
MIT 6.035
Foundations of Dataflow Analysis

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points

– Which assignment statements produced value of
variable at this point?

– Which variables contain values that are no longer
used after this program point?

– What is the range of possible values of variable at
this program point?

Program Representation

• Control Flow Graph
– Nodes N – statements of program
– Edges E – flow of control

• pred(n) = set of all predecessors of n
• succ(n) = set of all successors of n

– Start node n0

– Set of final nodes Nfinal

Program Points

• One program point before each node
• One program point after each node
• Join point – point with multiple predecessors
• Split point – point with multiple successors

Basic Idea

• Information about program represented using
values from algebraic structure called lattice

• Analysis produces lattice value for each
program point

• Two flavors of analysis
– Forward dataflow analysis
– Backward dataflow analysis

Forward Dataflow Analysis
• Analysis propagates values forward through control

flow graph with flow of control
– Each node has a transfer function f

• Input – value at program point before node
• Output – new value at program point after node

– Values flow from program points after predecessor
nodes to program points before successor nodes

– At join points, values are combined using a merge
function

• Canonical Example: Reaching Definitions

Backward Dataflow Analysis
• Analysis propagates values backward through control

flow graph against flow of control
– Each node has a transfer function f

• Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor
nodes to program points after predecessor nodes

– At split points, values are combined using a merge
function

– Canonical Example: Live Variables

Partial Orders

• Set P
• Partial order ≤ such that ∀x,y,z∈P

– x ≤ x (reflexive)
– x ≤ y and y ≤ x implies x = y (asymmetric)
– x ≤ y and y ≤ z implies x ≤ z (transitive)

• Can use partial order to define
– Upper and lower bounds
– Least upper bound
– Greatest lower bound

Upper Bounds

• If S ⊆ P then
– x∈P is an upper bound of S if ∀y∈S. y ≤ x
– x∈P is the least upper bound of S if

• x is an upper bound of S, and
• x ≤ y for all upper bounds y of S

– ∨ - join, least upper bound, lub, supremum, sup
• ∨ S is the least upper bound of S
• x ∨ y is the least upper bound of {x,y}

Lower Bounds

• If S ⊆ P then
– x∈P is a lower bound of S if ∀y∈S. x ≤ y
– x∈P is the greatest lower bound of S if

• x is a lower bound of S, and
• y ≤ x for all lower bounds y of S

– ∧ - meet, greatest lower bound, glb, infimum, inf
• ∧ S is the greatest lower bound of S
• x ∧ y is the greatest lower bound of {x,y}

Covering

• x< y if x ≤ y and x≠y
• x is covered by y (y covers x) if

– x < y, and
– x ≤ z < y implies x = z

• Conceptually, y covers x if there are no
elements between x and y

Example
• P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
• x ≤ y if (x bitwise and y) = x

Hasse Diagram
• If y covers x

111

011
101

110

010
001 100

• Line from y to x
• y above x in diagram

000

Lattices

• If x ∧ y and x ∨ y exist for all x,y∈P,
then P is a lattice.

• If ∧S and ∨S exist for all S ⊆ P,
then P is a complete lattice.

• All finite lattices are complete

Lattices
• If x ∧ y and x ∨ y exist for all x,y∈P,

then P is a lattice.
• If ∧S and ∨S exist for all S ⊆ P,

then P is a complete lattice.
• All finite lattices are complete
• Example of a lattice that is not complete

– Integers I
– For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y)
– But ∨ I and ∧ I do not exist
– I ∪ {+∞,−∞ } is a complete lattice

Top and Bottom

• Greatest element of P (if it exists) is top
• Least element of P (if it exists) is bottom (⊥)

Connection Between ≤, ∧, and ∨
• The following 3 properties are equivalent:

– x ≤ y
– x ∨ y = y
– x ∧ y = x

• Will prove:
– x ≤ y implies x ∨ y = y and x ∧ y = x
– x ∨ y = y implies x ≤ y
– x ∧ y = x implies x ≤ y

