

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 18: Pseudopolynomial

Lecture 18: Pseudopolynomial

Dynamic Programming Steps (SRT BOT)

1. Subproblem definition subproblem x 2 X

• Describe the meaning of a subproblem in words, in terms of parameters

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence

• Often multiply possible subsets across multiple inputs

• Often record partial state: add subproblems by incrementing some auxiliary variables

• Often smaller integers than a given integer (today’s focus)

2. Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i

• Identify a question about a subproblem solution that, if you knew the answer to, reduces
the subproblem to smaller subproblem(s)

• Locally brute-force all possible answers to the question

3. Topological order to argue relation is acyclic and subproblems form a DAG

4. Base cases

• State solutions for all (reachable) independent subproblems where relation breaks down

5. Original problem

• Show how to compute solution to original problem from solutions to subproblem(s)

• Possibly use parent pointers to recover actual solution, not just objective function

6. Time analysis
P

•
x2X work(x), or if work(x) = O(W) for all x 2 X , then |X| ·O(W)

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time

�

�

2 Lecture 18: Pseudopolynomial

Rod Cutting

• Given a rod of length L and value v(`) of rod of length ` for all ` 2 {1, 2, . . . , L}

• Goal: Cut the rod to maximize the value of cut rod pieces

• Example: L = 7, v = [0, 1, 10, 13, 18, 20, 31, 32]
` = 0 1 2 3 4 5 6 7

• Maybe greedily take most valuable per unit length?

• Nope! arg max` v[`]/` = 6, and partitioning [6, 1] yields 32 which is not optimal!

• Solution: v[2] + v[2] + v[3] = 10 + 10 + 13 = 33

• Maximization problem on value of partition

1. Subproblems

• x(`): maximum value obtainable by cutting rod of length `

• For ` 2 {0, 1, . . . , L}

2. Relate

• First piece has some length p (Guess!)

• x(`) = max{v(p) + x(` p) | p 2 {1, . . . , `}}

• (draw dependency graph)

3. Topological order

• Increasing `: Subproblems x(`) depend only on strictly smaller `, so acyclic

4. Base

• x(0) = 0 (length-zero rod has no value!)

5. Original problem

• Maximum value obtainable by cutting rod of length L is x(L)

• Store choices to reconstruct cuts

• If current rod length ` and optimal choice is `0, remainder is piece p = ` `
0

• (maximum-weight path in subproblem DAG!)

6. Time

• # subproblems: L+ 1

• work per subproblem: O(`) = O(L)

• O(L
2
) running time

3 Lecture 18: Pseudopolynomial

Is This Polynomial Time?

• (Strongly) polynomial time means that the running time is bounded above by a constant-
degree polynomial in the input size measured in words

• In Rod Cutting, input size is L + 1 words (one integer L and L integers in v)

• O(L
2
) is a constant-degree polynomial in L + 1, so YES: (strongly) polynomial time

1 # recursive
2 x = {}
3 def cut_rod(l, v):
4 if l < 1: return 0 # base case
5 if l not in x: # check memo
6 for piece in range(1, l + 1): # try piece
7 x_ = v[piece] + cut_rod(l - piece, v) # recurrence
8 if (l not in x) or (x[l] < x_): # update memo
9 x[l] = x_

10 return x[l]

1 # iterative
2 def cut_rod(L, v):
3 x = [0] * (L + 1) # base case
4 for l in range(L + 1): # topological order
5 for piece in range(1, l + 1): # try piece
6 x_ = v[piece] + x[l - piece] # recurrence
7 if x[l] < x_: # update memo
8 x[l] = x_
9 return x[L]

1 # iterative with parent pointers
2 def cut_rod_pieces(L, v):
3 x = [0] * (L + 1) # base case
4 parent = [None] * (L + 1) # parent pointers
5 for l in range(1, L + 1): # topological order
6 for piece in range(1, l + 1): # try piece
7 x_ = v[piece] + x[l - piece] # recurrence
8 if x[l] < x_: # update memo
9 x[l] = x_

10 parent[l] = l - piece # update parent
11 l, pieces = L, []
12 while parent[l] is not None: # walk back through parents
13 piece = l - parent[l]
14 pieces.append(piece)
15 l = parent[l]
16 return pieces

� �

� �

4 Lecture 18: Pseudopolynomial

Subset Sum

• Input: Sequence of n positive integers A = {a0, a1, . . . , an}

P
• Output: Is there a subset of A that sums exactly to T ? (i.e., 9A0 ✓ A s.t. = T ?)

a2A0 a

• Example: A = (1, 3, 4, 12, 19, 21, 22), T = 47 allows A0
= {3, 4, 19, 21}

• Optimization problem? Decision problem! Answer is YES or NO, TRUE or FALSE

• In example, answer is YES. However, answer is NO for some T , e.g., 2, 6, 9, 10, 11, . . .

