Quiz 2

- Do not open this quiz booklet until directed to do so. Read all the instructions on this page.
- When the quiz begins, write your name on the top of every page of this quiz booklet.
- You have 90 minutes to earn a maximum of 90 points. Do not spend too much time on any one problem. Skim them all first, and attack them in the order that allows you to make the most progress.
- You are allowed two double-sided letter-sized sheet with your own notes. No calculators, cell phones, or other programmable or communication devices are permitted.
- Write your solutions in the space provided. Pages will be scanned and separated for grading. If you need more space, write "Continued on S1" (or S2, S3) and continue your solution on the referenced scratch page at the end of the exam.
- Do not waste time and paper rederiving facts that we have studied in lecture, recitation, or problem sets. Simply cite them.
- When writing an algorithm, a **clear** description in English will suffice. Pseudo-code is not required. Be sure to argue that your **algorithm is correct**, and analyze the **asymptotic running time of your algorithm**. Even if your algorithm does not meet a requested bound, you **may** receive partial credit for inefficient solutions that are correct.
- **Pay close attention to the instructions for each problem**. Depending on the problem, partial credit may be awarded for incomplete answers.

Problem	Parts	Points
1: Information	2	2
2: Exact Edges	1	16
3: Color Cost	1	18
4: Orkscapade	1	18
5: Count Cycles	1	18
6: Bellham's Fjord	1	18
Total		90

Name: _

School Email: _____

2 6.006 Quiz 2

Name_____

Problem 1. [2 points] Information (2 parts)

(a) [1 point] Write your name and email address on the cover page.

(b) [1 point] Write your name at the top of each page.

Name_____ 3

Problem 2. [16 points] Exact Edges

Given a weighted, directed graph G = (V, E, w) with positive and negative edge weights, and given a particular vertex $v \in V$, describe an O(k|E|)-time algorithm to return the minimum weight of any cycle containing vertex v that also has exactly k edges, or return that no such cycle exists. Recall that a cycle may repeat vertices/edges.

4 6.006 Quiz 2

Problem 3. [18 points] Color Cost

A 3-color labeling of a graph maps each edge to either red, green, or blue. The color cost of a 3-color labeled path is its path weight plus a positive integer w_c every time the path changes color.

Name__

For example, in the graph below (having four vertices $\{a, b, c, d\}$, a blue edge (a, b) with weight w_1 , a red edge (b, c) with weight w_2 , and another blue edge (c, d) with weight w_3) the path (a, b, c, d) has color cost $w_1 + w_2 + w_3 + 2w_c$, because the path changes color twice.

Given a 3-color labeling $c : E \to \{\text{red}, \text{green}, \text{blue}\}\)$ of a connected, weighted, undirected graph G = (V, E, w) containing only **positive edge weights**, and given two vertices $s, t \in V$, describe an **efficient** algorithm to return a path from s to t having minimum color cost.

(By "efficient", we mean that faster correct algorithms will receive more points than slower ones.)

Problem 4. [18 points] Orkscapade

Ranger Raargorn needs to deliver a message from her home town of Tina's Mirth to the town of Riverdell, but the towns of Midgard have been overrun by an army of k Orks. Raargorn has a map of the n towns and 3n roads in Midgard, where each road connects a pair of towns in both directions. Scouts have determined the number of Orks $r_i \ge 1$ stationed in each town i (there is **at least one Ork** stationed in each town). Describe an O(k)-time algorithm to find a path from Tina's Mirth to Riverdell on which Raargorn will encounter the fewest total Orks in towns along the way. **Partial credit** will be awarded for slower correct algorithms, e.g., $O(k \log k)$ or O(nk).

Problem 5. [18 points] Count Cycles

A cycle-sparse graph is any weighted directed simple graph G = (V, E, w) for which every vertex $v \in V$ is reachable from at most one simple¹ negative-weight cycle in G. Given a cycle-sparse graph, describe an $O(|V|^3)$ -time algorithm to return the number of negative-weight cycles in G.

Name____

¹Recall a cycle is simple if visits any vertex at most once.

Problem 6. [18 points] Bellham's Fjord

Gralexandra Bellham wants to drive her electric car in Norway from location s in Oslo to a scenic Fjord at location t. She has a map of the n locations in Norway and the O(n) one-way roads directly connecting pairs of them.

- Each location x is marked with its (positive or negative) integer height h(x) above sea-level.
- Her car has **regenerative braking** allowing it to generate energy while going downhill. Each road from location x to y is marked with the integer energy J(x, y) that the electric car will either spend (positive) or generate (negative) while driving along it.
- By the laws of physics, J(x, y) is always strictly greater than the difference in **potential** energy between locations x and y, i.e., $J(x, y) > m \cdot g \cdot (h(y) - h(x))$, where m and g are the mass of the car and the acceleration due to gravity respectively.

Her car battery has very large **energy capacity** b > 2nk where k is the maximum |J(x, y)| of any road. Assuming she departs s at half capacity, $\lfloor b/2 \rfloor$, describe an $O(n \log n)$ -time algorithm to determine the maximum amount of energy Bellham can have in her battery upon reaching t. **Partial credit** will be awarded for slower correct algorithms, e.g., $O(n^2)$.

SCRATCH PAPER 1. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write "Continued on S1" on the problem statement's page.

SCRATCH PAPER 2. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write "Continued on S2" on the problem statement's page.

SCRATCH PAPER 3. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write "Continued on S3" on the problem statement's page.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>