• Then by transitivity, can obtain
– x ∨ y = y implies x ∧ y = x
– x ∧ y = x implies x ∨ y = y

Connecting Lemma Proofs

• Proof of x ≤ y implies x ∨ y = y
– x ≤ y implies y is an upper bound of {x,y}.
– Any upper bound z of {x,y} must satisfy y ≤ z.
– So y is least upper bound of {x,y} and x ∨ y = y

• Proof of x ≤ y implies x ∧ y = x
– x ≤ y implies x is a lower bound of {x,y}.
– Any lower bound z of {x,y} must satisfy z ≤ x.
– So x is greatest lower bound of {x,y} and x ∧ y = x

Connecting Lemma Proofs

• Proof of x ∨ y = y implies x ≤ y
– y is an upper bound of {x,y} implies x ≤ y

• Proof of x ∧ y = x implies x ≤ y
– x is a lower bound of {x,y} implies x ≤ y

Lattices as Algebraic Structures

• Have defined ∨ and ∧ in terms of ≤
• Will now define ≤ in terms of ∨ and ∧

– Start with ∨ and ∧ as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

– Will define ≤ using ∨ and ∧
– Will show that ≤ is a partial order

• Intuitive concept of ∨ and ∧ as information
combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
– (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
– (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
– x ∨ y = y ∨ x (commutativity of ∨)
– x ∧ y = y ∧ x (commutativity of ∧)
– x ∨ x = x (idempotence of ∨)
– x ∧ x = x (idempotence of ∧)
– x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
– x ∧ (x ∨ y) = x (absorption of ∧ over ∨)

Connection Between ∧ and ∨

• x ∨ y = y if and only if x ∧ y = x
• Proof of x ∨ y = y implies x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

• Proof of x ∧ y = x implies y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)

Properties of ≤

• Define x ≤ y if x ∨ y = y
• Proof of transitive property. Must show that

x ∨ y = y and y ∨ z = z implies x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)

= (x ∨ y) ∨ z (by associativity)
= y ∨ z (by assumption)
= z (by assumption)

Properties of ≤

• Proof of asymmetry property. Must show that
x ∨ y = y and y ∨ x = x implies x = y

x = y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption)

• Proof of reflexivity property. Must show that
x ∨ x = x

x ∨ x = x (by idempotence)

Properties of ≤

• Induced operation ≤ agrees with original
definitions of ∨ and ∧, i.e.,
– x ∨ y = sup {x, y}
– x ∧ y = inf {x, y}

Proof of x ∨ y = sup {x, y}

• Consider any upper bound u for x and y.
• Given x ∨ u = u and y ∨ u = u, must show

x ∨ y ≤ u, i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)

Proof of x ∧ y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x ∧ l = l and y ∧ l = l, must show

l ≤ x ∧ y, i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)

Chains

• A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y
• P has no infinite chains if every chain in P is

finite
• P satisfies the ascending chain condition if

for all sequences x1 ≤ x2 ≤ …there exists n
such that xn = xn+1 = …

Application to Dataflow Analysis

• Dataflow information will be lattice values
– Transfer functions operate on lattice values
– Solution algorithm will generate increasing

sequence of values at each program point
– Ascending chain condition will ensure termination

• Will use ∨ to combine values at control-flow
join points

Transfer Functions

• Transfer function f: P→P for each node in
control flow graph

• f models effect of the node on the program
information

Transfer Functions
Each dataflow analysis problem has a set F of

transfer functions f: P→P
– Identity function i∈F
– F must be closed under composition:
∀f,g∈F. the function h = λx.f(g(x)) ∈F

– Each f ∈F must be monotone:
x ≤ y implies f(x) ≤ f(y)

– Sometimes all f ∈F are distributive:
f(x ∨ y) = f(x) ∨ f(y)

– Distributivity implies monotonicity

Distributivity Implies Monotonicity

• Proof of distributivity implies monotonicity
• Assume f(x ∨ y) = f(x) ∨ f(y)
• Must show: x ∨ y = y implies f(x) ∨ f(y) = f(y)

f(y) = f(x ∨ y) (by assumption)
= f(x) ∨ f(y) (by distributivity)

Putting Pieces Together

• Forward Dataflow Analysis Framework
• Simulates execution of program forward with

flow of control

Forward Dataflow Analysis
• Simulates execution of program forward with

flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given inn, computes outn)

• Require that solution satisfy
– ∀n. outn = fn(inn)
– ∀n ≠ n0. inn = ∨ { outm . m in pred(n) }
– inn0 = I
– Where I summarizes information at start of program

Dataflow Equations

• Compiler processes program to obtain a set of
dataflow equations

outn := fn(inn)
inn := ∨ { outm . m in pred(n) }

• Conceptually separates analysis problem from
program

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do outn := fn(⊥)
inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }
while worklist ≠ ∅ do

remove a node n from worklist
inn := ∨ { outm . m in pred(n) }
outn := fn(inn)
if outn changed then

worklist := worklist ∪ succ(n)

Correctness Argument

• Why result satisfies dataflow equations
• Whenever process a node n, set outn := fn(inn)

Algorithm ensures that outn = fn(inn)
• Whenever outm changes, put succ(m) on worklist.

Consider any node n ∈ succ(m). It will eventually come
off worklist and algorithm will set

inn := ∨ { outm . m in pred(n) }
to ensure that inn = ∨ { outm . m in pred(n) }

• So final solution will satisfy dataflow equations

Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by inn or outn is a

chain. If values stop increasing, worklist
empties and algorithm terminates.

• If lattice has ascending chain property,
algorithm terminates
– Algorithm terminates for finite lattices
– For lattices without ascending chain property, use

widening operator

Widening Operators
• Detect lattice values that may be part of infinitely

ascending chain
• Artificially raise value to least upper bound of chain
• Example:

– Lattice is set of all subsets of integers
– Could be used to collect possible values taken on by

variable during execution of program
– Widening operator might raise all sets of size n or

greater to TOP (likely to be useful for loops)

Reaching Definitions
• P = powerset of set of all definitions in program (all

subsets of set of definitions in program)
• ∨ = ∪ (order is ⊆)
• ⊥ = ∅
• I = inn0 = ⊥
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of definitions that node kills
– a is set of definitions that node generates

• General pattern for many transfer functions
– f(x) = GEN ∪ (x-KILL)

Does Reaching Definitions
Framework Satisfy Properties?

• ⊆ satisfies conditions for ≤
– x ⊆ y and y ⊆ z implies x ⊆ z (transitivity)
– x ⊆ y and y ⊆ x implies y = x (asymmetry)
– x ⊆ x (idempotence)

• F satisfies transfer function conditions
– λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
– Will show f(x ∪ y) = f(x) ∪ f(y) (distributivity)

f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b)
= f(x ∪ y)

Does Reaching Definitions
Framework Satisfy Properties?

• What about composition?
– Given f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2)
– Must show f1(f2(x)) can be expressed as a ∪ (x - b)

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

– Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1

– Then f1(f2(x)) = a ∪ (x – b)

General Result

All GEN/KILL transfer function frameworks
satisfy
– Identity
– Distributivity
– Composition

Properties

Available Expressions

• P = powerset of set of all expressions in
program (all subsets of set of expressions)

• ∨ = ∩ (order is ⊇)
• ⊥ = P
• I = inn0 = ∅
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of expressions that node kills
– a is set of expressions that node generates

• Another GEN/KILL analysis

Concept of Conservatism

• Reaching definitions use ∪ as join
– Optimizations must take into account all definitions

that reach along ANY path
• Available expressions use ∩ as join

– Optimization requires expression to reach along
ALL paths

• Optimizations must conservatively take all
possible executions into account. Structure of
analysis varies according to way analysis used.

