
  

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 18: Pseudopolynomial 

Lecture 18: Pseudopolynomial 

Dynamic Programming Steps (SRT BOT) 

1. Subproblem definition subproblem x 2 X 

• Describe the meaning of a subproblem in words, in terms of parameters 

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence 

• Often multiply possible subsets across multiple inputs 

• Often record partial state: add subproblems by incrementing some auxiliary variables 

• Often smaller integers than a given integer (today’s focus) 

2. Relate subproblem solutions recursively x(i) =  f(x(j), . . .) for one or more j < i  

• Identify a question about a subproblem solution that, if you knew the answer to, reduces 
the subproblem to smaller subproblem(s) 

• Locally brute-force all possible answers to the question 

3. Topological order to argue relation is acyclic and subproblems form a DAG 

4. Base cases 

• State solutions for all (reachable) independent subproblems where relation breaks down 

5. Original problem 

• Show how to compute solution to original problem from solutions to subproblem(s) 

• Possibly use parent pointers to recover actual solution, not just objective function 

6. Time analysis 
P 

• 
x2X work(x), or if work(x) =  O(W ) for all x 2 X , then |X| ·O(W ) 

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time 
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Rod Cutting 

• Given a rod of length L and value v(`) of rod of length ` for all ` 2 {1, 2, . . . , L} 

• Goal: Cut the rod to maximize the value of cut rod pieces 

• Example: L = 7, v = [0, 1, 10, 13, 18, 20, 31, 32]
` = 0 1 2 3 4 5 6 7 

• Maybe greedily take most valuable per unit length? 

• Nope! arg max` v[`]/` = 6, and partitioning [6, 1] yields 32 which is not optimal! 

• Solution: v[2] + v[2] + v[3] = 10 + 10 + 13 = 33 

• Maximization problem on value of partition 

1. Subproblems 

• x(`): maximum value obtainable by cutting rod of length ` 

• For ` 2 {0, 1, . . . , L} 

2. Relate 

• First piece has some length p (Guess!) 

• x(`) =  max{v(p) +  x(` p) | p 2 {1, . . . , `}} 

• (draw dependency graph) 

3. Topological order 

• Increasing `: Subproblems x(`) depend only on strictly smaller `, so acyclic 

4. Base 

• x(0) = 0 (length-zero rod has no value!) 

5. Original problem 

• Maximum value obtainable by cutting rod of length L is x(L) 

• Store choices to reconstruct cuts 

• If current rod length ` and optimal choice is `0, remainder is piece p = ` `
0 

• (maximum-weight path in subproblem DAG!) 

6. Time 

• # subproblems: L+ 1  

• work per subproblem: O(`) =  O(L) 

• O(L
2
) running time 
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Is This Polynomial Time? 

• (Strongly) polynomial time means that the running time is bounded above by a constant-
degree polynomial in the input size measured in words 

• In Rod Cutting, input size is L + 1 words (one integer L and L integers in v) 

• O(L
2
) is a constant-degree polynomial in L + 1, so YES: (strongly) polynomial time 

1 # recursive 
2 x = {} 
3 def cut_rod(l, v): 
4 if l < 1: return 0 # base case 
5 if l not in x: # check memo 
6 for piece in range(1, l + 1): # try piece 
7 x_ = v[piece] + cut_rod(l - piece, v) # recurrence 
8 if (l not in x) or (x[l] < x_): # update memo 
9 x[l] = x_ 

10 return x[l] 

1 # iterative 
2 def cut_rod(L, v): 
3 x = [0] * (L + 1) # base case 
4 for l in range(L + 1): # topological order 
5 for piece in range(1, l + 1): # try piece 
6 x_ = v[piece] + x[l - piece] # recurrence 
7 if x[l] < x_: # update memo 
8 x[l] = x_ 
9 return x[L] 

1 # iterative with parent pointers 
2 def cut_rod_pieces(L, v): 
3 x = [0] * (L + 1) # base case 
4 parent = [None] * (L + 1) # parent pointers 
5 for l in range(1, L + 1): # topological order 
6 for piece in range(1, l + 1): # try piece 
7 x_ = v[piece] + x[l - piece] # recurrence 
8 if x[l] < x_: # update memo 
9 x[l] = x_ 

10 parent[l] = l - piece # update parent 
11 l, pieces = L, [] 
12 while parent[l] is not None: # walk back through parents 
13 piece = l - parent[l] 
14 pieces.append(piece) 
15 l = parent[l] 
16 return pieces 
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Subset Sum 

• Input: Sequence of n positive integers A = {a0, a1, . . . , an} 

P 
• Output: Is there a subset of A that sums exactly to T ? (i.e., 9A0 ✓ A s.t. = T ?)

a2A0 a 

• Example: A = (1, 3, 4, 12, 19, 21, 22), T = 47  allows A0 
= {3, 4, 19, 21} 

• Optimization problem? Decision problem! Answer is YES or NO, TRUE or FALSE 

• In example, answer is YES. However, answer is NO for some T , e.g., 2, 6, 9, 10, 11, . . .  

