Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 7: Binary Trees II: AVL

Lecture 7: Binary Trees II: AVL

Operations $O(\cdot)$

Last Time and Today's Goal

	Sperations 5 ()				
Sequence	Container	Static	Dynamic		
Data Structure	build(X)	get_at(i)	insert_first(x)	insert_last(x)	insert_at(i, x)
		set_at(i,x)	delete_first()	delete_last()	delete_at(i)
Binary Tree	n	h	h	h	h
AVL Tree	n	$\log n$	$\log n$	$\log n$	$\log n$
	Operations $O(\cdot)$				
			Operations C	' (·)	
Set	Container	Static	Dynamic Dynamic	· /	rder
Set Data Structure	Container build(X)	Static find(k)		· /	rder find_prev(k)
			Dynamic	Oı	
			Dynamic insert(x)	On find_min()	find_prev(k)

Height Balance

- How to maintain height $h = O(\log n)$ where n is number of nodes in tree?
- A binary tree that maintains $O(\log n)$ height under dynamic operations is called **balanced**
 - There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, ...)
 - First proposed balancing scheme was the **AVL Tree** (Adelson-Velsky and Landis, 1962)

Rotations

- Need to reduce height of tree without changing its traversal order, so that we represent the same sequence of items
- How to change the structure of a tree, while preserving traversal order? **Rotations!**

• A rotation relinks O(1) pointers to modify tree structure and maintains traversal order

Rotations Suffice

- Claim: O(n) rotations can transform a binary tree to any other with same traversal order.
- **Proof:** Repeatedly perform last possible right rotation in traversal order; resulting tree is a canonical chain. Each rotation increases depth of the last node by 1. Depth of last node in final chain is n-1, so at most n-1 rotations are performed. Reverse canonical rotations to reach target tree.
- Can maintain height-balance by using O(n) rotations to fully balance the tree, but slow :(
- We will keep the tree balanced in $O(\log n)$ time per operation!

AVL Trees: Height Balance

- AVL trees maintain **height-balance** (also called the **AVL Property**)
 - A node is **height-balanced** if heights of its left and right subtrees differ by at most 1
 - Let **skew** of a node be the height of its right subtree minus that of its left subtree
 - Then a node is height-balanced if its skew is -1, 0, or 1
- Claim: A binary tree with height-balanced nodes has height $h = O(\log n)$ (i.e., $n = 2^{\Omega(h)}$)
- **Proof:** Suffices to show fewest nodes F(h) in any height h tree is $F(h) = 2^{\Omega(h)}$

$$F(0) = 1, F(1) = 2, F(h) = 1 + F(h-1) + F(h-2) \ge 2F(h-2) \implies F(h) \ge 2^{h/2}$$

- Suppose adding or removing leaf from a height-balanced tree results in imbalance
 - Only subtrees of the leaf's ancestors have changed in height or skew
 - Heights changed by only ± 1 , so skews still have magnitude ≤ 2
 - Idea: Fix height-balance of ancestors starting from leaf up to the root
 - Repeatedly rebalance lowest ancestor that is not height-balanced, wlog assume skew 2

- Local Rebalance: Given binary tree node :
 - whose skew 2 and
 - every other node in 's subtree is height-balanced,
 - then 's subtree can be made height-balanced via one or two rotations
 - (after which 's height is the same or one less than before)

• Proof:

- Since skew of is 2, 's right child <F> exists
- Case 1: skew of $\langle F \rangle$ is 0 or Case 2: skew of $\langle F \rangle$ is 1
 - * Perform a left rotation on

- * Let $h = \text{height}(\langle A \rangle)$. Then $\text{height}(\langle G \rangle) = h + 1$ and $\text{height}(\langle D \rangle)$ is h + 1 in Case 1, h in Case 2
- * After rotation:
 - the skew of is either 1 in Case 1 or 0 in Case 2, so is height balanced
 - the skew of $\langle F \rangle$ is -1, so $\langle F \rangle$ is height balanced
 - the height of before is h+3, then after is h+3 in Case 1, h+2 in Case 2
- Case 3: skew of $\langle F \rangle$ is -1, so the left child $\langle D \rangle$ of $\langle F \rangle$ exists
 - * Perform a right rotation on <F>, then a left rotation on