Backward Dataflow Analysis
• Simulates execution of program backward against

the flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given outn, computes inn)

• Require that solution satisfies
– ∀n. inn = fn(outn)
– ∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) }
– ∀n ∈ Nfinal = outn = O
– Where O summarizes information at end of program

Worklist Algorithm for Solving
Backward Dataflow Equations

for each n do inn := fn(⊥)
for each n ∈ Nfinal do outn := O; inn := fn(O)
worklist := N - Nfinal
while worklist ≠ ∅ do

remove a node n from worklist
outn := ∨ { inm . m in succ(n) }
inn := fn(outn)
if inn changed then

worklist := worklist ∪ pred(n)

Live Variables

• P = powerset of set of all variables in program
(all subsets of set of variables in program)

• ∨ = ∪ (order is ⊆)
• ⊥ = ∅
• O = ∅
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of variables that node kills
– a is set of variables that node reads

Meaning of Dataflow Results
• Concept of program state s for control-flow graphs

• Program point n where execution located
(n is node that will execute next)

• Values of variables in program
• Each execution generates a trajectory of states:

– s0;s1;…;sk,where each si ∈ST
– si+1 generated from si by executing basic block to

• Update variable values
• Obtain new program point n

Relating States to Analysis Result

• Meaning of analysis results is given by an
abstraction function AF:ST→P

• Correctness condition: require that for all states s
AF(s) ≤ inn

where n is the next statement to execute in state s

Sign Analysis Example

• Sign analysis - compute sign of each variable v
• Base Lattice: P = flat lattice on {-,0,+}

• Actual lattice records a value for each variable
– Example element: [a→+, b→0, c→-]

TOP

- 0 +

BOT

Interpretation of Lattice Values

• If value of v in lattice is:
– BOT: no information about sign of v
– -: variable v is negative
– 0: variable v is 0
– +: variable v is positive
– TOP: v may be positive or negative

• What is abstraction function AF?
– AF([x1,…,xn]) = [sign(x1), …, sign(xn)]
– Where sign(x) = 0 if x = 0, + if x > 0, - if x < 0

Operation ⊗ on Lattice

⊗ BOT - 0 + TOP

BOT BOT - 0 + TOP

- - + 0 - TOP

0 0 0 0 0 0

+ + - 0 + TOP

TOP TOP TOP 0 TOP TOP

Transfer Functions

• If n of the form v = c
– fn(x) = x[v→+] if c is positive
– fn(x) = x[v→0] if c is 0
– fn(x) = x[v→-] if c is negative

• If n of the form v1 = v2*v3
– fn(x) = x[v1→x[v2] ⊗ x[v3]]

• I = TOP
(uninitialized variables may have any sign)

Example
a = 1

[a→+] [a→+]

b = -1 b = 1

[a→+, b→+][a→+, b→-]

[a→+, b→TOP]
c = a*b

[a→+, b→TOP,c →TOP]

Imprecision In Example

b = -1 b = 1

a = 1

[a→+][a→+]

Abstraction Imprecision:
[a→1] abstracted as [a→+]

[a→+, b→+][a→+, b→-]

[a→+, b→TOP]
c = a*bControl Flow Imprecision:

[b→TOP] summarizes results of all executions. In any
execution state s, AF(s)[b]≠TOP

General Sources of Imprecision
• Abstraction Imprecision

– Concrete values (integers) abstracted as lattice values (-,0, and +)
– Lattice values less precise than execution values
– Abstraction function throws away information

• Control Flow Imprecision
– One lattice value for all possible control flow paths
– Analysis result has a single lattice value to summarize results of

multiple concrete executions
– Join operation ∨ moves up in lattice to combine values from

different execution paths
– Typically if x ≤ y, then x is more precise than y

Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution

– Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states

– Abstracted by computing joins of different paths

Abstraction Function
• AF(s)[v] = sign of v

– AF(n,[a→5, b→0, c→-2]) = [a→+, b→0, c→-]
• Establishes meaning of the analysis results

