Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Lecture 3: Sorting

Lecture 3: Sorting

Set Interface (L03-L08)

Container | build (X) given an iterable X, build set from items in X
len () return the number of stored items
Static find (k) return the stored item with key k
Dynamic | insert (x) add x to set (replace item with key x . key if one already exists)
delete (k) remove and return the stored item with key k
Order iter_ord() return the stored items one-by-one in key order
find_min () return the stored item with smallest key
find_max () return the stored item with largest key

find_next (k) | return the stored item with smallest key larger than k
find_prev (k) | return the stored item with largest key smaller than k

e Storing items in an array in arbitrary order can implement a (not so efficient) set

e Stored items sorted increasing by key allows:

— faster find min/max (at first and last index of array)

— faster finds via binary search: O(logn)

Operations O(-)
Set Container Static Dynamic Order
Data Structure build (X) find (k) insert (x) find_min () find_prev (k)
delete (k) find_max () find_next (k)
Array n n n n n
Sorted Array nlogn logn n 1 logn

e But how to construct a sorted array efficiently?

2 Lecture 3: Sorting

Sorting

e Given a sorted array, we can leverage binary search to make an efficient set data structure.

Input: (static) array A of n numbers

Output: (static) array B which is a sorted permutation of A

— Permutation: array with same elements in a different order
— Sorted: B[i — 1] < BJi] foralli € {1,...,n}

Example: [8,2,4,9,3] — [2,3,4,8,9]

A sort is destructive if it overwrites A (instead of making a new array B that is a sorted
version of A)

A sort is in place if it uses O(1) extra space (implies destructive: in place C destructive)

Permutation Sort

e There are n! permutations of A, at least one of which is sorted
e For each permutation, check whether sorted in ©(n)
e Example: [2,3,1] — {[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2], 3,2, 1]}

def permutation_sort (A):

rrrSort A’’’
for B in permutations (A) : # O0(n!)
if is_sorted(B): # O (n)
return B # 0(1)

e permutation_sort analysis:

— Correct by case analysis: try all possibilities (Brute Force)

— Running time: Q(n! - n) which is exponential :(

Solving Recurrences

e Substitution: Guess a solution, replace with representative function, recurrence holds true
e Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes

e Master Theorem: A formula to solve many recurrences (R03)

Lecture 3: Sorting 3

Selection Sort

e Find a largest number in prefix A[:i + 1] and swapittoA[i]
e Recursively sort prefix A[:1]
hd Example: [87 27 47 97 3]7 [87 27 47 37 9]7 [37 27 47 87 9]7 [37 27 47 87 9]7 [27 37 47 87 9]

i = None): # T (1)

14 4

def selection_sort (A
"rrSort A[:1i + 1

if 1 is None: 1 # O(1

if 1 > 0: # 0(1

Jj = prefix_max (A, 1) # S (i
O(1

T (1

| o— ~

len(A) - 1

A[i], A[3] = A[J], AIli]
selection_sort (A, i - 1)

def prefix_max (A, 1i): #
"’ TReturn index of maximum in A[:1i + 1]’7

if 1 > 0: #

Jj = prefix_max (A, i - 1) #

if A[1i] < A[J]: #

return j #

return i #

e prefix_max analysis:

— Base case: for : = 0, array has one element, so index of max is ¢

— Induction: assume correct for 7, maximum is either the maximum of A[:1i] or A[i],
returns correct index in either case.]

- S(1)=06(1),S(n)=Sn—-1)+6(1)
« Substitution: S(n) =0(n), m=0(1)4+c¢n—-1) = 1=06(1)

% Recurrence tree: chain of n nodes with ©(1) work per node, 7' 1 = ©(n)

e selection_sort analysis:

— Base case: for i = 0, array has one element so is sorted

— Induction: assume correct for 7, last number of a sorted output is a largest number of
the array, and the algorithm puts one there; then A[: 1] is sorted by induction [

-T(1)=06(1),T(n) =T(n—1) + O(n)

* Substitution: T'(n) = O(n?), cn?*=0(n)+cn—1)> = c¢(2n—1) = O(n)
* Recurrence tree: chain of n nodes with ©(i) work per node, 31 "i = ©(n?)

