

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 10

Recitation 10

Depth-First Search
A breadth-first search discovers vertices reachable from a queried vertex s level-by-level outward
from s. A depth-first search (DFS) also finds all vertices reachable from s, but does so by search-
ing undiscovered vertices as deep as possible before exploring other branches. Instead of exploring
all neighbors of s one after another as in a breadth-first search, depth-first searches as far as possi-
ble from the first neighbor of s before searching any other neighbor of s. Just as with breadth-first
search, depth-first search returns a set of parent pointers for vertices reachable from s in the order
the search discovered them, together forming a DFS tree. However, unlike a BFS tree, a DFS tree
will not represent shortest paths in an unweighted graph. (Additionally, DFS returns an order on
vertices discovered which will be discussed later.) Below is Python code implementing a recursive
depth-first search for a graph represented using index-labeled adjacency lists.

1 def dfs(Adj, s, parent = None, order = None): # Adj: adjacency list, s: start
2 if parent is None: # O(1) initialize parent list
3 parent = [None for v in Adj] # O(V) (use hash if unlabeled)
4 parent[s] = s # O(1) root
5 order = [] # O(1) initialize order array
6 for v in Adj[s]: # O(Adj[s]) loop over neighbors
7 if parent[v] is None: # O(1) parent not yet assigned
8 parent[v] = s # O(1) assign parent
9 dfs(Adj, v, parent, order) # Recursive call

10 order.append(s) # O(1) amortized
11 return parent, order

How fast is depth-first search? A recursive dfs call is performed only when a vertex does not have
a parent pointer, and is given a parent pointer immediately before the recursive call. Thus dfs is
called on each vertex at most once. Further, the amount of work done by each recursive search
from vertex v is proportional to the out-degree deg(v) of v. Thus, the amount of work done by P
depth-first search is O(deg(v)) = O(|E|). Because the parent array returned has length |V |,v∈V
depth-first search runs in O(|V | + |E|) time.

Exercise: Describe a graph on n vertices for which BFS and DFS would first visit vertices in the
same order.

Solution: Many possible solutions. Two solutions are a chain of vertices from v, or a star graph
with an edge from v to every other vertex.

2 Recitation 10

Full Graph Exploration
Of course not all vertices in a graph may be reachable from a query vertex s. To search all ver-
tices in a graph, one can use depth-first search (or breadth-first search) to explore each connected
component in the graph by performing a search from each vertex in the graph that has not yet been
discovered by the search. Such a search is conceptually equivalent to adding an auxiliary vertex
with an outgoing edge to every vertex in the graph and then running breadth-first or depth-first
search from the added vertex. Python code searching an entire graph via depth-first search is given
below.

1 def full_dfs(Adj): # Adj: adjacency list
2 parent = [None for v in Adj] # O(V) (use hash if unlabeled)
3 order = [] # O(1) initialize order list
4 for v in range(len(Adj)): # O(V) loop over vertices
5 if parent[v] is None: # O(1) parent not yet assigned
6 parent[v] = v # O(1) assign self as parent (a root)
7 dfs(Adj, v, parent, order) # DFS from v (BFS can also be used)
8 return parent, order

For historical reasons (primarily for its connection to topological sorting as discussed later) depth-
first search is often used to refer to both a method to search a graph from a specific vertex, and
as a method to search an entire (as in graph explore). You may do the same when answering
problems in this class.

DFS Edge Classification
To help prove things about depth-first search, it can be useful to classify the edges of a graph in
relation to a depth-first search tree. Consider a graph edge from vertex u to v. We call the edge a
tree edge if the edge is part of the DFS tree (i.e. parent[v] = u). Otherwise, the edge from u to
v is not a tree edge, and is either a back edge, forward edge, or cross edge depending respectively
on whether: u is a descendant of v, v is a descendant of u, or neither are descendants of each other,
in the DFS tree.

Exercise: Draw a graph, run DFS from a vertex, and classify each edge relative to the DFS tree.
Show that forward and cross edges cannot occur when running DFS on an undirected graph.

Exercise: How can you identify back edges computationally?

Solution: While performing a depth-first search, keep track of the set of ancestors of each vertex
in the DFS tree during the search (in a direct access array or a hash table). When processing
neighbor v of s in dfs(Adj, s), if v is an ancestor of s, then (s, v) is a back edge, and certifies a
cycle in the graph.

3 Recitation 10

Topological Sort
A directed graph containing no directed cycle is called a directed acyclic graph or a DAG. A
topological sort of a directed acyclic graph G = (V, E) is a linear ordering of the vertices such
that for each edge (u, v) in E, vertex u appears before vertex v in the ordering. In the dfs func-
tion, vertices are added to the order list in the order in which their recursive DFS call finishes. If
the graph is acyclic, the order returned by dfs (or graph search) is the reverse of a topolog-
ical sort order. Proof by cases. One of dfs(u) or dfs(v) is called first. If dfs(u) was called
before dfs(v), dfs(v) will start and end before dfs(u) completes, so v will appear before u
in order. Alternatively, if dfs(v) was called before dfs(u), dfs(u) cannot be called before
dfs(v) completes, or else a path from v to u would exist, contradicting that the graph is acyclic;
so v will be added to order before vertex u. Reversing the order returned by DFS will then repre-
sent a topological sort order on the vertices.

Exercise: A high school contains many student organization, each with its own hierarchical struc-
ture. For example, the school’s newspaper has an editor-in-chief who oversees all students con-
tributing to the newspaper, including a food-editor who oversees only students writing about school
food. The high school’s principal needs to line students up to receive diplomas at graduation, and
wants to recognize student leaders by giving a diploma to student a before student b whenever a
oversees b in any student organization. Help the principal determine an order to give out diplomas
that respects student organization hierarchy, or prove to the principal that no such order exists.

Solution: Construct a graph with one vertex per student, and a directed edge from student a to b if
student a oversees student b in some student organization. If this graph contains a cycle, the princi-
pal is out of luck. Otherwise, a topological sort of the students according to this graph will satisfy
the principal’s request. Run DFS on the graph (exploring the whole graph as in graph explore)
to obtain an order of DFS vertex finishing times in O(|V | + |E|) time. While performing the DFS,
keep track of the ancestors of each vertex in the DFS tree, and evaluate if each new edge processed
is a back edge. If a back edge is found from vertex u to v, follow parent pointers back to v from u to
obtain a directed cycle in the graph to prove to the principal that no such order exists. Otherwise, if
no cycle is found, the graph is acyclic and the order returned by DFS is the reverse of a topological
sort, which may then be returned to the principal.

We’ve made a CoffeeScript graph search visualizer which you can find here:
https://codepen.io/mit6006/pen/dgeKEN

https://codepen.io/mit6006/pen/dgeKEN

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

