Introduction to Algorithms: 6.006
Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Lecture 7: Binary Trees II: AVL

Lecture 7: Binary Trees I1: AVL

Last Time and Today’s Goal

Operations O(-)

Sequence Container Static Dynamic

Data Structure build (X) get_at (i) insert_first (x) insert_last (x) insert_at (i, x)

set_at (1, x) delete_first () delete_last () delete_at (1)

Binary Tree n h h h h

AVL Tree \H n H logn H logn] logn ‘ logn m
Operations O(-)

Set Container Static Dynamic Order

Data Structure build (X) £ind (k) insert (x) find_min () find_prev (k)
delete (k) find_max () find_next (k)

Binary Tree nlogn h h h h

AVL Tree \H nlogn H logn H logn H logn ‘ logn m

Height Balance

e How to maintain height h = O(logn) where n is number of nodes in tree?

e A binary tree that maintains O(log n) height under dynamic operations is called balanced

— There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, ...)

— First proposed balancing scheme was the AVL Tree (Adelson-Velsky and Landis, 1962)

Rotations

e Need to reduce height of tree without changing its traversal order, so that we represent the

same sequence of items

e How to change the structure of a tree, while preserving traversal order? Rotations!

<D>_ rotate_right (<D>) _
_ ___ <E> => <A> _ <D>___
<A> <C> / \ / \ <C> <E>
/ N\ /N /N <= /N / N\ / N\
/N /___\ rotate_left () /N /___\

e A rotation relinks O(1) pointers to modify tree structure and maintains traversal order

2 Lecture 7: Binary Trees II: AVL

Rotations Suffice

e Claim: O(n) rotations can transform a binary tree to any other with same traversal order.

e Proof: Repeatedly perform last possible right rotation in traversal order; resulting tree is a
canonical chain. Each rotation increases depth of the last node by 1. Depth of last node in
final chain is n — 1, so at most n — 1 rotations are performed. Reverse canonical rotations to
reach target tree. [

e Can maintain height-balance by using O(n) rotations to fully balance the tree, but slow :(

e We will keep the tree balanced in O(logn) time per operation!

AVL Trees: Height Balance
e AVL trees maintain height-balance (also called the AVL Property)
— A node is height-balanced if heights of its left and right subtrees differ by at most 1

— Let skew of a node be the height of its right subtree minus that of its left subtree

— Then a node is height-balanced if its skew is —1,0, or 1

e Claim: A binary tree with height-balanced nodes has height h = O(logn) (i.e., n = 2%")

e Proof: Suffices to show fewest nodes F'(h) in any height A tree is F'(h) = 2%

F(0)=1, F(1) =2, F(h) = 1+F(h—1)+F(h—2) > 2F(h—2) = F(h) >2"? [

e Suppose adding or removing leaf from a height-balanced tree results in imbalance

Only subtrees of the leaf’s ancestors have changed in height or skew

Heights changed by only +1, so skews still have magnitude < 2

Idea: Fix height-balance of ancestors starting from leaf up to the root

Repeatedly rebalance lowest ancestor that is not height-balanced, wlog assume skew 2

Lecture 7: Binary Trees II: AVL 3

e Local Rebalance: Given binary tree node :

whose skew 2 and

every other node in ’s subtree is height-balanced,

then ’s subtree can be made height-balanced via one or two rotations

(after which ’s height is the same or one less than before)

e Proof:

— Since skew of is 2, ’s right child <F> exists
— Case 1: skew of <> is 0 or Case 2: skew of <F>is 1

* Perform a left rotation on

« Let h = height(<a>). Then height(<G>) = h 4 1 and height(<D>) is & + 1 in
Case 1, hin Case 2
* After rotation:
- the skew of is either 1 in Case 1 or 0 in Case 2, so is height balanced
- the skew of <F> is —1, so <F> is height balanced
- the height of before is h + 3, then after is & 4 3 in Case 1, h + 2 in Case 2
— Case 3: skew of <F> is —1, so the left child <D> of <F> exists

* Perform a right rotation on <¥>, then a left rotation on

1 <D>

/ \ __<D> <G> => <A> <C> <E> <G>

« Let h = height(<a>). Then height(<G>) = h while height(<C>) and height(<E>)
are each either hor h — 1
x After rotation:
- the skew of is either 0 or —1, so is height balanced
- the skew of <F> is either 0 or 1, so <F> is height balanced
- the skew of <D> is 0, so D is height balanced
- the height of is h + 3 before, then after is h + 2

4 Lecture 7: Binary Trees II: AVL

¢ Global Rebalance: Add or remove a leaf from height-balanced tree 7" to produce tree 7”.
Then 7" can be transformed into a height-balanced tree 7" using at most O(log n) rotations.

e Proof:

Only ancestors of the affected leaf have different height in 7" than in T’

Affected leaf has at most h = O(log n) ancestors whose subtrees may have changed

Let <x> be lowest ancestor that is not height-balanced (with skew magnitude 2)
If a leaf was added into 71"

x Insertion increases height of <x>, so in Case 2 or 3 of Local Rebalancing
* Rotation decreases subtree height: balanced after one rotation

If a leaf was removed from 7'

x Deletion decreased height of one child of <x>, not <x>, so only imbalance
x Could decrease height of <x> by 1; parent of <X> may now be imbalanced
* So may have to rebalance every ancestor of <x>, but at most 4 = O(log n) of them

e So can maintain height-balance using only O(logn) rotations after insertion/deletion!

e But requires us to evaluate whether possibly O(logn) nodes were height-balanced

Computing Height

How to tell whether node <x> is height-balanced? Compute heights of subtrees!

How to compute the height of node <x>? Naive algorithm:

— Recursively compute height of the left and right subtrees of <x>
— Add 1 to the max of the two heights

— Runs in 2(n) time, since we recurse on every node :(

Idea: Augment each node with the height of its subtree! (Save for later!)

Height of <x> can be computed in O(1) time from the heights of its children:

— Look up the stored heights of left and right subtrees in O(1) time
— Add 1 to the max of the two heights

During dynamic operations, we must maintain our augmentation as the tree changes shape

Recompute subtree augmentations at every node whose subtree changes:

— Update relinked nodes in a rotation operation in O(1) time (ancestors don’t change)

— Update all ancestors of an inserted or deleted node in O(h) time by walking up the tree

Lecture 7: Binary Trees II: AVL 5

Steps to Augment a Binary Tree

e In general, to augment a binary tree with a subtree property P, you must:

— State the subtree property P (<x>) you want to store at each node <x>

— Show how to compute P (<x>) from the augmentations of <x>’s children in O(1) time

e Then stored property P (<X>) can be maintained without changing dynamic operation costs

Application: Sequence

e For sequence binary tree, we needed to know subtree sizes
e For just inserting/deleting a leaf, this was easy, but now need to handle rotations
e Subtree size is a subtree property, so can maintain via augmentation

— Can compute size from sizes of children by summing them and adding 1

Conclusion

e Set AVL trees achieve O(lgn) time for all set operations,
except O(n logn) time for build and O(n) time for iter

e Sequence AVL trees achieve O(lgn) time for all sequence operations,
except O(n) time for build and iter

Application: Sorting
e Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter

e For example, Direct Access Array Sort from Lecture 5

e AVL Sort is a new O(nlgn)-time sorting algorithm

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	L07.pdf
	cover.pdf
	Blank Page