– If analysis says variable has a given sign
– Always has that sign in actual execution

• Correctness condition:
– ∀ v. AF(s)[v] ≤ inn[v] (n is node for s)
– Reflects possibility of imprecision

Abstraction Function Soundness

• Will show
∀ v. AF(s)[v] ≤ inn[v] (n is node for s)

by induction on length of computation that
produced s

• Base case:
– ∀ v. inn0[v] = TOP, which implies that
– ∀ v. AF(s)[v] ≤ TOP

Induction Step
• Assume ∀ v. AF(s)[v] ≤ inn[v] for computations of length k
• Prove for computations of length k+1
• Proof:

– Given s (state), n (node to execute next), and inn
– Find p (the node that just executed), sp(the previous state),

and inp
– By induction hypothesis ∀ v. AF(sp)[v] ≤ inp[v]
– Case analysis on form of n

• If n of the form v = c, then
– s[v] = c and outp [v] = sign(c), so

AF(s)[v] = sign(c) = outp [v] ≤ inn[v]
– If x≠v, s[x] = sp [x] and outp [x] = inp[x], so

AF(s)[x] = AF(sp)[x] ≤ inp[x] = outp [x] ≤ inn[x]
• Similar reasoning if n of the form v1 = v2*v3

Augmented Execution States

• Abstraction functions for some analyses require
augmented execution states
– Reaching definitions: states are augmented with

definition that created each value
– Available expressions: states are augmented with

expression for each value

Meet Over Paths Solution
• What solution would be ideal for a forward dataflow

analysis problem?
• Consider a path p = n0, n1, …, nk, n to a node n

(note that for all i ni ∈ pred(ni+1))
• The solution must take this path into account:

fp (⊥) = (fnk(fnk-1(…fn1(fn0(⊥)) …)) ≤ inn

• So the solution must have the property that
∨{fp (⊥) . p is a path to n} ≤ inn

and ideally
∨{fp (⊥) . p is a path to n} = inn

Soundness Proof of Analysis
Algorithm

• Property to prove:
For all paths p to n, fp (⊥) ≤ inn

• Proof is by induction on length of p
– Uses monotonicity of transfer functions
– Uses following lemma

• Lemma:
Worklist algorithm produces a solution such that

fn(inn) = outn

if n ∈ pred(m) then outn ≤ inm

Proof

• Base case: p is of length 1
– Then p = n0 and fp(⊥) = ⊥ = inn0

• Induction step:
– Assume theorem for all paths of length k
– Show for an arbitrary path p of length k+1

Induction Step Proof
• p = n0, …, nk, n
• Must show fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

– By induction (fk-1(…fn1(fn0(⊥)) …)) ≤ innk

– Apply fk to both sides, by monotonicity we get
fk(fk-1(…fn1(fn0(⊥)) …)) ≤ fk(innk)

– By lemma, fk(innk) = outnk

– By lemma, outnk ≤ inn

– By transitivity, fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

Distributivity

• Distributivity preserves precision
• If framework is distributive, then worklist

algorithm produces the meet over paths solution
– For all n:

∨{fp (⊥) . p is a path to n} = inn

Lack of Distributivity Example

• Constant Calculator
• Flat Lattice on Integers

• Actual lattice records a value for each variable
– Example element: [a→3, b→2, c→5]

-1 10

TOP

BOT

-2 2 ……

Transfer Functions

• If n of the form v = c
– fn(x) = x[v→c]

• If n of the form v1 = v2+v3
– fn(x) = x[v1→x[v2] + x[v3]]

• Lack of distributivity
– Consider transfer function f for c = a + b
– f([a→3, b→2]) ∨ f([a→2, b→3]) = [a→TOP, b→TOP, c→5]
– f([a→3, b→2]∨[a→2, b→3]) = f([a→TOP, b→TOP]) =

[a→TOP, b→TOP, c→TOP]

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→TOP, b→TOP]
c = a+b

[a→TOP, b→TOP, c →TOP]

Lack of Distributivity Imprecision:
[a→TOP, b→TOP, c→5] more precise

What is the meet over all paths solution?

