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Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 10 

Recitation 10 

Depth-First Search 
A breadth-first search discovers vertices reachable from a queried vertex s level-by-level outward 
from s. A depth-first search (DFS) also finds all vertices reachable from s, but does so by search-
ing undiscovered vertices as deep as possible before exploring other branches. Instead of exploring 
all neighbors of s one after another as in a breadth-first search, depth-first searches as far as possi-
ble from the first neighbor of s before searching any other neighbor of s. Just as with breadth-first 
search, depth-first search returns a set of parent pointers for vertices reachable from s in the order 
the search discovered them, together forming a DFS tree. However, unlike a BFS tree, a DFS tree 
will not represent shortest paths in an unweighted graph. (Additionally, DFS returns an order on 
vertices discovered which will be discussed later.) Below is Python code implementing a recursive 
depth-first search for a graph represented using index-labeled adjacency lists. 

1 def dfs(Adj, s, parent = None, order = None): # Adj: adjacency list, s: start 
2 if parent is None: # O(1) initialize parent list 
3 parent = [None for v in Adj] # O(V) (use hash if unlabeled) 
4 parent[s] = s # O(1) root 
5 order = [] # O(1) initialize order array 
6 for v in Adj[s]: # O(Adj[s]) loop over neighbors 
7 if parent[v] is None: # O(1) parent not yet assigned 
8 parent[v] = s # O(1) assign parent 
9 dfs(Adj, v, parent, order) # Recursive call 

10 order.append(s) # O(1) amortized 
11 return parent, order 

How fast is depth-first search? A recursive dfs call is performed only when a vertex does not have 
a parent pointer, and is given a parent pointer immediately before the recursive call. Thus dfs is 
called on each vertex at most once. Further, the amount of work done by each recursive search 
from vertex v is proportional to the out-degree deg(v) of v. Thus, the amount of work done by P 
depth-first search is O( deg(v)) = O(|E|). Because the parent array returned has length |V |,v∈V 
depth-first search runs in O(|V | + |E|) time. 

Exercise: Describe a graph on n vertices for which BFS and DFS would first visit vertices in the 
same order. 

Solution: Many possible solutions. Two solutions are a chain of vertices from v, or a star graph 
with an edge from v to every other vertex. 
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Full Graph Exploration 
Of course not all vertices in a graph may be reachable from a query vertex s. To search all ver-
tices in a graph, one can use depth-first search (or breadth-first search) to explore each connected 
component in the graph by performing a search from each vertex in the graph that has not yet been 
discovered by the search. Such a search is conceptually equivalent to adding an auxiliary vertex 
with an outgoing edge to every vertex in the graph and then running breadth-first or depth-first 
search from the added vertex. Python code searching an entire graph via depth-first search is given 
below. 

1 def full_dfs(Adj): # Adj: adjacency list 
2 parent = [None for v in Adj] # O(V) (use hash if unlabeled) 
3 order = [] # O(1) initialize order list 
4 for v in range(len(Adj)): # O(V) loop over vertices 
5 if parent[v] is None: # O(1) parent not yet assigned 
6 parent[v] = v # O(1) assign self as parent (a root) 
7 dfs(Adj, v, parent, order) # DFS from v (BFS can also be used) 
8 return parent, order 

For historical reasons (primarily for its connection to topological sorting as discussed later) depth-
first search is often used to refer to both a method to search a graph from a specific vertex, and 
as a method to search an entire (as in graph explore). You may do the same when answering 
problems in this class. 

DFS Edge Classification 
To help prove things about depth-first search, it can be useful to classify the edges of a graph in 
relation to a depth-first search tree. Consider a graph edge from vertex u to v. We call the edge a 
tree edge if the edge is part of the DFS tree (i.e. parent[v] = u). Otherwise, the edge from u to 
v is not a tree edge, and is either a back edge, forward edge, or cross edge depending respectively 
on whether: u is a descendant of v, v is a descendant of u, or neither are descendants of each other, 
in the DFS tree. 

Exercise: Draw a graph, run DFS from a vertex, and classify each edge relative to the DFS tree. 
Show that forward and cross edges cannot occur when running DFS on an undirected graph. 

Exercise: How can you identify back edges computationally? 

Solution: While performing a depth-first search, keep track of the set of ancestors of each vertex 
in the DFS tree during the search (in a direct access array or a hash table). When processing 
neighbor v of s in dfs(Adj, s), if v is an ancestor of s, then (s, v) is a back edge, and certifies a 
cycle in the graph. 
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Topological Sort 
A directed graph containing no directed cycle is called a directed acyclic graph or a DAG. A 
topological sort of a directed acyclic graph G = (V, E) is a linear ordering of the vertices such 
that for each edge (u, v) in E, vertex u appears before vertex v in the ordering. In the dfs func-
tion, vertices are added to the order list in the order in which their recursive DFS call finishes. If 
the graph is acyclic, the order returned by dfs (or graph search) is the reverse of a topolog-
ical sort order. Proof by cases. One of dfs(u) or dfs(v) is called first. If dfs(u) was called 
before dfs(v), dfs(v) will start and end before dfs(u) completes, so v will appear before u 
in order. Alternatively, if dfs(v) was called before dfs(u), dfs(u) cannot be called before 
dfs(v) completes, or else a path from v to u would exist, contradicting that the graph is acyclic; 
so v will be added to order before vertex u. Reversing the order returned by DFS will then repre-
sent a topological sort order on the vertices. 

Exercise: A high school contains many student organization, each with its own hierarchical struc-
ture. For example, the school’s newspaper has an editor-in-chief who oversees all students con-
tributing to the newspaper, including a food-editor who oversees only students writing about school 
food. The high school’s principal needs to line students up to receive diplomas at graduation, and 
wants to recognize student leaders by giving a diploma to student a before student b whenever a 
oversees b in any student organization. Help the principal determine an order to give out diplomas 
that respects student organization hierarchy, or prove to the principal that no such order exists. 

Solution: Construct a graph with one vertex per student, and a directed edge from student a to b if 
student a oversees student b in some student organization. If this graph contains a cycle, the princi-
pal is out of luck. Otherwise, a topological sort of the students according to this graph will satisfy 
the principal’s request. Run DFS on the graph (exploring the whole graph as in graph explore) 
to obtain an order of DFS vertex finishing times in O(|V | + |E|) time. While performing the DFS, 
keep track of the ancestors of each vertex in the DFS tree, and evaluate if each new edge processed 
is a back edge. If a back edge is found from vertex u to v, follow parent pointers back to v from u to 
obtain a directed cycle in the graph to prove to the principal that no such order exists. Otherwise, if 
no cycle is found, the graph is acyclic and the order returned by DFS is the reverse of a topological 
sort, which may then be returned to the principal. 

We’ve made a CoffeeScript graph search visualizer which you can find here: 
https://codepen.io/mit6006/pen/dgeKEN 

https://codepen.io/mit6006/pen/dgeKEN
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