4 Lecture 3: Sorting

Insertion Sort

e Recursively sort prefix A[: 1]
e Sortprefix A[:1 + 1] assuming that prefix A[:1] is sorted by repeated swaps

e Example: [8,2,4,9,3],(2,8,4,9,3],[2,4,8,9,3],(2,4,8,9,3],[2,3,4,8,9]

def insertion_sort (A, i = None): # T (1)
r"rSort A[:i 4+ 11777
if 1 is None: 1 = len(A) - 1 # 0O(1)
if i > 0: # 0(1)
insertion_sort (A, i - 1) # T(1 — 1)
insert_last (A, 1) # S (1)
def insert_last (A, 1): # S (1)
"7’7Sort A[:1 + 1] assuming sorted A[:i]’'’
if 41 > 0 and A[i] < A[i - 1]: # 0(1)
A[i], A[i - 1] = A[1 - 11, A[i] # 0(1)
insert_last (A, i - 1) # S(1 - 1)

e insert_last analysis:

— Base case: for 1 = 0, array has one element so is sorted

— Induction: assume correct for ¢, if A[i] >= A[i - 1], array is sorted; otherwise,
swapping last two elements allows us to sort A[: 1] by induction [

- 51)=06(1),S(n)=Sn—-1)+06(1) = S(n) =06(n)
e insertion_sort analysis:

— Base case: for i = 0, array has one element so is sorted

— Induction: assume correct for ¢, algorithm sorts A [: 1] by induction, and then
insert_last correctly sorts the rest as proved above [

-T(1)=06(1),T(n)=T(n—-1)+06(n) = T(n) =06(n?

Lecture 3: Sorting 5

Merge Sort
e Recursively sort first half and second half (may assume power of two)
e Merge sorted halves into one sorted list (two finger algorithm)
e Example: [7,1,5,6,2,4,9,3],[1,7,5,6,2,4,3,9],[1,5,6,7,2,3,4,9],[1,2,3,4,5,6,7,9]
def merge_sort (A, a = 0, b = None): # T(b - a = n)

"r’'Sort Ala:b]’’’
if b is None: b = len(A)

3 # O0(1

4 if 1 <b - a: # 0(1)

5 c=(a+b+1) // 2 # 0(1)
merge_sort (A, a, c) # T(n / 2)
merge_sort (A, c, Db) # T(n / 2)
L, R = Ala:c], Alc:b] # O(n)
merge (L, R, A, len(L), len(R), a, b) # S (n)

def merge(L, R, A, i, Jj, a, b): # S(b - a = n)
"7’"Merge sorted L[:1] and R[:j] into Ala:b]’’’
if a < b: # 0(1)
if (jJ <= 0) or (1 > 0 and L[i - 1] > R[J - 11): # O(1)
Alb - 1] = L[1 - 1] # 0(1)
i=1i-1 # 0(1)
else: # 0O(1)
A[b - 1] = R[] - 1] # 0(1)
=3 -1 # 0(1)
merge (L, R, A, i, Jj, a, b - 1) # S(n - 1)

e merge analysis:

— Base case: for n = 0, arrays are empty, so vacuously correct

— Induction: assume correct for n, item in A [r] must be a largest number from remaining
prefixes of L and R, and since they are sorted, taking largest of last items suffices;
remainder is merged by induction [

- 5(0)=06(),5n)=Sn—-1)+06(1) = S(n) =06(n)
e merge_sort analysis:

— Base case: for n = 1, array has one element so is sorted

— Induction: assume correct for & < n, algorithm sorts smaller halves by induction, and
then merge merges into a sorted array as proved above. [

- T(1) =0(1),T(n) =2T(n/2) + O(n)
« Substitution: Guess 7'(n) = O(nlogn)
cnlogn = ©(n) + 2¢(n/2)log(n/2) = cnlog(2) = O(n)
* Recurrence Tree: complete binary tree with depth log, n and n leaves, level i has 2°
nodes with O(n/2) work each, total: "1°%2"(2%)(n/2%) = 312" n = O(n logn)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