- * Let $h = \operatorname{height}(\langle A \rangle)$. Then $\operatorname{height}(\langle G \rangle) = h$ while $\operatorname{height}(\langle C \rangle)$ and $\operatorname{height}(\langle E \rangle)$ are each either h or h-1
- * After rotation:
 - the skew of $\langle B \rangle$ is either 0 or -1, so $\langle B \rangle$ is height balanced
 - the skew of $\langle F \rangle$ is either 0 or 1, so $\langle F \rangle$ is height balanced
 - the skew of $\langle D \rangle$ is 0, so D is height balanced
 - the height of is h+3 before, then after is h+2

• Global Rebalance: Add or remove a leaf from height-balanced tree T to produce tree T'. Then T' can be transformed into a height-balanced tree T'' using at most $O(\log n)$ rotations.

• Proof:

- Only ancestors of the affected leaf have different height in T' than in T
- Affected leaf has at most $h = O(\log n)$ ancestors whose subtrees may have changed
- Let <X> be lowest ancestor that is not height-balanced (with skew magnitude 2)
- If a leaf was added into T:
 - * Insertion increases height of <X>, so in Case 2 or 3 of Local Rebalancing
 - * Rotation decreases subtree height: balanced after one rotation
- If a leaf was removed from T:
 - * Deletion decreased height of one child of <X>, not <X>, so only imbalance
 - * Could decrease height of <x> by 1; parent of <x> may now be imbalanced
 - * So may have to rebalance every ancestor of <x>, but at most $h = O(\log n)$ of them
- So can maintain height-balance using only $O(\log n)$ rotations after insertion/deletion!
- But requires us to evaluate whether possibly $O(\log n)$ nodes were height-balanced

Computing Height

- How to tell whether node <x> is height-balanced? Compute heights of subtrees!
- How to compute the height of node <X>? Naive algorithm:
 - Recursively compute height of the left and right subtrees of <X>
 - Add 1 to the max of the two heights
 - Runs in $\Omega(n)$ time, since we recurse on every node :(
- Idea: Augment each node with the height of its subtree! (Save for later!)
- Height of < x > can be computed in O(1) time from the heights of its children:
 - Look up the stored heights of left and right subtrees in O(1) time
 - Add 1 to the max of the two heights
- During dynamic operations, we must **maintain** our augmentation as the tree changes shape
- Recompute subtree augmentations at every node whose subtree changes:
 - Update relinked nodes in a rotation operation in O(1) time (ancestors don't change)
 - Update all ancestors of an inserted or deleted node in O(h) time by walking up the tree

Steps to Augment a Binary Tree

- In general, to augment a binary tree with a **subtree property** P, you must:
 - State the subtree property P (<X>) you want to store at each node <X>
 - Show how to compute $P(\langle X \rangle)$ from the augmentations of $\langle X \rangle$'s children in O(1) time
- Then stored property P (<X>) can be maintained without changing dynamic operation costs

Application: Sequence

- For sequence binary tree, we needed to know subtree sizes
- For just inserting/deleting a leaf, this was easy, but now need to handle rotations
- Subtree size is a subtree property, so can maintain via augmentation
 - Can compute size from sizes of children by summing them and adding 1

Conclusion

- Set AVL trees achieve $O(\lg n)$ time for all set operations, except $O(n \log n)$ time for build and O(n) time for iter
- Sequence AVL trees achieve $O(\lg n)$ time for all sequence operations, except O(n) time for build and iter

Application: Sorting

- Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter
- For example, Direct Access Array Sort from Lecture 5
- AVL Sort is a new $O(n \lg n)$ -time sorting algorithm

MIT OpenCourseWare https://ocw.mit.edu

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms