

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 13

Recitation 13

Dijkstra’s Algorithm

Dijkstra is possibly the most commonly used weighted shortest paths algorithm; it is asymptoti-
cally faster than Bellman-Ford, but only applies to graphs containing non-negative edge weights,
which appear often in many applications. The algorithm is fairly intuitive, though its implemen-
tation can be more complicated than that of other shortest path algorithms. Think of a weighted
graph as a network of pipes, each with non-negative length (weight). Then turn on a water faucet at
a source vertex s. Assuming the water flowing from the faucet traverses each pipe at the same rate,
the water will reach each pipe intersection vertex in the order of their shortest distance from the
source. Dijkstra’s algorithm discretizes this continuous process by repeatedly relaxing edges from
a vertex whose minimum weight path estimate is smallest among vertices whose out-going edges
have not yet been relaxed. In order to efficiently find the smallest minimum weight path estimate,
Dijkstra’s algorithm is often presented in terms of a minimum priority queue data structure. Dijk-
stra’s running time then depends on how efficiently the priority queue can perform its supported
operations. Below is Python code for Dijkstra’s algorithm in terms of priority queue operations.

1 def dijkstra(Adj, w, s):
2 d = [float(’inf’) for _ in Adj] # shortest path estimates d(s, v)
3 parent = [None for _ in Adj] # initialize parent pointers
4 d[s], parent[s] = 0, s # initialize source
5 Q = PriorityQueue() # initialize empty priority queue
6 V = len(Adj) # number of vertices
7 for v in range(V): # loop through vertices
8 Q.insert(v, d[v]) # insert vertex-estimate pair
9 for _ in range(V): # main loop

10 u = Q.extract_min() # extract vertex with min estimate
11 for v in Adj[u]: # loop through out-going edges
12 try_to_relax(Adj, w, d, parent, u, v)
13 Q.decrease_key(v, d[v]) # update key of vertex
14 return d, parent

This algorithm follows the same structure as the general relaxation framework. Lines 2-4 initialize
shortest path weight estimates and parent pointers. Lines 5-7 initialize a priority queue with all
vertices from the graph. Lines 8-12 comprise the main loop. Each time the loop is executed, line
9 removes a vertex from the queue, so the queue will be empty at the end of the loop. The vertex
u processed in some iteration of the loop is a vertex from the queue whose shortest path weight
estimate is smallest, from among all vertices not yet removed from the queue. Then, lines 10-11
relax the out-going edges from u as usual. However, since relaxation may reduce the shortest path
weight estimate d(s, v), vertex v’s key in the queue must be updated (if it still exists in the queue);
line 12 accomplishes this update.

2 Recitation 13

Why does Dijkstra’s algorithm compute shortest paths for a graph with non-negative edge weights?
The key observation is that shortest path weight estimate of vertex u equals its actual shortest path
weight d(s, u) = δ(s, u) when u is removed from the priority queue. Then by the upper-bound
property, d(s, u) = δ(s, u) will still hold at termination of the algorithm. A proof of correctness is
described in the lecture notes, and will not be repeated here. Instead, we will focus on analyzing
running time for Dijkstra implemented using different priority queues.

Exercise: Construct a weighted graph with non-negative edge weights, and apply Dijkstra’s algo-
rithm to find shortest paths. Specifically list the key-value pairs stored in the priority queue after
each iteration of the main loop, and highlight edges corresponding to constructed parent pointers.

Priority Queues

An important aspect of Dijkstra’s algorithm is the use of a priority queue. The priority queue
interface used here differs slightly from our presentation of priority queues earlier in the term.
Here, a priority queue maintains a set of key-value pairs, where vertex v is a value and d(s, v) is its
key. Aside from empty initialization, the priority queue supports three operations: insert(val,
key) adds a key-value pair to the queue, extract min() removes and returns a value from the
queue whose key is minimum, and decrease key(val, new key) which reduces the key of
a given value stored in the queue to the provided new key. The running time of Dijkstra depends
on the running times of these operations. Specifically, if Ti, Te, and Td are the respective running
times for inserting a key-value pair, extracting a value with minimum key, and decreasing the key
of a value, the running time of Dijkstra will be:

TDijkstra = O(|V | · Ti + |V | · Te + |E| · Td).

There are many different ways to implement a priority queue, achieving different running times
for each operation. Probably the simplest implementation is to store all the vertices and their
current shortest path estimate in a dictionary. A hash table of size O(|V |) can support expected
constant time O(1) insertion and decrease-key operations, though to find and extract the vertex
with minimum key takes linear time O(|V |). If the vertices are indices into the vertex set with
a linear range, then we can alternatively use a direct access array, leading to worst case O(1)
time insertion and decrease-key, while remaining linear O(|V |) to find and extract the vertex with
minimum key. In either case, the running time for Dijkstra simplifies to:

TDict = O(|V |2 + |E|).

This is actually quite good! If the graph is dense, |E| = Ω(|V |2), this implementation is linear in
the size of the input! Below is a Python implementation of Dijkstra using a direct access array to
implement the priority queue.

