

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 20: Course Review

Lecture 20: Course Review

6.006: Introduction to Algorithms

• Goals:

1. Solve hard computational problems (with non-constant-sized inputs)

2. Argue an algorithm is correct (Induction, Recursion)

3. Argue an algorithm is “good” (Asymptotics, Model of Computation)

– (effectively communicate all three above, to human or computer)

• Do there always exist “good” algorithms?

– Most problems are not solvable efficiently, but many we think of are!

– Polynomial means polynomial in size of input

– Pseudopolynomial means polynomial in size of input AND size of numbers in input

– NP: Nondeterministic Polynomial time, polynomially checkable certificates

– NP-hard: set of problems that can be used to solve any problem in NP in poly-time

– NP-complete: intersection of NP-hard and NP

How to solve an algorithms problem?

• Reduce to a problem you know how to solve

– Search/Sort (Q1)

∗ Search: Extrinsic (Sequence) and Intrinsic (Set) Data Structures
∗ Sort: Comparison Model, Stability, In-place

– Graphs (Q2)

∗ Reachability, Connected Components, Cycle Detection, Topological Sort
∗ Single-Source / All-Pairs Shortest Paths

• Design a new recursive algorithm

– Brute Force

– Divide & Conquer

– Dynamic Programming (Q3)

– Greedy/Incremental

2 Lecture 20: Course Review

Next Steps

• (U) 6.046: Design & Analysis of Algorithms

• (G) 6.851: Advanced Data Structures

• (G) 6.854: Advanced Algorithms

6.046

• Extension of 6.006

– Data Structures: Union-Find, Amortization via potential analysis

– Graphs: Minimum Spanning Trees, Network Flows/Cuts

– Algorithm Design (Paradigms): Divide & Conquer, Dynamic Programming, Greedy

– Complexity: Reductions

• Relax Problem (change definition of correct/efficient)

– Randomized Algorithms

∗ 6.006 mostly deterministic (hashing)
∗ Las Vegas: always correct, probably fast (like hashing)
∗ Monte Carlo: always fast, probably correct
∗ Can generally get faster randomized algorithms on structured data

– Numerical Algorithms/Continuous Optimization

∗ 6.006 only deals with integers
∗ Approximate real numbers! Pay time for precision

– Approximation Algorithms

∗ Input optimization problem (min/max over weighted outputs)
∗ Many optimization problems NP-hard
∗ How close can we get to an optimal solution in polynomial time?

• Change Model of Computation

– Cache Models (memory hierarchy cost model)

– Quantum Computer (exploiting quantum properties)

– Parallel Processors (use multiple CPUs instead of just one)

∗ Multicore, large shared memory
∗ Distributed cores, message passing

3 Lecture 20: Course Review

Future Courses

Model Application

• Computation / Complexity (6.045, 6.840, 6.841) • Biology (6.047)

• Randomness (6.842) • Game Theory (6.853)

• Quantum (6.845) • Cryptography (6.875)

• Distributed / message passing (6.852) • Vision (6.819)

• Multicore / shared memory (6.816, 6.846) • Graphics (6.837)

• Graph and Matrix (6.890) • Geometry (6.850)

• Constant Factors / Performance (6.172) • Folding (6.849)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

