
  

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Quiz 2 Review 

Quiz 2 Review 

Scope 

• Quiz 1 material fair game but explicitly not emphasized 

• 6 lectures on graphs, L09-L14, 2 Problem Sets, PS5-PS6 

Graph Problems 

• Graph reachability by BFS or DFS in O(|E|) time 

• Graph exploration/connected components via Full-BFS or Full-DFS 

• Topological sort / Cycle detection via DFS 

• Negative-weight cycle detection via Bellman-Ford 

• Single Source Shortest Paths (SSSP) 

Restrictions SSSP Algorithm 

Graph Weights Name Running Time O(·) 

DAG Any DAG Relaxation |V | + |E|
General Unweighted BFS |V | + |E|
General Non-negative Dijkstra 

Bellman-Ford 

|V | log |V | + |E| 
|V | · |E|General Any 

• All Pairs Shortest Paths (APSP) 

– Run a SSSP algorithm |V | times 

– Johnson’s solves APSP with negative weights in O(|V |2 log |V | + |V ||E|) 

Graph Problem Strategies 

• Be sure to explicitly describe a graph in terms of problem parameters 

• Convert problem into finding a shortest path, cycle, topo. sort, conn. comps., etc. 

• May help to duplicate graph vertices to encode additional information 

• May help to add auxiliary vertices/edges to graph 

• May help to pre-process the graph (e.g., to remove part of the graph) 
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Graph Problem Common Mistakes 

• Define your graphs! Specify vertices, edges, and weights clearly (and count them!) 

– (e.g., construct graph G = (V, E) with a vertex for each... 
and a directed edge (u, v) with weight w for each...) 

• State the problem you are solving, not just the algorithm you use to solve it 

– (e.g., solve SSSP from s by running DAG Relaxation...) 

• Connect the graph problem you solve back to the original problem 

– (e.g., the weight of a path from s to t in G corresponds to the sum of tolls paid along a 
driving route, so a path of minimum weight corresponds to a route minimizing tolls) 

Problem 1. Counting Blobs (S18 Quiz 2) 

An image is a 2D grid of black and white square pixels where each white pixel is contained in a 
blob. Two white pixels are in the same blob if they share an edge of the grid. Black pixels are 
not contained in blobs. Given an n × m array representing an image, describe an O(nm)-time 
algorithm to count the number of blobs in the image. 

Solution: Construct a graph G with a vertex per white pixel, with an undirected edge between two 
vertices if the pixels associated with them are both white and share an edge of the grid. This graph 
has size at most O(nm) vertices and at most O(nm) edges (as pixels share edges with at most 
four other pixels), so can be constructed in O(nm) time. Each connected component of this graph 
corresponds to a blob, so run Full-BFS or Full-DFS to count the number of connected components 
in G in O(nm) time. 

Problem 2. Unicycles (S18 Quiz 2) 

Given a connected undirected graph G = (V, E) with strictly positive weights w : E → Z+ where 
|E| = |V |, describe an O(|V |)-time algorithm to determine a path from vertex s to vertex t of 
minimum weight. 

Solution: Given two vertices in a weighted tree containing only positive weight edges, there 
is a unique simple path between them which is also the minimum weight path. A depth-first 
search from any source vertex s in the tree results in a directed DFS tree in O(|V |) time (since 
|E| = |V | − 1). Then relaxing edges in topological sort order of the directed DFS tree computes 
minimum weight paths from s in O(|V |) time. Since G has one cycle, our strategy will be to break 
the cycle by removing an edge, and then compute the minimum weight path from s to t in the 
resultant tree. 

First, we find the vertex v closest to s on the cycle by running depth-first search from s in O(|V |) 
time (since |E| = |V |). One edge e1 of the cycle will not be in the tree returned by DFS (a back 
edge to v), with the other edge of the cycle incident to v being a single outgoing DFS tree edge 
e2. If s is on the cycle, v = s; otherwise the unique path from s to v does not contain e1 or e2. 
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A shortest path from s to t cannot traverse both edges e1 and e2, or else the path would visit v at 
least twice, traversing a cycle of positive weight. Removing either e1 or e2 results in a tree, at least 
one of which contains the minimum weight path from s to t. Thus, find the minimum weight path 
from s to t in each tree using the algorithm described above, returning the minimum of the two in 
O(|V |) time. 