3 Recitation 13

1 class PriorityQueue: # Hash Table Implementation
2 def __init__(self): # stores keys with unique labels
3 self.A = {}
4

5 def insert(self, label, key): # insert labeled key
6 self.A[label] = key
7

8 def extract_min(self): # return a label with minimum key
9 min_label = None

10 for label in self.A:
11 if (min_label is None) or (self.A[label] < self.A[min_label].key):
12 min_label = label
13 del self.A[min_label]
14 return min_label
15

16 def decrease_key(self, label, key): # decrease key of a given label
17 if (label in self.A) and (key < self.A[label]):
18 self.A[label] = key

If the graph is sparse, |E| = O(|V |), we can speed things up with more sophisticated priority queue
implementations. We’ve seen that a binary min heap can implement insertion and extract-min in
O(log n) time. However, decreasing the key of a value stored in a priority queue requires finding
the value in the heap in order to change its key, which naively could take linear time. However,
this difficulty is easily addressed: each vertex can maintain a pointer to its stored location within
the heap, or the heap can maintain a mapping from values (vertices) to locations within the heap
(you were asked to do this in Problem Set 5). Either solution can support finding a given value
in the heap in constant time. Then, after decreasing the value’s key, one can restore the min heap
property in logarithmic time by re-heapifying the tree. Since a binary heap can support each of the
three operations in O(log |V |) time, the running time of Dijkstra will be:

THeap = O((|V | + |E|) log |V |).

For sparse graphs, that’s O(|V | log |V |)! For graphs in between sparse and dense, there is an even
more sophisticated priority queue implementation using a data structure called a Fibonacci Heap,
which supports amortized O(1) time insertion and decrease-key operations, along with O(log n)
minimum extraction. Thus using a Fibonacci Heap to implement the Dijkstra priority queue leads
to the following worst-case running time:

TF ibHeap = O(|V | log |V | + |E|).

We won’t be talking much about Fibonacci Heaps in this class, but they’re theoretically useful for
speeding up Dijkstra on graphs that have a number of edges asymptotically in between linear and
quadratic in the number of graph vertices. You may quote the Fibonacci Heap running time bound
whenever you need to argue the running time of Dijkstra when solving theory questions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

4 Recitation 13

class Item:
def __init__(self, label, key):

self.label, self.key = label, key

class PriorityQueue: # Binary Heap Implementation
def __init__(self): # stores keys with unique labels

self.A = []
self.label2idx = {}

def min_heapify_up(self, c):
if c == 0: return
p = (c - 1) // 2
if self.A[p].key > self.A[c].key:

self.A[c], self.A[p] = self.A[p], self.A[c]
self.label2idx[self.A[c].label] = c
self.label2idx[self.A[p].label] = p
self.min_heapify_up(p)

def min_heapify_down(self, p):
if p >= len(self.A): return
l = 2 * p + 1
r = 2 * p + 2
if l >= len(self.A): l = p
if r >= len(self.A): r = p
c = l if self.A[r].key > self.A[l].key else r
if self.A[p].key > self.A[c].key:

self.A[c], self.A[p] = self.A[p], self.A[c]
self.label2idx[self.A[c].label] = c
self.label2idx[self.A[p].label] = p
self.min_heapify_down(c)

def insert(self, label, key): # insert labeled key
self.A.append(Item(label, key))
idx = len(self.A) - 1
self.label2idx[self.A[idx].label] = idx
self.min_heapify_up(idx)

def extract_min(self): # remove a label with minimum key
self.A[0], self.A[-1] = self.A[-1], self.A[0]
self.label2idx[self.A[0].label] = 0
del self.label2idx[self.A[-1].label]
min_label = self.A.pop().label
self.min_heapify_down(0)
return min_label

def decrease_key(self, label, key): # decrease key of a given label
if label in self.label2idx:

idx = self.label2idx[label]
if key < self.A[idx].key:

self.A[idx].key = key
self.min_heapify_up(idx)

5 Recitation 13

Fibonacci Heaps are not actually used very often in practice as it is more complex to implement,
and results in larger constant factor overhead than the other two implementations described above.
When the number of edges in the graph is known to be at most linear (e.g., planar or bounded
degree graphs) or at least quadratic (e.g. complete graphs) in the number of vertices, then using a
binary heap or dictionary respectively will perform as well asymptotically as a Fibonacci Heap.

We’ve made a JavaScript Dijkstra visualizer which you can find here:
https://codepen.io/mit6006/pen/BqgXWM

Exercise: CIA officer Mary Cathison needs to drive to meet with an informant across an unwel-
come city. Some roads in the city are equipped with government surveillance cameras, and Mary
will be detained if cameras from more than one road observe her car on the way to her informant.
Mary has a map describing the length of each road and the locations and ranges of surveillance
cameras. Help Mary find the shortest drive to reach her informant, being seen by at most one
surveillance camera along the way.

Solution: Construct a graph having two vertices (v, 0) and (v, 1) for every road intersection v
within the city. Vertex (v, i) represents arriving at intersection v having already been spotted by
exactly i camera(s). For each road from intersection u to v: add two directed edges from (u, 0) to
(v, 0) and from (u, 1) to (v, 1) if traveling on the road will not be visible by a camera; and add one
directed edge from (u, 0) to (v, 1) if traveling on the road will be visible. If s is Mary’s start location
and t is the location of the informant, any path from (s, 0) to (t, 0) or (t, 1) in the constructed graph
will be a path visible by at most one camera. Let n be the number of road intersections and m be the
number of roads in the network. Assuming lengths of roads are positive, use Dijkstra’s algorithm
to find the shortest such path in O(m + n log n) time using a Fibonacci Heap for Dijkstra’s priority
queue. Alternatively, since the road network is likely planar and/or bounded degree, it may be
safe to assume that m = O(n), so a binary heap could be used instead to find a shortest path in
O(n log n) time.

https://codepen.io/mit6006/pen/BqgXWM

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

