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Recitation 13 

Dijkstra’s Algorithm 

Dijkstra is possibly the most commonly used weighted shortest paths algorithm; it is asymptoti-
cally faster than Bellman-Ford, but only applies to graphs containing non-negative edge weights, 
which appear often in many applications. The algorithm is fairly intuitive, though its implemen-
tation can be more complicated than that of other shortest path algorithms. Think of a weighted 
graph as a network of pipes, each with non-negative length (weight). Then turn on a water faucet at 
a source vertex s. Assuming the water flowing from the faucet traverses each pipe at the same rate, 
the water will reach each pipe intersection vertex in the order of their shortest distance from the 
source. Dijkstra’s algorithm discretizes this continuous process by repeatedly relaxing edges from 
a vertex whose minimum weight path estimate is smallest among vertices whose out-going edges 
have not yet been relaxed. In order to efficiently find the smallest minimum weight path estimate, 
Dijkstra’s algorithm is often presented in terms of a minimum priority queue data structure. Dijk-
stra’s running time then depends on how efficiently the priority queue can perform its supported 
operations. Below is Python code for Dijkstra’s algorithm in terms of priority queue operations. 

1 def dijkstra(Adj, w, s): 
2 d = [float(’inf’) for _ in Adj] # shortest path estimates d(s, v) 
3 parent = [None for _ in Adj] # initialize parent pointers 
4 d[s], parent[s] = 0, s # initialize source 
5 Q = PriorityQueue() # initialize empty priority queue 
6 V = len(Adj) # number of vertices 
7 for v in range(V): # loop through vertices 
8 Q.insert(v, d[v]) # insert vertex-estimate pair 
9 for _ in range(V): # main loop 

10 u = Q.extract_min() # extract vertex with min estimate 
11 for v in Adj[u]: # loop through out-going edges 
12 try_to_relax(Adj, w, d, parent, u, v) 
13 Q.decrease_key(v, d[v]) # update key of vertex 
14 return d, parent 

This algorithm follows the same structure as the general relaxation framework. Lines 2-4 initialize 
shortest path weight estimates and parent pointers. Lines 5-7 initialize a priority queue with all 
vertices from the graph. Lines 8-12 comprise the main loop. Each time the loop is executed, line 
9 removes a vertex from the queue, so the queue will be empty at the end of the loop. The vertex 
u processed in some iteration of the loop is a vertex from the queue whose shortest path weight 
estimate is smallest, from among all vertices not yet removed from the queue. Then, lines 10-11 
relax the out-going edges from u as usual. However, since relaxation may reduce the shortest path 
weight estimate d(s, v), vertex v’s key in the queue must be updated (if it still exists in the queue); 
line 12 accomplishes this update. 
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Why does Dijkstra’s algorithm compute shortest paths for a graph with non-negative edge weights? 
The key observation is that shortest path weight estimate of vertex u equals its actual shortest path 
weight d(s, u) = δ(s, u) when u is removed from the priority queue. Then by the upper-bound 
property, d(s, u) = δ(s, u) will still hold at termination of the algorithm. A proof of correctness is 
described in the lecture notes, and will not be repeated here. Instead, we will focus on analyzing 
running time for Dijkstra implemented using different priority queues. 

Exercise: Construct a weighted graph with non-negative edge weights, and apply Dijkstra’s algo-
rithm to find shortest paths. Specifically list the key-value pairs stored in the priority queue after 
each iteration of the main loop, and highlight edges corresponding to constructed parent pointers. 

Priority Queues 

An important aspect of Dijkstra’s algorithm is the use of a priority queue. The priority queue 
interface used here differs slightly from our presentation of priority queues earlier in the term. 
Here, a priority queue maintains a set of key-value pairs, where vertex v is a value and d(s, v) is its 
key. Aside from empty initialization, the priority queue supports three operations: insert(val, 
key) adds a key-value pair to the queue, extract min() removes and returns a value from the 
queue whose key is minimum, and decrease key(val, new key) which reduces the key of 
a given value stored in the queue to the provided new key. The running time of Dijkstra depends 
on the running times of these operations. Specifically, if Ti, Te, and Td are the respective running 
times for inserting a key-value pair, extracting a value with minimum key, and decreasing the key 
of a value, the running time of Dijkstra will be: 

TDijkstra = O(|V | · Ti + |V | · Te + |E| · Td). 

There are many different ways to implement a priority queue, achieving different running times 
for each operation. Probably the simplest implementation is to store all the vertices and their 
current shortest path estimate in a dictionary. A hash table of size O(|V |) can support expected 
constant time O(1) insertion and decrease-key operations, though to find and extract the vertex 
with minimum key takes linear time O(|V |). If the vertices are indices into the vertex set with 
a linear range, then we can alternatively use a direct access array, leading to worst case O(1) 
time insertion and decrease-key, while remaining linear O(|V |) to find and extract the vertex with 
minimum key. In either case, the running time for Dijkstra simplifies to: 

TDict = O(|V |2 + |E|). 

