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Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 15: Recursive Algorithms 

Lecture 15: Recursive Algorithms 

How to Solve an Algorithms Problem (Review) 
• Reduce to a problem you already know (use data structure or algorithm) 

Search Data Structures Sort Algorithms Graph Algorithms 
Array Insertion Sort Breadth First Search 
Linked List Selection Sort DAG Relaxation (DFS + Topo) 
Dynamic Array Merge Sort Dijkstra 
Sorted Array Counting Sort Bellman-Ford 
Direct-Access Array Radix Sort Johnson 
Hash Table AVL Sort 
AVL Tree Heap Sort 
Binary Heap 

• Design your own recursive algorithm 

– Constant-sized program to solve arbitrary input 

– Need looping or recursion, analyze by induction 

– Recursive function call: vertex in a graph, directed edge from A → B if B calls A 

– Dependency graph of recursive calls must be acyclic (if can terminate) 

– Classify based on shape of graph 

Class Graph 
Brute Force 
Decrease & Conquer 
Divide & Conquer 
Dynamic Programming 

Star 
Chain 
Tree 
DAG 

Greedy/Incremental Subgraph 

– Hard part is thinking inductively to construct recurrence on subproblems 

– How to solve a problem recursively (SRT BOT) 

1. Subproblem definition 
2. Relate subproblem solutions recursively 
3. Topological order on subproblems (⇒ subproblem DAG) 
4. Base cases of relation 
5. Original problem solution via subproblem(s) 
6. Time analysis 
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Merge Sort in SRT BOT Framework 

• Merge sorting an array A of n elements can be expressed in SRT BOT as follows: 

– Subproblems: S(i, j) = sorted array on elements of A[i : j] for 0 ≤ i ≤ j ≤ n 

– Relation: S(i, j) = merge(S(i, m), S(m, j)) where m = b(i + j)/2c 
– Topo. order: Increasing j − i 

– Base cases: S(i, i + 1) = [A[i]] 

– Original: S(0, n) 

– Time: T (n) = 2 T (n/2) + O(n) = O(n lg n) 

• In this case, subproblem DAG is a tree (divide & conquer) 

Fibonacci Numbers 

• Suppose we want to compute the nth Fibonacci number Fn 

• Subproblems: F (i) = the ith Fibonacci number Fi for i ∈ {0, 1, . . . , n} 

• Relation: F (i) = F (i − 1) + F (i − 2) (definition of Fibonacci numbers) 

• Topo. order: Increasing i 

• Base cases: F (0) = 0, F (1) = 1 

• Original prob.: F (n) 

1 def fib(n): 
2 if n < 2: return n # base case 
3 return fib(n - 1) + fib(n - 2) # recurrence 

• Divide and conquer implies a tree of recursive calls (draw tree) 

• Time: T (n) = T (n − 1) + T (n − 2) + O(1) > 2T (n − 2), T (n) = Ω(2n/2) exponential... :( 

• Subproblem F (k) computed more than once! (F (n − k) times) 

• Can we avoid this waste? 
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Re-using Subproblem Solutions 

• Draw subproblem dependencies as a DAG 

• To solve, either: 

– Top down: record subproblem solutions in a memo and re-use 
(recursion + memoization) 

– Bottom up: solve subproblems in topological sort order (usually via loops) 

• For Fibonacci, n + 1 subproblems (vertices) and < 2n dependencies (edges) 

• Time to compute is then O(n) additions 

1 # recursive solution (top down) 
2 def fib(n): 
3 memo = {} 
4 def F(i): 
5 if i < 2: return i # base cases 
6 if i not in memo: # check memo 
7 memo[i] = F(i - 1) + F(i - 2) # relation 
8 return memo[i] 
9 return F(n) # original 

1 # iterative solution (bottom up) 
2 def fib(n): 
3 F = {} 
4 F[0], F[1] = 0, 1 # base cases 
5 for i in range(2, n + 1): # topological order 
6 F[i] = F[i - 1] + F[i - 2] # relation 
7 return F[n] # original 

• A subtlety is that Fibonacci numbers grow to Θ(n) bits long, potentially � word size w 

• Each addition costs O(dn/we) time 

• So total cost is O(ndn/we) = O(n + n2/w) time 
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Dynamic Programming 

• Weird name coined by Richard Bellman 

– Wanted government funding, needed cool name to disguise doing mathematics! 

– Updating (dynamic) a plan or schedule (program) 

• Existence of recursive solution implies decomposable subproblems1 

• Recursive algorithm implies a graph of computation 

• Dynamic programming if subproblem dependencies overlap (DAG, in-degree > 1) 

• “Recurse but re-use” (Top down: record and lookup subproblem solutions) 

• “Careful brute force” (Bottom up: do each subproblem in order) 

• Often useful for counting/optimization problems: almost trivially correct recurrences 

How to Solve a Problem Recursively (SRT BOT) 
1. Subproblem definition subproblem x ∈ X 

• Describe the meaning of a subproblem in words, in terms of parameters 

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence 

• Often record partial state: add subproblems by incrementing some auxiliary variables 

2. Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i 

3. Topological order to argue relation is acyclic and subproblems form a DAG 

4. Base cases 

• State solutions for all (reachable) independent subproblems where relation breaks down 

5. Original problem 

• Show how to compute solution to original problem from solutions to subproblem(s) 

• Possibly use parent pointers to recover actual solution, not just objective function 