1. Subproblems

• x(i, t) = does any subset of A[i :] sum to t?

• For i 2 {0, 1, . . . , n}, t 2 {0, 1, . . . , T}

2. Relate

• Idea: Is first item ai in a valid subset A0? (Guess!)

• If yes, then try to sum to t ai 0 using remaining items

• If no, then try to sum to t using remaining items
⇢

x(i+ 1, t A[i]) if t A[i]• x(i, t) = OR
x(i+ 1, t) always

3. Topological order

• Subproblems x(i, t) only depend on strictly larger i, so acyclic

• Solve in order of decreasing i

4. Base

• x(i, 0) = YES for i 2 {0, . . . , n} (space packed exactly!)

• x(0, t) = NO for j 2 {1, . . . , T} (no more items available to pack)

5. Original problem

• Original problem given by x(0, T)

• Example: A = (3, 4, 3, 1), T = 6 solution: A0
= (3, 3)

• Bottom up: Solve all subproblems (Example has 35)

5 Lecture 18: Pseudopolynomial

• Top down: Solve only reachable subproblems (Example, only 14!)

6. Time

• # subproblems: O(nT), O(1) work per subproblem, O(nT) time

�

�

6 Lecture 18: Pseudopolynomial

Is This Polynomial?

• Input size is n + 1: one integer T and n integers in A

• Is O(nT) bounded above by a polynomial in n + 1? NO, not necessarily

• On w-bit word RAM, T  2w and w lg(n + 1), but we don’t have an upper bound on w

• E.g., w = n is not unreasonable, but then running time is O(n2
n
), which is exponential

Pseudopolynomial

• Algorithm has pseudopolynomial time: running time is bounded above by a constant-
degree polynomial in input size and input integers

• Such algorithms are polynomial in the case that integers are polynomially bounded in input
size, i.e., nO(1) (same case that Radix Sort runs in O(n) time)

• Counting sort O(n + u), radix sort O(n log
n u), direct-access array build O(n + u), and

Fibonacci O(n) are all pseudopolynomial algorithms we’ve seen already

• Radix sort is actually weakly polynomial (a notion in between strongly polynomial and
pseudopolynomial): bounded above by a constant-degree polynomial in the input size mea-
sured in bits, i.e., in the logarithm of the input integers

• Contrast with Rod Cutting, which was polynomial

– Had pseudopolynomial dependence on L

– But luckily had L input integers too

– If only given subset of sellable rod lengths (Knapsack Problem, which generalizes
Rod Cutting and Subset Sum — see recitation), then algorithm would have been only
pseudopolynomial

Complexity

• Is Subset Sum solvable in polynomial time when integers are not polynomially bounded?

• No if P 6= NP. What does that mean? Next lecture!

7 Lecture 18: Pseudopolynomial

Main Features of Dynamic Programs

• Review of examples from lecture

• Subproblems:

– Prefix/suffixes: Bowling, LCS, LIS, Floyd–Warshall, Rod Cutting (coincidentally, re-
ally Integer subproblems), Subset Sum

– Substrings: Alternating Coin Game, Arithmetic Parenthesization

– Multiple sequences: LCS

– Integers: Fibonacci, Rod Cutting, Subset Sum

⇤ Pseudopolynomial: Fibonacci, Subset Sum

– Vertices: DAG shortest paths, Bellman–Ford, Floyd–Warshall

• Subproblem constraints/expansion:

– Nonexpansive constraint: LIS (include first item)

– 2⇥ expansion: Alternating Coin Game (who goes first?), Arithmetic Parenthesization
(min/max)

– ⇥(1)⇥ expansion: Piano Fingering (first finger assignment)

– ⇥(n)⇥ expansion: Bellman–Ford (# edges)

• Relation:

– Branching = # dependant subproblems in each subproblem

– ⇥(1) branching: Fibonacci, Bowling, LCS, Alternating Coin Game, Floyd–Warshall,
Subset Sum

– ⇥(degree) branching (source of |E| in running time): DAG shortest paths, Bellman–
Ford

– ⇥(n) branching: LIS, Arithmetic Parenthesization, Rod Cutting

– Combine multiple solutions (not path in subproblem DAG): Fibonacci, Floyd–
Warshall, Arithmetic Parenthesization

• Original problem:

– Combine multiple subproblems: DAG shortest paths, Bellman–Ford, Floyd–Warshall,
LIS, Piano Fingering

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