1. Subproblems 

• x(i, t) =  does any subset of A[i :] sum to t? 

• For i 2 {0, 1, . . . , n}, t 2 {0, 1, . . . , T} 

2. Relate 

• Idea: Is first item ai in a valid subset A0? (Guess!) 

• If yes, then try to sum to t ai 0 using remaining items 

• If no, then try to sum to t using remaining items 
⇢ 

x(i+ 1, t  A[i]) if t A[i]• x(i, t) = OR  
x(i+ 1, t) always 

3. Topological order 

• Subproblems x(i, t) only depend on strictly larger i, so acyclic 

• Solve in order of decreasing i 

4. Base 

• x(i, 0) = YES for i 2 {0, . . . , n} (space packed exactly!) 

• x(0, t) =  NO for j 2 {1, . . . , T} (no more items available to pack) 

5. Original problem 

• Original problem given by x(0, T ) 

• Example: A = (3, 4, 3, 1), T  = 6  solution: A0 
= (3, 3) 

• Bottom up: Solve all subproblems (Example has 35) 
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• Top down: Solve only reachable subproblems (Example, only 14!) 

6. Time 

• # subproblems: O(nT ), O(1) work per subproblem, O(nT ) time 
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Is This Polynomial? 

• Input size is n + 1: one integer T and n integers in A 

• Is O(nT ) bounded above by a polynomial in n + 1? NO, not necessarily 

• On w-bit word RAM, T  2w and w lg(n + 1), but we don’t have an upper bound on w 

• E.g., w = n is not unreasonable, but then running time is O(n2
n
), which is exponential 

Pseudopolynomial 

• Algorithm has pseudopolynomial time: running time is bounded above by a constant-
degree polynomial in input size and input integers 

• Such algorithms are polynomial in the case that integers are polynomially bounded in input 
size, i.e., nO(1) (same case that Radix Sort runs in O(n) time) 

• Counting sort O(n + u), radix sort O(n log
n u), direct-access array build O(n + u), and 

Fibonacci O(n) are all pseudopolynomial algorithms we’ve seen already 

• Radix sort is actually weakly polynomial (a notion in between strongly polynomial and 
pseudopolynomial): bounded above by a constant-degree polynomial in the input size mea-
sured in bits, i.e., in the logarithm of the input integers 

• Contrast with Rod Cutting, which was polynomial 

– Had pseudopolynomial dependence on L 

– But luckily had L input integers too 

– If only given subset of sellable rod lengths (Knapsack Problem, which generalizes 
Rod Cutting and Subset Sum — see recitation), then algorithm would have been only 
pseudopolynomial 

Complexity 

• Is Subset Sum solvable in polynomial time when integers are not polynomially bounded? 

• No if P 6= NP. What does that mean? Next lecture! 
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Main Features of Dynamic Programs 

• Review of examples from lecture 

• Subproblems: 

– Prefix/suffixes: Bowling, LCS, LIS, Floyd–Warshall, Rod Cutting (coincidentally, re-
ally Integer subproblems), Subset Sum 

– Substrings: Alternating Coin Game, Arithmetic Parenthesization 

– Multiple sequences: LCS 

– Integers: Fibonacci, Rod Cutting, Subset Sum 

⇤ Pseudopolynomial: Fibonacci, Subset Sum 

– Vertices: DAG shortest paths, Bellman–Ford, Floyd–Warshall 

• Subproblem constraints/expansion: 

– Nonexpansive constraint: LIS (include first item) 

– 2⇥ expansion: Alternating Coin Game (who goes first?), Arithmetic Parenthesization 
(min/max) 

– ⇥(1)⇥ expansion: Piano Fingering (first finger assignment) 

– ⇥(n)⇥ expansion: Bellman–Ford (# edges) 

• Relation: 

– Branching = # dependant subproblems in each subproblem 

– ⇥(1) branching: Fibonacci, Bowling, LCS, Alternating Coin Game, Floyd–Warshall, 
Subset Sum 

– ⇥(degree) branching (source of |E| in running time): DAG shortest paths, Bellman– 
Ford 

– ⇥(n) branching: LIS, Arithmetic Parenthesization, Rod Cutting 

– Combine multiple solutions (not path in subproblem DAG): Fibonacci, Floyd– 
Warshall, Arithmetic Parenthesization 

• Original problem: 

– Combine multiple subproblems: DAG shortest paths, Bellman–Ford, Floyd–Warshall, 
LIS, Piano Fingering 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.006 Introduction to Algorithms 
Spring 2020 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page




