n1, …, nk, n to a node n 

(note that for all i ni ∈ pred(ni+1))
• The solution must take this path into account:

fp (⊥) = (fnk(fnk-1(…fn1(fn0(⊥)) …)) ≤ inn

• So the solution must have the property that  
∨{fp (⊥) . p is  a path to n} ≤ inn

and ideally
∨{fp (⊥) . p is  a path to n} = inn



Soundness Proof of Analysis 
Algorithm

• Property to prove:
For  all paths p to n,  fp (⊥) ≤ inn

• Proof is by induction on length of p
– Uses monotonicity of transfer functions
– Uses following lemma

• Lemma:
Worklist algorithm produces a solution such that

fn(inn) = outn

if n ∈ pred(m) then outn ≤ inm



Proof

• Base case: p is of length 1
– Then p = n0 and fp(⊥) = ⊥ = inn0

• Induction step:
– Assume theorem for all paths of length k
– Show for an arbitrary path p of length k+1



Induction Step Proof
• p = n0, …, nk, n
• Must show fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

– By induction (fk-1(…fn1(fn0(⊥)) …)) ≤ innk

– Apply fk to both sides, by monotonicity we get
fk(fk-1(…fn1(fn0(⊥)) …)) ≤ fk(innk) 

– By lemma, fk(innk) = outnk

– By lemma, outnk ≤ inn

– By transitivity,  fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn



Distributivity

• Distributivity preserves precision
• If framework is distributive, then worklist

algorithm produces the meet over paths solution
– For all n:

∨{fp (⊥) . p is  a path to n} = inn



Lack of Distributivity Example

• Constant Calculator
• Flat Lattice on Integers

• Actual lattice records a value for each variable
– Example element: [a→3, b→2, c→5]

-1 10

TOP

BOT

-2 2 ……



Transfer Functions

• If n of the form v = c
– fn(x) = x[v→c]

• If n of the form v1 = v2+v3
– fn(x) = x[v1→x[v2] + x[v3]]

• Lack of distributivity
– Consider transfer function f for c = a + b
– f([a→3, b→2]) ∨ f([a→2, b→3]) = [a→TOP, b→TOP, c→5]
– f([a→3, b→2]∨[a→2, b→3]) = f([a→TOP, b→TOP]) = 

[a→TOP, b→TOP, c→TOP]



Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→TOP, b→TOP]
c = a+b

[a→TOP, b→TOP, c →TOP]

Lack of Distributivity Imprecision: 
[a→TOP, b→TOP, c→5] more precise

What is the meet over all paths solution?



How to Make Analysis Distributive

• Keep combinations of values on different paths

a = 2
b = 3

a = 3
b = 2

{[a→3, b→2]}{[a→2, b→3]}

{[a→2, b→3], [a→3, b→2]} 
c = a+b

{[a→2, b→3,c→5], [a→3, b→2,c→5]} 



Issues

• Basically simulating all combinations of values 
in all executions
– Exponential blowup
– Nontermination because of infinite ascending chains

• Nontermination solution
– Use widening operator to eliminate blowup          

(can make it work at granularity of variables)
– Loses precision in many cases



Multiple Fixed Points
• Dataflow analysis generates least fixed point
• May be multiple fixed points
• Available expressions example

a = x +y

i == 0

nopb = x+y;

0

1

0

0
0

0

0

1

a = x +y

i == 0

nopb = x+y;

0

1

1

1
1

1

1

1



Pessimistic vs. Optimistic Analyses
• Available expressions is optimistic                             

(for common sub-expression elimination)
– Assumes expressions are available at start of analysis
– Analysis eliminates all that are not available
– If analysis result inn ≤ e, can use e for CSE
– Cannot stop analysis early and use current result

• Live variables is pessimistic (for dead code elimination)
– Assumes all variables are live at start of analysis
– Analysis finds variables that are dead
– If e ≤ analysis result inn, can use e for dead code elimination
– Can stop analysis early and use current result

• Formal dataflow setup same for both analyses
• Optimism/pessimism depends on intended use



Summary

• Formal dataflow analysis framework
– Lattices, partial orders
– Transfer functions, joins and splits
– Dataflow equations and fixed point solutions

• Connection with program
– Abstraction function AF: S → P
– For any state s and program point n, AF(s) ≤ inn

– Meet over all paths solutions, distributivity
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