How to Make Analysis Distributive

• Keep combinations of values on different paths

a = 2
b = 3

a = 3
b = 2

{[a→3, b→2]}{[a→2, b→3]}

{[a→2, b→3], [a→3, b→2]}
c = a+b

{[a→2, b→3,c→5], [a→3, b→2,c→5]}

Issues

• Basically simulating all combinations of values
in all executions
– Exponential blowup
– Nontermination because of infinite ascending chains

• Nontermination solution
– Use widening operator to eliminate blowup

(can make it work at granularity of variables)
– Loses precision in many cases

Multiple Fixed Points
• Dataflow analysis generates least fixed point
• May be multiple fixed points
• Available expressions example

a = x +y

i == 0

nopb = x+y;

0

1

0

0
0

0

0

1

a = x +y

i == 0

nopb = x+y;

0

1

1

1
1

1

1

1

Pessimistic vs. Optimistic Analyses
• Available expressions is optimistic

(for common sub-expression elimination)
– Assumes expressions are available at start of analysis
– Analysis eliminates all that are not available
– If analysis result inn ≤ e, can use e for CSE
– Cannot stop analysis early and use current result

• Live variables is pessimistic (for dead code elimination)
– Assumes all variables are live at start of analysis
– Analysis finds variables that are dead
– If e ≤ analysis result inn, can use e for dead code elimination
– Can stop analysis early and use current result

• Formal dataflow setup same for both analyses
• Optimism/pessimism depends on intended use

Summary

• Formal dataflow analysis framework
– Lattices, partial orders
– Transfer functions, joins and splits
– Dataflow equations and fixed point solutions

• Connection with program
– Abstraction function AF: S → P
– For any state s and program point n, AF(s) ≤ inn

– Meet over all paths solutions, distributivity

	Dataflow Analysis
	Program Representation
	Program Points
	Basic Idea
	Forward Dataflow Analysis
	Partial Orders
	Upper Bounds
	Covering
	Example
	Lattices
	Lattices
	Top and Bottom
	Connection Between , , and 
	Connecting Lemma Proofs
	Connecting Lemma Proofs
	Lattices as Algebraic Structures
	Algebraic Properties of Lattices
	Connection Between  and 
	Properties of 
	Properties of 
	Properties of 
	Proof of x  y = sup {x, y}
	Chains
	Application to Dataflow Analysis
	Transfer Functions
	Transfer Functions
	Distributivity Implies Monotonicity
	Putting Pieces Together
	Forward Dataflow Analysis
	Dataflow Equations
	Worklist Algorithm for Solving Forward Dataflow Equations
	Correctness Argument
	Termination Argument
	Widening Operators
	Reaching Definitions
	Does Reaching Definitions Framework Satisfy Properties?
	Does Reaching Definitions Framework Satisfy Properties?
	General Result
	Available Expressions
	Concept of Conservatism
	Live Variables
	Meaning of Dataflow Results
	Sign Analysis Example
	Interpretation of Lattice Values
	Operation  on Lattice
	Transfer Functions
	Imprecision In Example
	General Sources of Imprecision
	Why Have Imprecision
	Abstraction Function
	Abstraction Function Soundness
	Induction Step
	Augmented Execution States
	Meet Over Paths Solution
	Soundness Proof of Analysis Algorithm
	Proof
	Induction Step Proof
	Distributivity
	Lack of Distributivity Example
	Transfer Functions
	Lack of Distributivity Anomaly
	How to Make Analysis Distributive
	Issues
	Multiple Fixed Points
	Pessimistic vs. Optimistic Analyses
	Summary