6. Time analysis P 
• work(x), or if work(x) = O(W ) for all x ∈ X , then |X| · O(W )x∈X 

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time 

1This property often called optimal substructure. It is a property of recursion, not just dynamic programming 



5 Lecture 15: Recursive Algorithms 

DAG Shortest Paths 

• Recall the DAG SSSP problem: given a DAG G and vertex s, compute δ(s, v) for all v ∈ V 

• Subproblems: δ(s, v) for all v ∈ V 

• Relation: δ(s, v) = min{δ(s, u) + w(u, v) | u ∈ Adj−(v)} ∪ {∞} 

• Topo. order: Topological order of G 

• Base cases: δ(s, s) = 0 

• Original: All subproblems P 
• Time: O(1 + | Adj−(v)|) = O(|V | + |E|)v∈V 

• DAG Relaxation computes the same min values as this dynamic program, just 

– step-by-step (if new value < min, update min via edge relaxation), and 

– from the perspective of u and Adj+(u) instead of v and Adj−(v) 

Bowling 

• Given n pins labeled 0, 1, . . . , n − 1 

• Pin i has value vi 

• Ball of size similar to pin can hit either 

– 1 pin i, in which case we get vi points 

– 2 adjacent pins i and i + 1, in which case we get vi · vi+1 points 

• Once a pin is hit, it can’t be hit again (removed) 

• Problem: Throw zero or more balls to maximize total points 

• Example: [ −1, 1 , 1 , 1 , 9, 9 , 3 , −3, −5 , 2, 2 ] 
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Bowling Algorithms 

• Let’s start with a more familiar divide-and-conquer algorithm: 

– Subproblems: B(i, j) = maximum score starting with just pins i, i + 1, . . . , j − 1, 
for 0 ≤ i ≤ j ≤ n 

– Relation: 
∗ m = b(i + j)/2c 
∗ Either hit m and m + 1 together, or don’t 
∗ B(i, j) = max{vm · vm+1 + B(i, m) + B(m + 2, j), B(i, m + 1) + B(m + 1, j)} 

– Topo. order: Increasing j − i 

– Base cases: B(i, i) = 0, B(i, i + 1) = max{vi, 0} 
– Original: B(0, n) 

– Time: T (n) = 4 T (n/2) + O(1) = O(n2) 

• This algorithm works but isn’t very fast, and doesn’t generalize well 
(e.g., to allow for a bigger ball that hits three balls at once) 

• Dynamic programming algorithm: use suffixes 

– Subproblems: B(i) = maximum score starting with just pins i, i + 1, . . . , n − 1, 
for 0 ≤ i ≤ n 

– Relation: 
∗ Locally brute-force what could happen with first pin (original pin i): 

skip pin, hit one pin, hit two pins 
∗ Reduce to smaller suffix and recurse, either B(i + 1) or B(i + 2) 
∗ B(i) = max{B(i + 1), vi + B(i + 1), vi · vi+1 + B(i + 2)} 

– Topo. order: Decreasing i (for i = n, n − 1, . . . , 0) 
– Base cases: B(n) = B(n + 1) = 0 

– Original: B(0) 

– Time: (assuming memoization) 
∗ Θ(n) subproblems · Θ(1) work in each 
∗ Θ(n) total time 

• Fast and easy to generalize! 

• Equivalent to maximum-weight path in Subproblem DAG: 

B0 B1 B2 B3 · · · Bn 

max{v0, 0} max{v1, 0} max{v2, 0} 

v0 · v1 v1 · v2 v2 · v3 



7 Lecture 15: Recursive Algorithms 

Bowling Code 

• Converting a SRT BOT specification into code is automatic/straightforward 

• Here’s the result for the Bowling Dynamic Program above: 

1 # recursive solution (top down) 
2 def bowl(v): 
3 memo = {} 
4 def B(i): 
5 if i >= len(v): return 0 # base cases 
6 if i not in memo: # check memo 
7 memo[i] = max(B(i+1), # relation: skip pin i 
8 v[i] + B(i+1), # OR bowl pin i separately 
9 v[i] * v[i+1] + B(i+2)) # OR bowl pins i and i+1 together 

10 return memo[i] 
11 return B(0) # original 

1 # iterative solution (bottom up) 
2 def bowl(v): 
3 B = {} 
4 B[len(v)] = 0 # base cases 
5 B[len(v)+1] = 0 
6 for i in reversed(range(len(v))): # topological order 
7 B[i] = max(B[i+1], # relation: skip pin i 
8 v[i] + B(i+1), # OR bowl pin i separately 
9 v[i] * v[i+1] + B(i+2)) # OR bowl pins i and i+1 together 

10 return B[0] # original 

How to Relate Subproblem Solutions 

• The general approach we’re following to define a relation on subproblem solutions: 

– Identify a question about a subproblem solution that, if you knew the answer to, would 
reduce to “smaller” subproblem(s) 
∗ In case of bowling, the question is “how do we bowl the first couple of pins?” 

– Then locally brute-force the question by trying all possible answers, and taking the best 
∗ In case of bowling, we take the max because the problem asks to maximize 

– Alternatively, we can think of correctly guessing the answer to the question, and di-
rectly recursing; but then we actually check all possible guesses, and return the “best” 

• The key for efficiency is for the question to have a small (polynomial) number of possible 
answers, so brute forcing is not too expensive 

• Often (but not always) the nonrecursive work to compute the relation is equal to the number 
of answers we’re trying 
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