

Restrictions SSSP Algorithm
Graph Weights Name Running Time O(·)
General Unweighted BFS |V | + |E|
DAG Any DAG Relaxation |V | + |E|
General Non-negative Dijkstra

Bellman-Ford
|V | log |V | + |E|

General Any

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 14: Johnson’s Algorithm

Lecture 14: Johnson’s Algorithm

Previously

|V | · |E|

All-Pairs Shortest Paths (APSP)
• Input: directed graph G = (V, E) with weights w : E → Z

• Output: δ(u, v) for all u, v ∈ V , or abort if G contains negative-weight cycle

• Useful when understanding whole network, e.g., transportation, circuit layout, supply chains...

• Just doing a SSSP algorithm |V | times is actually pretty good, since output has size O(|V |2)

– |V | · O(|V | + |E|) with BFS if weights positive and bounded by O(|V | + |E|)
– |V | · O(|V | + |E|) with DAG Relaxation if acyclic

– |V | · O(|V | log |V | + |E|) with Dijkstra if weights non-negative or graph undirected

– |V | · O(|V | · |E|) with Bellman-Ford (general)

• Today: Solve APSP in any weighted graph in |V | · O(|V | log |V | + |E|) time

2 Lecture 14: Johnson’s Algorithm

Approach

• Idea: Make all edge weights non-negative while preserving shortest paths!

• i.e., reweight G to G0 with no negative weights, where a shortest path in G is shortest in G0

• If non-negative, then just run Dijkstra |V | times to solve APSP

• Claim: Can compute distances in G from distances in G0 in O(|V |(|V | + |E|)) time

– Compute shortest-path tree from distances, for each s ∈ V 0 in O(|V | + |E|) time (L11)

– Also shortest-paths tree in G, so traverse tree with DFS while also computing distances

– Takes O(|V | · (|V | + |E|)) time (which is less time than |V | times Dijkstra)

• But how to make G0 with non-negative edge weights? Is this even possible??

• Claim: Not possible if G contains a negative-weight cycle

• Proof: Shortest paths are simple if no negative weights, but not if negative-weight cycle

• Given graph G with negative weights but no negative-weight cycles,
can we make edge weights non-negative while preserving shortest paths?

Making Weights Non-negative

• Idea! Add negative of smallest weight in G to every edge! All weights non-negative! :)

• FAIL: Does not preserve shortest paths! Biases toward paths traversing fewer edges :(

• Idea! Given vertex v, add h to all outgoing edges and subtract h from all incoming edges

• Claim: Shortest paths are preserved under the above reweighting

• Proof:

– Weight of every path starting at v changes by h

– Weight of every path ending at v changes by −h

– Weight of a path passing through v does not change (locally)

• This is a very general and useful trick to transform a graph while preserving shortest paths!

3 Lecture 14: Johnson’s Algorithm

• Even works with multiple vertices!

• Define a potential function h : V → Z mapping each vertex v ∈ V to a potential h(v)

• Make graph G0: same as G but edge (u, v) ∈ E has weight w0(u, v) = w(u, v)+h(u)−h(v)

• Claim: Shortest paths in G are also shortest paths in G0

• Proof: Pk– Weight of path π = (v0, . . . , vk) in G is w(π) = i=1 w(vi−1, vi)Pk– Weight of π in G0 is: i=1 w(vi−1, vi) + h(vi−1) − h(vi) = w(π) + h(v0) − h(vk)

– (Sum of h’s telescope, since there is a positive and negative h(vi) for each interior i)

– Every path from v0 to vk changes by the same amount

– So any shortest path will still be shortest

Making Weights Non-negative

• Can we find a potential function such that G0 has no negative edge weights?

• i.e., is there an h such that w(u, v) + h(u) − h(v) ≥ 0 for every (u, v) ∈ E?

• Re-arrange this condition to h(v) ≤ h(u) + w(u, v), looks like triangle inequality!

• Idea! Condition would be satisfied if h(v) = δ(s, v) and δ(s, v) is finite for some s

• But graph may be disconnected, so may not exist any such vertex s... :(

• Idea! Add a new vertex s with a directed 0-weight edge to every v ∈ V ! :)

• δ(s, v) ≤ 0 for all v ∈ V , since path exists a path of weight 0

• Claim: If δ(s, v) = −∞ for any v ∈ V , then the original graph has a negative-weight cycle

• Proof:

– Adding s does not introduce new cycles (s has no incoming edges)

– So if reweighted graph has a negative-weight cycle, so does the original graph

• Alternatively, if δ(s, v) is finite for all v ∈ V :

– w0(u, v) = w(u, v) + h(u) − h(v) ≥ 0 for every (u, v) ∈ E by triangle inequality!

– New weights in G0 are non-negative while preserving shortest paths!

4 Lecture 14: Johnson’s Algorithm

Johnson’s Algorithm

• Construct Gx from G by adding vertex x connected to each vertex v ∈ V with 0-weight edge

• Compute δx(x, v) for every v ∈ V (using Bellman-Ford)

• If δx(x, v) = −∞ for any v ∈ V :

– Abort (since there is a negative-weight cycle in G)

• Else:

– Reweight each edge w0(u, v) = w(u, v) + δx(x, u) − δx(x, v) to form graph G0

– For each u ∈ V :

∗ Compute shortest-path distances δ0(u, v) to all v in G0 (using Dijkstra)
∗ Compute δ(u, v) = δ0(u, v) − δx(x, u) + δx(x, v) for all v ∈ V

Correctness

• Already proved that transformation from G to G0 preserves shortest paths

• Rest reduces to correctness of Bellman-Ford and Dijkstra

• Reducing from Signed APSP to Non-negative APSP

• Reductions save time! No induction today! :)

Running Time

• O(|V | + |E|) time to construct Gx

• O(|V ||E|) time for Bellman-Ford

• O(|V | + |E|) time to construct G0

• O(|V | · (|V | log |V | + |E|)) time for |V | runs of Dijkstra

• O(|V |2) time to compute distances in G from distances in G0

• O(|V |2 log |V | + |V ||E|) time in total

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

