

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 11: Weighted Shortest Paths

Lecture 11: Weighted Shortest Paths

Review

• Single-Source Shortest Paths with BFS in O(|V | + |E|) time (return distance per vertex)

• Single-Source Reachability with BFS or DFS in O(|E|) time (return only reachable vertices)

• Connected components with Full-BFS or Full-DFS in O(|V | + |E|) time

• Topological Sort of a DAG with Full-DFS in O(|V | + |E|) time

• Previously: distance = number of edges in path Today: generalize meaning of distance

Weighted Graphs

• A weighted graph is a graph G = (V, E) together with a weight function w : E → Z

• i.e., assigns each edge e = (u, v) ∈ E an integer weight: w(e) = w(u, v)

• Many applications for edge weights in a graph:

– distances in road network

– latency in network connections

– strength of a relationship in a social network

• Two common ways to represent weights computationally:

– Inside graph representation: store edge weight with each vertex in adjacency lists

– Store separate Set data structure mapping each edge to its weight

• We assume a representation that allows querying the weight of an edge in O(1) time

Examples

G1 G2

a

e

b

f

c

g

d

h

6

8

−2

5

9

−5

7

3 2

−1

−4 1 4

a

e

b

f

c

g

d

h

6

8

−2

5

9

−5

7

3 2

−1

−4 1 4

2

Restrictions SSSP Algorithm
Graph Weights Name Running Time O(·) Lecture

General Unweighted BFS |V | + |E| L09
L11 (Today!)
L12
L13

DAG Any DAG Relaxation |V | + |E|
General Any Bellman-Ford

Dijkstra
|V | · |E|

General Non-negative

Lecture 11: Weighted Shortest Paths

Weighted Paths

• The weight w(π) of a path π in a weighted graph is the sum of weights of edges in the path

• The (weighted) shortest path from s ∈ V to t ∈ V is path of minimum weight from s to t

• δ(s, t) = inf{w(π) | path π from s to t} is the shortest-path weight from s to t

• (Often use “distance” for shortest-path weight in weighted graphs, not number of edges)

• As with unweighted graphs:

– δ(s, t) = ∞ if no path from s to t

– Subpaths of shortest paths are shortest paths (or else could splice in a shorter path)

• Why infimum not minimum? Possible that no finite-length minimum-weight path exists

• When? Can occur if there is a negative-weight cycle in the graph, Ex: (b, f, g, c, b) in G1

• A negative-weight cycle is a path π starting and ending at same vertex with w(π) < 0

• δ(s, t) = −∞ if there is a path from s to t through a vertex on a negative-weight cycle

• If this occurs, don’t want a shortest path, but may want the negative-weight cycle

Weighted Shortest Paths Algorithms

• Next four lectures: algorithms to find shortest-path weights in weighted graphs

• (No parent pointers: can reconstruct shortest paths tree in linear time after. Next page!)

• Already know one algorithm: Breadth-First Search! Runs in O(|V | + |E|) time when, e.g.:

– graph has positive weights, and all weights are the same

– graph has positive weights, and sum of all weights at most O(|V | + |E|)

• For general weighted graphs, we don’t know how to solve SSSP in O(|V | + |E|) time

• But if your graph is a Directed Acyclic Graph you can!

|V | log |V | + |E|

3 Lecture 11: Weighted Shortest Paths

Shortest-Paths Tree

• For BFS, we kept track of parent pointers during search. Alternatively, compute them after!

• If know δ(s, v) for all vertices v ∈ V , can construct shortest-path tree in O(|V | + |E|) time

• For weighted shortest paths from s, only need parent pointers for vertices v with finite δ(s, v)

• Initialize empty P and set P (s) = None

• For each vertex u ∈ V where δ(s, v) is finite:

– For each outgoing neighbor v ∈ Adj+(u):

∗ If P (v) not assigned and δ(s, v) = δ(s, u) + w(u, v):
· There exists a shortest path through edge (u, v), so set P (v) = u

• Parent pointers may traverse cycles of zero weight. Mark each vertex in such a cycle.

• For each unmarked vertex u ∈ V (including vertices later unmarked):

– For each v ∈ Adj+(u) where v is marked and δ(s, v) = δ(s, u) + w(u, v):

∗ Unmark vertices in cycle containing v by traversing parent pointers from v

∗ Set P (v) = u, breaking the cycle

• Exercise: Prove this algorithm correctly computes parent pointers in linear time

• Because we can compute parent pointers afterward, we focus on computing distances

DAG Relaxation

• Idea! Maintain a distance estimate d(s, v) (initially ∞) for each vertex v ∈ V ,
that always upper bounds true distance δ(s, v), then gradually lowers until d(s, v) = δ(s, v)

• When do we lower? When an edge violates the triangle inequality!

• Triangle Inequality: the shortest-path weight from u to v cannot be greater than the shortest
path from u to v through another vertex x, i.e., δ(u, v) ≤ δ(u, x)+ δ(x, v) for all u, v, x ∈ V

• If d(s, v) > d(s, u) + w(u, v) for some edge (u, v), then triangle inequality is violated :(

• Fix by lowering d(s, v) to d(s, u) + w(u, v), i.e., relax (u, v) to satisfy violated constraint

• Claim: Relaxation is safe: maintains that each d(s, v) is weight of a path to v (or ∞) ∀v ∈ V

• Proof: Assume d(s, v0) is weight of a path (or ∞) for all v0 ∈ V . Relaxing some edge (u, v)
sets d(s, v) to d(s, u) + w(u, v), which is the weight of a path from s to v through u.

4 Lecture 11: Weighted Shortest Paths

• Set d(s, v) = ∞ for all v ∈ V , then set d(s, s) = 0

• Process each vertex u in a topological sort order of G:

– For each outgoing neighbor v ∈ Adj+(u):

∗ If d(s, v) > d(s, u) + w(u, v):
· relax edge (u, v), i.e., set d(s, v) = d(s, u) + w(u, v)

• Example: Run DAG Relaxation from vertex a in G2

Correctness

• Claim: At end of DAG Relaxation: d(s, v) = δ(s, v) for all v ∈ V

• Proof: Induct on k: d(s, v) = δ(s, v) for all v in first k vertices in topological order

– Base case: Vertex s and every vertex before s in topological order satisfies claim at start

– Inductive step: Assume claim holds for first k0 vertices, let v be the (k0 + 1)th

– Consider a shortest path from s to v, and let u be the vertex preceding v on path

– u occurs before v in topological order, so d(s, u) = δ(s, u) by induction

– When processing u, d(s, v) is set to be no larger (≤) than δ(s, u) + w(u, v) = δ(s, v)

– But d(s, v) ≥ δ(s, v), since relaxation is safe, so d(s, v) = δ(s, v)

• Alternatively:

– For any vertex v, DAG relaxation sets d(s, v) = min{d(s, u)+w(u, v) | u ∈ Adj−(v)}
– Shortest path to v must pass through some incoming neighbor u of v

– So if d(s, u) = δ(s, u) for all u ∈ Adj−(v) by induction, then d(s, v) = δ(s, v)

Running Time

• Initialization takes O(|V |) time, and Topological Sort takes O(|V | + |E|) time P
• Additional work upper bounded by O(1) × deg+(u) = O(|E|)u∈V

• Total running time is linear, O(|V | + |E|)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

