
   
    

            

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 11: Weighted Shortest Paths 

Lecture 11: Weighted Shortest Paths 

Review 

• Single-Source Shortest Paths with BFS in O(|V | + |E|) time (return distance per vertex) 

• Single-Source Reachability with BFS or DFS in O(|E|) time (return only reachable vertices) 

• Connected components with Full-BFS or Full-DFS in O(|V | + |E|) time 

• Topological Sort of a DAG with Full-DFS in O(|V | + |E|) time 

• Previously: distance = number of edges in path Today: generalize meaning of distance 

Weighted Graphs 

• A weighted graph is a graph G = (V, E) together with a weight function w : E → Z 

• i.e., assigns each edge e = (u, v) ∈ E an integer weight: w(e) = w(u, v) 

• Many applications for edge weights in a graph: 

– distances in road network 

– latency in network connections 

– strength of a relationship in a social network 

• Two common ways to represent weights computationally: 

– Inside graph representation: store edge weight with each vertex in adjacency lists 

– Store separate Set data structure mapping each edge to its weight 

• We assume a representation that allows querying the weight of an edge in O(1) time 

Examples 

G1 G2 

a 

e 

b 

f 

c 

g 

d 

h 

6 

8 

−2 

5 

9 

−5 

7 

3 2 

−1 

−4 1 4 

a 

e 

b 

f 

c 

g 

d 

h 

6 

8 

−2 

5 

9 

−5 

7 

3 2 

−1 

−4 1 4 



2 

Restrictions SSSP Algorithm 
Graph Weights Name Running Time O(·) Lecture 

General Unweighted BFS |V | + |E| L09 
L11 (Today!) 
L12 
L13 

DAG Any DAG Relaxation |V | + |E|
General Any Bellman-Ford 

Dijkstra 
|V | · |E|

General Non-negative 

Lecture 11: Weighted Shortest Paths 

Weighted Paths 

• The weight w(π) of a path π in a weighted graph is the sum of weights of edges in the path 

• The (weighted) shortest path from s ∈ V to t ∈ V is path of minimum weight from s to t 

• δ(s, t) = inf{w(π) | path π from s to t} is the shortest-path weight from s to t 

• (Often use “distance” for shortest-path weight in weighted graphs, not number of edges) 

• As with unweighted graphs: 

– δ(s, t) = ∞ if no path from s to t 

– Subpaths of shortest paths are shortest paths (or else could splice in a shorter path) 

• Why infimum not minimum? Possible that no finite-length minimum-weight path exists 

• When? Can occur if there is a negative-weight cycle in the graph, Ex: (b, f, g, c, b) in G1 

• A negative-weight cycle is a path π starting and ending at same vertex with w(π) < 0 

• δ(s, t) = −∞ if there is a path from s to t through a vertex on a negative-weight cycle 

• If this occurs, don’t want a shortest path, but may want the negative-weight cycle 

Weighted Shortest Paths Algorithms 

• Next four lectures: algorithms to find shortest-path weights in weighted graphs 

• (No parent pointers: can reconstruct shortest paths tree in linear time after. Next page!) 

• Already know one algorithm: Breadth-First Search! Runs in O(|V | + |E|) time when, e.g.: 

– graph has positive weights, and all weights are the same 

– graph has positive weights, and sum of all weights at most O(|V | + |E|) 

• For general weighted graphs, we don’t know how to solve SSSP in O(|V | + |E|) time 

• But if your graph is a Directed Acyclic Graph you can! 

|V | log |V | + |E| 
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Shortest-Paths Tree 

• For BFS, we kept track of parent pointers during search. Alternatively, compute them after! 

• If know δ(s, v) for all vertices v ∈ V , can construct shortest-path tree in O(|V | + |E|) time 

• For weighted shortest paths from s, only need parent pointers for vertices v with finite δ(s, v) 

• Initialize empty P and set P (s) = None 

• For each vertex u ∈ V where δ(s, v) is finite: 

– For each outgoing neighbor v ∈ Adj+(u): 

∗ If P (v) not assigned and δ(s, v) = δ(s, u) + w(u, v): 
· There exists a shortest path through edge (u, v), so set P (v) = u 

• Parent pointers may traverse cycles of zero weight. Mark each vertex in such a cycle. 

• For each unmarked vertex u ∈ V (including vertices later unmarked): 

– For each v ∈ Adj+(u) where v is marked and δ(s, v) = δ(s, u) + w(u, v): 

∗ Unmark vertices in cycle containing v by traversing parent pointers from v 

∗ Set P (v) = u, breaking the cycle 

• Exercise: Prove this algorithm correctly computes parent pointers in linear time 

• Because we can compute parent pointers afterward, we focus on computing distances 

DAG Relaxation 

• Idea! Maintain a distance estimate d(s, v) (initially ∞) for each vertex v ∈ V , 
that always upper bounds true distance δ(s, v), then gradually lowers until d(s, v) = δ(s, v) 

• When do we lower? When an edge violates the triangle inequality! 

• Triangle Inequality: the shortest-path weight from u to v cannot be greater than the shortest 
path from u to v through another vertex x, i.e., δ(u, v) ≤ δ(u, x)+ δ(x, v) for all u, v, x ∈ V 

• If d(s, v) > d(s, u) + w(u, v) for some edge (u, v), then triangle inequality is violated :( 

• Fix by lowering d(s, v) to d(s, u) + w(u, v), i.e., relax (u, v) to satisfy violated constraint 

• Claim: Relaxation is safe: maintains that each d(s, v) is weight of a path to v (or ∞) ∀v ∈ V 

• Proof: Assume d(s, v0) is weight of a path (or ∞) for all v0 ∈ V . Relaxing some edge (u, v) 
sets d(s, v) to d(s, u) + w(u, v), which is the weight of a path from s to v through u. 
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• Set d(s, v) = ∞ for all v ∈ V , then set d(s, s) = 0 

• Process each vertex u in a topological sort order of G: 

– For each outgoing neighbor v ∈ Adj+(u): 

∗ If d(s, v) > d(s, u) + w(u, v): 
· relax edge (u, v), i.e., set d(s, v) = d(s, u) + w(u, v) 

• Example: Run DAG Relaxation from vertex a in G2 

Correctness 

• Claim: At end of DAG Relaxation: d(s, v) = δ(s, v) for all v ∈ V 

• Proof: Induct on k: d(s, v) = δ(s, v) for all v in first k vertices in topological order 

– Base case: Vertex s and every vertex before s in topological order satisfies claim at start 

– Inductive step: Assume claim holds for first k0 vertices, let v be the (k0 + 1)th 

– Consider a shortest path from s to v, and let u be the vertex preceding v on path 

– u occurs before v in topological order, so d(s, u) = δ(s, u) by induction 

– When processing u, d(s, v) is set to be no larger (≤) than δ(s, u) + w(u, v) = δ(s, v) 

– But d(s, v) ≥ δ(s, v), since relaxation is safe, so d(s, v) = δ(s, v) 

• Alternatively: 

– For any vertex v, DAG relaxation sets d(s, v) = min{d(s, u)+w(u, v) | u ∈ Adj−(v)} 
– Shortest path to v must pass through some incoming neighbor u of v 

– So if d(s, u) = δ(s, u) for all u ∈ Adj−(v) by induction, then d(s, v) = δ(s, v) 

Running Time 

• Initialization takes O(|V |) time, and Topological Sort takes O(|V | + |E|) time P 
• Additional work upper bounded by O(1) × deg+(u) = O(|E|)u∈V 

• Total running time is linear, O(|V | + |E|) 
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