This is actually quite good! If the graph is dense, |E| = Ω(|V |2), this implementation is linear in 
the size of the input! Below is a Python implementation of Dijkstra using a direct access array to 
implement the priority queue. 
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1 class PriorityQueue: # Hash Table Implementation 
2 def __init__(self): # stores keys with unique labels 
3 self.A = {} 
4 

5 def insert(self, label, key): # insert labeled key 
6 self.A[label] = key 
7 

8 def extract_min(self): # return a label with minimum key 
9 min_label = None 

10 for label in self.A: 
11 if (min_label is None) or (self.A[label] < self.A[min_label].key): 
12 min_label = label 
13 del self.A[min_label] 
14 return min_label 
15 

16 def decrease_key(self, label, key): # decrease key of a given label 
17 if (label in self.A) and (key < self.A[label]): 
18 self.A[label] = key 

If the graph is sparse, |E| = O(|V |), we can speed things up with more sophisticated priority queue 
implementations. We’ve seen that a binary min heap can implement insertion and extract-min in 
O(log n) time. However, decreasing the key of a value stored in a priority queue requires finding 
the value in the heap in order to change its key, which naively could take linear time. However, 
this difficulty is easily addressed: each vertex can maintain a pointer to its stored location within 
the heap, or the heap can maintain a mapping from values (vertices) to locations within the heap 
(you were asked to do this in Problem Set 5). Either solution can support finding a given value 
in the heap in constant time. Then, after decreasing the value’s key, one can restore the min heap 
property in logarithmic time by re-heapifying the tree. Since a binary heap can support each of the 
three operations in O(log |V |) time, the running time of Dijkstra will be: 

THeap = O((|V | + |E|) log |V |). 

For sparse graphs, that’s O(|V | log |V |)! For graphs in between sparse and dense, there is an even 
more sophisticated priority queue implementation using a data structure called a Fibonacci Heap, 
which supports amortized O(1) time insertion and decrease-key operations, along with O(log n) 
minimum extraction. Thus using a Fibonacci Heap to implement the Dijkstra priority queue leads 
to the following worst-case running time: 

TF ibHeap = O(|V | log |V | + |E|). 

We won’t be talking much about Fibonacci Heaps in this class, but they’re theoretically useful for 
speeding up Dijkstra on graphs that have a number of edges asymptotically in between linear and 
quadratic in the number of graph vertices. You may quote the Fibonacci Heap running time bound 
whenever you need to argue the running time of Dijkstra when solving theory questions. 
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class Item: 
def __init__(self, label, key): 

self.label, self.key = label, key 

class PriorityQueue: # Binary Heap Implementation 
def __init__(self): # stores keys with unique labels 

self.A = [] 
self.label2idx = {} 

def min_heapify_up(self, c): 
if c == 0: return 
p = (c - 1) // 2 
if self.A[p].key > self.A[c].key: 

self.A[c], self.A[p] = self.A[p], self.A[c] 
self.label2idx[self.A[c].label] = c 
self.label2idx[self.A[p].label] = p 
self.min_heapify_up(p) 

def min_heapify_down(self, p): 
if p >= len(self.A): return 
l = 2 * p + 1 
r = 2 * p + 2 
if l >= len(self.A): l = p 
if r >= len(self.A): r = p 
c = l if self.A[r].key > self.A[l].key else r 
if self.A[p].key > self.A[c].key: 

self.A[c], self.A[p] = self.A[p], self.A[c] 
self.label2idx[self.A[c].label] = c 
self.label2idx[self.A[p].label] = p 
self.min_heapify_down(c) 

def insert(self, label, key): # insert labeled key 
self.A.append(Item(label, key)) 
idx = len(self.A) - 1 
self.label2idx[self.A[idx].label] = idx 
self.min_heapify_up(idx) 

def extract_min(self): # remove a label with minimum key 
self.A[0], self.A[-1] = self.A[-1], self.A[0] 
self.label2idx[self.A[0].label] = 0 
del self.label2idx[self.A[-1].label] 
min_label = self.A.pop().label 
self.min_heapify_down(0) 
return min_label 

def decrease_key(self, label, key): # decrease key of a given label 
if label in self.label2idx: 

idx = self.label2idx[label] 
if key < self.A[idx].key: 

self.A[idx].key = key 
self.min_heapify_up(idx) 
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Fibonacci Heaps are not actually used very often in practice as it is more complex to implement, 
and results in larger constant factor overhead than the other two implementations described above. 
When the number of edges in the graph is known to be at most linear (e.g., planar or bounded 
degree graphs) or at least quadratic (e.g. complete graphs) in the number of vertices, then using a 
binary heap or dictionary respectively will perform as well asymptotically as a Fibonacci Heap. 

We’ve made a JavaScript Dijkstra visualizer which you can find here: 
https://codepen.io/mit6006/pen/BqgXWM 

Exercise: CIA officer Mary Cathison needs to drive to meet with an informant across an unwel-
come city. Some roads in the city are equipped with government surveillance cameras, and Mary 
will be detained if cameras from more than one road observe her car on the way to her informant. 
Mary has a map describing the length of each road and the locations and ranges of surveillance 
cameras. Help Mary find the shortest drive to reach her informant, being seen by at most one 
surveillance camera along the way. 

Solution: Construct a graph having two vertices (v, 0) and (v, 1) for every road intersection v 
within the city. Vertex (v, i) represents arriving at intersection v having already been spotted by 
exactly i camera(s). For each road from intersection u to v: add two directed edges from (u, 0) to 
(v, 0) and from (u, 1) to (v, 1) if traveling on the road will not be visible by a camera; and add one 
directed edge from (u, 0) to (v, 1) if traveling on the road will be visible. If s is Mary’s start location 
and t is the location of the informant, any path from (s, 0) to (t, 0) or (t, 1) in the constructed graph 
will be a path visible by at most one camera. Let n be the number of road intersections and m be the 
number of roads in the network. Assuming lengths of roads are positive, use Dijkstra’s algorithm 
to find the shortest such path in O(m + n log n) time using a Fibonacci Heap for Dijkstra’s priority 
queue. Alternatively, since the road network is likely planar and/or bounded degree, it may be 
safe to assume that m = O(n), so a binary heap could be used instead to find a shortest path in 
O(n log n) time. 

https://codepen.io/mit6006/pen/BqgXWM
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