Problem 3. Doh!-nut (S18 Quiz 2) 

Momer has just finished work at the FingSprield power plant at location p, and needs to drive to 
his home at location h. But along the way, if his driving route ever comes within driving distance 
k of a doughnut shop, he will stop and eat doughnuts, and his wife, Harge, will be angry. Momer 
knows the layout of FingSprield, which can be modeled as a set of n locations, with two-way roads 
of known driving distance connecting some pairs of locations (you may assume that no location 
is incident to more than five roads), as well as the locations of the d doughnut shops in the city. 
Describe an O(n log n)-time algorithm to find the shortest driving route from the power plant back 
home that avoids driving within driving distance k of a doughnut shop (or determine no such route 
exists). 

Solution: Construct a graph G with a vertex for each of the n city locations, and an undirected 
edge between two locations if there is a road connecting them, with each edge weighted by the 
positive length of its corresponding road. The degree of each vertex is bounded by a constant (i.e., 
5), so the number of edges in G is O(n). First, we identify vertices that are within driving distance 
k of a doughnut shop location: create an auxiliary vertex x with a 0-weight outgoing edge from x 
to every doughnut shop location, and run Dijkstra from x. Remove every vertex from the graph 
whose shortest path from x is less than or equal to k, resulting in graph G0 ⊂ G. If either p or h 
are not in G0, then no route exists. Otherwise, run Dijkstra from p in G0 . If no path exists to h, then 
no valid route exists. Otherwise, Dijkstra finds a shortest path from p to h, so return it (via parent 
pointers). This algorithm runs Dijkstra twice. Since the size of either graph is O(|V |), Dijkstra 
runs in O(|V | log |V |) = O(n log n) time (e.g. using a binary heap to implement a priority queue). 

Problem 4. Long Shortest Paths 

Given directed graph G = (V, E) having arbitrary edge weights w : E → Z and two vertices 
s, t ∈ V , describe an O(|V |3)-time algorithm to find the minimum weight of any path from s to t 
containing at least |V | edges. 

Solution: Our strategy will compute intermediate values for each vertex v ∈ V : 

1. the minimum weight w1(v) of any path from s to v using exactly |V | edges, and then 
2. the minimum weight w2(v) of any path from v to t using any number of edges. 

First, to compute (1), we make a duplicated graph similar to Bellman-Ford, but without edges 
corresponding to remaining at a vertex. Specifically, construct a graph G1 with 

• |V | + 1 vertices for each vertex v ∈ V : vertex vk for k ∈ {0, . . . , |V |} representing reaching 
v from s along a path containing k edges; and 

• |V | edges for each edge (u, v) ∈ E: edge (uk−1, vk) of the same weight for k ∈ {1, . . . , |V |}. 
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Now a path in G1 from s0 to v|V | for any v ∈ V corresponds to a path from s to v in G through 
exactly |V | edges. So solve SSSPs in G1 from s0 to compute the minimum weight of paths to 
each vertex traversing exactly |V | edges. This graph is acyclic, and has size O(|V |(|V | + |E|)) = 
O(|V |3), so we can solve SSSP on G1 via DAG relaxation in O(|V |3) time. 

Second, to compute (2), we make a new graph G2 from G where every edge is reversed. Then 
every path to t in G corresponds to a path in G2 from t, so compute SSSPs from t in G2 to find the 
minimum weight of any path from v to t in G using any number of edges, which can be done in 
O(|V ||E|) = O(|V |3) time using Bellman-Ford. 

Once computed, finding the minimum sum of w1(v) + w2(v) over all vertices v ∈ V will provide 
the minimum weight of any path from s to t containing at least |V | edges, since every such path 
can be decomposed into its first |V | edges and then the remainder. This loop takes O(|V |) time, so 
the algorithm runs in O(|V |3) time in total. 
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