

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 2

Problem Set 2
Please write your solutions in the LATEX and Python templates provided. Aim for concise
solutions; convoluted and obtuse descriptions might receive low marks, even when they are
correct.

Problem 2-1. [15 points] Solving recurrences
Derive solutions to the following recurrences. A solution should include the tightest upper and
lower bounds that the recurrence will allow. Assume T (1) = Θ(1).

Solve parts (a), (b), and (c) in two ways: drawing a recursion tree and applying Master Theorem.
Solve part (d) only by substitution.

(a) [4 points] T (n) = 4 T (n) + O(n)
n√

(c) [4 points] nT () 2 T (n =
2

2

(b) [4 points] T (n) = 3 T (4)) + O(n
2

) + 5n log n

(d) [3 points] T (n) = T (n − 2) + Θ(n)

Problem 2-2. [15 points] Sorting Sorts
For each of the following scenarios, choose a sorting algorithm (from either selection sort, insertion
sort, or merge sort) that best applies, and justify your choice. Don’t forget this! Your justification
will be worth more points than your choice. Each sort may be used more than once. If you find
that multiple sorts could be appropriate for a scenario, identify their pros and cons, and choose the
one that best suits the application. State and justify any assumptions you make. “Best” should be
evaluated by asymptotic running time.

(a) [5 points] Suppose you are given a data structure D maintaining an extrinsic order
on n items, supporting two standard sequence operations: D.get at(i) in worst-
case Θ(1) time and D.set at(i, x) in worst-case Θ(n log n) time. Choose an
algorithm to best sort the items in D in-place.

(b) [5 points] Suppose you have a static array A containing pointers to n comparable
objects, pairs of which take Θ(log n) time to compare. Choose an algorithm to best
sort the pointers in A so that the pointed-to objects appear in non-decreasing order.

(c) [5 points] Suppose you have a sorted array A containing n integers, each of which
fits into a single machine word. Now suppose someone performs some log log n swaps
between pairs of adjacent items in A so that A is no longer sorted. Choose an algorithm
to best re-sort the integers in A.

2 Problem Set 2

Problem 2-3. [10 points] Friend Finder
Jean-Locutus Πcard is searching for his incapacitated friend, Datum, on Gravity Island. The is-
land is a narrow strip running north–south for n kilometers, and Πcard needs to pinpoint Datum’s
location to the nearest integer kilometer so that he is within visual range. Fortunately, Πcard has a
tracking device, which will always tell him whether Datum is north or south of his current position
(but sadly, not how far away he is), as well as a teleportation device, which allows him to jump to
specified coordinates on the island in constant time.

Unfortunately, Gravity Island is rapidly sinking. The topography of the island is such that the
north and south ends will submerge into the water first, with the center of the island submerging
last. Therefore, it is more important that Πcard find Datum quickly if he is close to either end of
the island, lest he short-circuit. Describe an algorithm so that, if Datum is k kilometers from the
nearest end of the island (i.e., he is either at the kth or the (n − k)th kilometer, measured from
north to south), then Πcard can find him after visiting O(log k) locations with his teleportation and
tracking devices.

Problem 2-4. [15 points] MixBookTube.tv Chat
MixBookTube.tv is a service that lets viewers chat while watching someone play video games.
Each viewer is identified by a known unique integer ID1. The chat consists of a linear stream of
messages, each written by a viewer. Viewers can see the most recent k chat messages, where k
depends on the size of their screen. Sometimes a viewer misbehaves in chat and gets banned by
the streamer. When a viewer gets banned, not only can they not post new messages in chat, but all
of their previously sent messages are removed from the chat.

Describe a database to efficiently implement MixBookTube.tv’s chat, supporting the following
operations, where n is the number of all viewers (banned or not) in the database at the time of the
operation (all operations should be worst-case):

build(V) Initialize a new chat room with the n = |V| viewers in V in O(n log n) time.
send(v, m) Send message m to the chat from viewer v (unless banned) in O(log n) time.
recent(k) Return the k most recent not-deleted messages (or all if < k) in O(k) time.
ban(v) Ban viewer v and delete all their messages in O(nv + log n) time,

where nv is the number of messages that viewer v sent before being banned.

1As mentioned in lecture, unless we parameterize the size of numbers in our input, you should assume that input
integers each fit within a machine word, so pairs of them may be compared in constant time.

https://MixBookTube.tv
https://MixBookTube.tv

3 Problem Set 2

Problem 2-5. [45 points] Beaver Bookings
Tim the Beaver is arranging Tim Talks, a lecture series that allows anyone in the MIT community
to schedule a time to talk publicly. A talk request is a tuple (s, t), where s and t are the starting
and ending times of the talk respectively with s < t (times are positive integers representing the
number of time units since some fixed time).

Tim must make room reservations to hold the talks. A room booking is a triple (k, s, t), corre-
sponding to reserving k > 0 rooms between the times s and t where s < t. Two room bookings
(k1, s1, t1) and (k2, s2, t2) are disjoint if either t1 ≤ s2 or t2 ≤ s1, and adjacent if either t1 = s2

or t2 = s1. A booking schedule is an ordered tuple of room bookings where: every pair of room
bookings from the schedule are disjoint, room bookings appear with increasing starting time in the

Given a set R of talk requests, there is a unique
booking schedule B that satisfies the requests, i.e.,
the schedule books exactly enough rooms to host all
the talks. For example, given a set of talk requests
R = {(2, 3), (4, 10), (2, 8), (6, 9), (0, 1), (1, 12), (13, 14)}
pictured to the right, the satisfying room booking is:

sequence, and every adjacent pair of room bookings reserves a different number of rooms.

B = ((1, 0, 2), (3, 2, 3), (2, 3, 4), (3, 4, 6), (4, 6, 8), (3, 8, 9), (2, 9, 10), (1, 10, 12), (1, 13, 14)).

(a) [15 points] Given two booking schedules B1 and B2, where n = |B1| + |B2| and B1

and B2 are the respective booking schedules of two sets of talk requests R1 and R2,
describe an O(n)-time algorithm to compute a booking schedule B for R = R1 ∪ R2.

(b) [5 points] Given a set R of n talk requests, describe an O(n log n)-time algorithm to
return the booking schedule that satisfies R.

(c) [25 points] Write a Python function satisfying booking(R) that implements
your algorithm. You can download a code template containing some test cases from
the website.

1 def satisfying_booking(R):
’’’2

3 Input: R | Tuple of |R| talk request tuples (s, t)
4 Output: B | Tuple of room booking triples (k, s, t)
5 | that is the booking schedule that satisfies R

’’’6

7 B = []
8 ##################
9 # YOUR CODE HERE #

10 ##################
11 return tuple(B)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

