

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 3: Sorting

Lecture 3: Sorting

Set Interface (L03-L08)
Container build(X)

len()
given an iterable X, build set from items in X
return the number of stored items

Static find(k) return the stored item with key k
Dynamic insert(x)

delete(k)
add x to set (replace item with key x.key if one already exists)
remove and return the stored item with key k

Order iter ord()
find min()
find max()
find next(k)
find prev(k)

return the stored items one-by-one in key order
return the stored item with smallest key
return the stored item with largest key
return the stored item with smallest key larger than k
return the stored item with largest key smaller than k

• Storing items in an array in arbitrary order can implement a (not so efficient) set

• Stored items sorted increasing by key allows:

– faster find min/max (at first and last index of array)

– faster finds via binary search: O(log n)

Set
Operations O(·)

Container Static Dynamic Order
Data Structure build(X) find(k) insert(x)

delete(k)

find min()

find max()

find prev(k)

find next(k)

Array n n n n n
Sorted Array n log n log n n 1 log n

• But how to construct a sorted array efficiently?

2 Lecture 3: Sorting

Sorting

• Given a sorted array, we can leverage binary search to make an efficient set data structure.

• Input: (static) array A of n numbers

• Output: (static) array B which is a sorted permutation of A

– Permutation: array with same elements in a different order

– Sorted: B[i − 1] ≤ B[i] for all i ∈ {1, . . . , n}

• Example: [8, 2, 4, 9, 3] → [2, 3, 4, 8, 9]

• A sort is destructive if it overwrites A (instead of making a new array B that is a sorted
version of A)

• A sort is in place if it uses O(1) extra space (implies destructive: in place ⊆ destructive)

Permutation Sort
• There are n! permutations of A, at least one of which is sorted

• For each permutation, check whether sorted in Θ(n)

• Example: [2, 3, 1] → {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}

1 def permutation_sort(A):
2 ’’’Sort A’’’
3 for B in permutations(A): # O(n!)
4 if is_sorted(B): # O(n)
5 return B # O(1)

• permutation sort analysis:

– Correct by case analysis: try all possibilities (Brute Force)

– Running time: Ω(n! · n) which is exponential :(

Solving Recurrences

• Substitution: Guess a solution, replace with representative function, recurrence holds true

• Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes

• Master Theorem: A formula to solve many recurrences (R03)

3 Lecture 3: Sorting

Selection Sort
• Find a largest number in prefix A[:i + 1] and swap it to A[i]

• Recursively sort prefix A[:i]

• Example: [8, 2, 4, 9, 3], [8, 2, 4, 3, 9], [3, 2, 4, 8, 9], [3, 2, 4, 8, 9], [2, 3, 4, 8, 9]

1 def selection_sort(A, i = None): # T(i)
2 ’’’Sort A[:i + 1]’’’
3 if i is None: i = len(A) - 1 # O(1)
4 if i > 0: # O(1)
5 j = prefix_max(A, i) # S(i)
6 A[i], A[j] = A[j], A[i] # O(1)
7 selection_sort(A, i - 1) # T(i - 1)
8

9 def prefix_max(A, i): # S(i)
10 ’’’Return index of maximum in A[:i + 1]’’’
11 if i > 0: # O(1)
12 j = prefix_max(A, i - 1) # S(i - 1)
13 if A[i] < A[j]: # O(1)
14 return j # O(1)
15 return i # O(1)

• prefix max analysis:

– Base case: for i = 0, array has one element, so index of max is i

– Induction: assume correct for i, maximum is either the maximum of A[:i] or A[i],
returns correct index in either case.

– S(1) = Θ(1), S(n) = S(n − 1) + Θ(1)

∗ Substitution: S(n) = Θ(n), cn = Θ(1) + c(n − 1) =⇒ 1 = Θ(1)P n−1∗ Recurrence tree: chain of n nodes with Θ(1) work per node, i=0 1 = Θ(n)

• selection sort analysis:

– Base case: for i = 0, array has one element so is sorted

– Induction: assume correct for i, last number of a sorted output is a largest number of
the array, and the algorithm puts one there; then A[:i] is sorted by induction

– T (1) = Θ(1), T (n) = T (n − 1) + Θ(n)

∗ Substitution: T (n) = Θ(n2), cn2 = Θ(n) + c(n − 1)2 =⇒ c(2n − 1) = Θ(n)P n−1∗ Recurrence tree: chain of n nodes with Θ(i) work per node, i=0 i = Θ(n2)

4 Lecture 3: Sorting

Insertion Sort
• Recursively sort prefix A[:i]

• Sort prefix A[:i + 1] assuming that prefix A[:i] is sorted by repeated swaps

• Example: [8, 2, 4, 9, 3], [2, 8, 4, 9, 3], [2, 4, 8, 9, 3], [2, 4, 8, 9, 3], [2, 3, 4, 8, 9]

1 def insertion_sort(A, i = None): # T(i)
2 ’’’Sort A[:i + 1]’’’
3 if i is None: i = len(A) - 1 # O(1)
4 if i > 0: # O(1)
5 insertion_sort(A, i - 1) # T(i - 1)
6 insert_last(A, i) # S(i)
7

8 def insert_last(A, i): # S(i)
9 ’’’Sort A[:i + 1] assuming sorted A[:i]’’’

10 if i > 0 and A[i] < A[i - 1]: # O(1)
11 A[i], A[i - 1] = A[i - 1], A[i] # O(1)
12 insert_last(A, i - 1) # S(i - 1)

• insert last analysis:

– Base case: for i = 0, array has one element so is sorted

– Induction: assume correct for i, if A[i] >= A[i - 1], array is sorted; otherwise,
swapping last two elements allows us to sort A[:i] by induction

– S(1) = Θ(1), S(n) = S(n − 1) + Θ(1) =⇒ S(n) = Θ(n)

• insertion sort analysis:

– Base case: for i = 0, array has one element so is sorted

– Induction: assume correct for i, algorithm sorts A[:i] by induction, and then
insert last correctly sorts the rest as proved above

– T (1) = Θ(1), T (n) = T (n − 1) + Θ(n) =⇒ T (n) = Θ(n2)

5 Lecture 3: Sorting

Merge Sort
• Recursively sort first half and second half (may assume power of two)

• Merge sorted halves into one sorted list (two finger algorithm)

• Example: [7, 1, 5, 6, 2, 4, 9, 3], [1, 7, 5, 6, 2, 4, 3, 9], [1, 5, 6, 7, 2, 3, 4, 9], [1, 2, 3, 4, 5, 6, 7, 9]

1 def merge_sort(A, a = 0, b = None): # T(b - a = n)
2 ’’’Sort A[a:b]’’’
3 if b is None: b = len(A) # O(1)
4 if 1 < b - a: # O(1)
5 c = (a + b + 1) // 2 # O(1)
6 merge_sort(A, a, c) # T(n / 2)
7 merge_sort(A, c, b) # T(n / 2)
8 L, R = A[a:c], A[c:b] # O(n)
9 merge(L, R, A, len(L), len(R), a, b) # S(n)

10

11 def merge(L, R, A, i, j, a, b): # S(b - a = n)
12 ’’’Merge sorted L[:i] and R[:j] into A[a:b]’’’
13 if a < b: # O(1)
14 if (j <= 0) or (i > 0 and L[i - 1] > R[j - 1]): # O(1)
15 A[b - 1] = L[i - 1] # O(1)
16 i = i - 1 # O(1)
17 else: # O(1)
18 A[b - 1] = R[j - 1] # O(1)
19 j = j - 1 # O(1)
20 merge(L, R, A, i, j, a, b - 1) # S(n - 1)

• merge analysis:

– Base case: for n = 0, arrays are empty, so vacuously correct
– Induction: assume correct for n, item in A[r] must be a largest number from remaining

prefixes of L and R, and since they are sorted, taking largest of last items suffices;
remainder is merged by induction

– S(0) = Θ(1), S(n) = S(n − 1) + Θ(1) =⇒ S(n) = Θ(n)

• merge sort analysis:

– Base case: for n = 1, array has one element so is sorted
– Induction: assume correct for k < n, algorithm sorts smaller halves by induction, and

then merge merges into a sorted array as proved above.

– T (1) = Θ(1), T (n) = 2T (n/2) + Θ(n)

∗ Substitution: Guess T (n) = Θ(n log n)
cn log n = Θ(n) + 2c(n/2) log(n/2) =⇒ cn log(2) = Θ(n)

∗ Recurrence Tree: complete binary tree with depth log2 n and n leaves, level i has 2i Plog2 n Plog2 nnodes with O(n/2i) work each, total: i=0 (2
i)(n/2i) = i=0 n = Θ(n log n)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

