Lecture 17: Dyn. Prog. III

Dynamic Programming Steps (SRT BOT)

- 1. **Subproblem** definition subproblem $x \in X$
 - Describe the meaning of a subproblem in words, in terms of parameters
 - Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
 - Often multiply possible subsets across multiple inputs
 - Often record partial state: add subproblems by incrementing some auxiliary variables
- 2. Relate subproblem solutions recursively x(i) = f(x(j), ...) for one or more j < i
 - Identify a question about a subproblem solution that, if you knew the answer to, reduces the subproblem to smaller subproblem(s)
 - Locally brute-force all possible answers to the question
- 3. Topological order to argue relation is acyclic and subproblems form a DAG
- 4. Base cases
 - State solutions for all (reachable) independent subproblems where relation breaks down
- 5. Original problem
 - Show how to compute solution to original problem from solutions to subproblem(s)
 - Possibly use parent pointers to recover actual solution, not just objective function
- 6. **Time** analysis
 - $\sum_{x \in X} \operatorname{work}(x)$, or if $\operatorname{work}(x) = O(W)$ for all $x \in X$, then $|X| \cdot O(W)$
 - work(x) measures **nonrecursive** work in relation; treat recursions as taking O(1) time

Recall: DAG Shortest Paths [L15]

- Subproblems: $\delta(s, v)$ for all $v \in V$
- **Relation:** $\delta(s, v) = \min\{\delta(s, u) + w(u, v) \mid u \in \operatorname{Adj}^{-}(v)\} \cup \{\infty\}$
- Topo. order: Topological order of G

Single-Source Shortest Paths Revisited

1. Subproblems

- Expand subproblems to add information to make acyclic! (an example we've already seen of subproblem expansion)
- $\delta_k(s, v)$ = weight of shortest path from s to v using at most k edges
- For $v \in V$ and $0 \le k \le |V|$

2. Relate

- Guess last edge (u, v) on shortest path from s to v
- $\delta_k(s,v) = \min\{\delta_{k-1}(s,u) + w(u,v) \mid (u,v) \in E\} \cup \{\delta_{k-1}(s,v)\}$

3. Topological order

• Increasing k: subproblems depend on subproblems only with strictly smaller k

4. Base

- $\delta_0(s,s) = 0$ and $\delta_0(s,v) = \infty$ for $v \neq s$ (no edges)
- (draw subproblem graph)

5. Original problem

- If has finite shortest path, then $\delta(s, v) = \delta_{|V|-1}(s, v)$
- Otherwise some $\delta_{|V|}(s, v) < \delta_{|V|-1}(s, v)$, so path contains a negative-weight cycle
- Can keep track of parent pointers to subproblem that minimized recurrence

6. Time

- # subproblems: $|V| \times (|V| + 1)$
- Work for subproblem $\delta_k(s, v)$: $O(\deg_{in}(v))$

$$\sum_{k=0}^{|V|} \sum_{v \in V} O(\deg_{\text{in}}(v)) = \sum_{k=0}^{|V|} O(|E|) = O(|V| \cdot |E|)$$

This is just Bellman-Ford! (computed in a slightly different order)

All-Pairs Shortest Paths: Floyd–Warshall

- Could define subproblems $\delta_k(u, v) = \text{minimum weight of path from } u$ to v using at most k edges, as in Bellman–Ford
- Resulting running time is |V| times Bellman–Ford, i.e., $O(|V|^2 \cdot |E|) = O(|V|^4)$
- Know a better algorithm from L14: Johnson achieves $O(|V|^2 \log |V| + |V| \cdot |E|) = O(|V|^3)$
- Can achieve $\Theta(|V|^3)$ running time (matching Johnson for dense graphs) with a simple dynamic program, called **Floyd–Warshall**
- Number vertices so that $V = \{1, 2, \dots, |V|\}$

1. Subproblems

- d(u, v, k) =minimum weight of a path from u to v that only uses vertices from $\{1, 2, \dots, k\} \cup \{u, v\}$
- For $u, v \in V$ and $1 \le k \le |V|$

2. Relate

- $x(u, v, k) = \min\{x(u, k, k-1) + x(k, v, k-1), x(u, v, k-1)\}$
- Only constant branching! No longer guessing previous vertex/edge

3. Topological order

• Increasing k: relation depends only on smaller k

4. Base

- x(u, u, 0) = 0
- x(u, v, 0) = w(u, v) if $(u, v) \in E$
- $x(u, v, 0) = \infty$ if none of the above

5. Original problem

• x(u, v, |V|) for all $u, v \in V$

6. Time

- $O(|V|^3)$ subproblems
- Each O(1) work
- $O(|V|^3)$ in total
- Constant number of dependencies per subproblem brings the factor of O(|E|) in the running time down to O(|V|).

Arithmetic Parenthesization

- Input: arithmetic expression a₀ *₁ a₁ *₂ a₂ ··· *_{n-1} a_{n-1} where each a_i is an integer and each *_i ∈ {+, ×}
- Output: Where to place parentheses to maximize the evaluated expression
- Example: $7 + 4 \times 3 + 5 \rightarrow ((7) + (4)) \times ((3) + (5)) = 88$
- Allow negative integers!
- Example: $7 + (-4) \times 3 + (-5) \rightarrow ((7) + ((-4) \times ((3) + (-5)))) = 15$

1. Subproblems

- Sufficient to maximize each subarray? No! $(-3) \times (-3) = 9 > (-2) \times (-2) = 4$
- x(i, j, opt) = opt value obtainable by parenthesizing $a_i *_{i+1} \cdots *_{j-1} a_{j-1}$
- For $0 \le i < j \le n$ and $opt \in \{\min, \max\}$
- 2. Relate
 - Guess location of outermost parentheses / last operation evaluated
 - $x(i, j, \text{opt}) = \text{opt} \{ x(i, k, \text{opt'}) *_k x(k, j, \text{opt''}) \mid i < k < j; \text{opt'}, \text{opt''} \in \{ \min, \max \} \}$

3. Topological order

• Increasing j - i: subproblem x(i, j, opt) depends only on strictly smaller j - i

4. Base

• $x(i, i + 1, opt) = a_i$, only one number, no operations left!

5. Original problem

- $X(0, n, \max)$
- Store parent pointers (two!) to find parenthesization (forms binary tree!)

6. Time

- # subproblems: less than $n \cdot n \cdot 2 = O(n^2)$
- work per subproblem $O(n) \cdot 2 \cdot 2 = O(n)$
- $O(n^3)$ running time

Piano Fingering

- Given sequence $t_0, t_1, \ldots, t_{n-1}$ of *n* single notes to play with right hand (will generalize to multiple notes and hands later)
- Performer has right-hand fingers $1, 2, \ldots, F$ (F = 5 for most humans)
- Given metric d(t, f, t', f') of **difficulty** of transitioning from note t with finger f to note t' with finger f'
 - Typically a sum of penalties for various difficulties, e.g.:
 - 1 < f < f' and t > t' is uncomfortable
 - Legato (smooth) play requires $t \neq t'$ (else infinite penalty)
 - Weak-finger rule: prefer to avoid $f' \in \{4, 5\}$
 - $\{f, f'\} = \{3, 4\}$ is annoying
- Goal: Assign fingers to notes to minimize total difficulty
- First attempt:
- 1. Subproblems
 - x(i) = minimum total difficulty for playing notes $t_i, t_{i+1}, \ldots, t_{n-1}$
- 2. Relate
 - Guess first finger: assignment f for t_i
 - $x(i) = \min\{x(i+1) + d(t_i, f, t_{i+1}, ?) \mid 1 \le f \le F\}$
 - Not enough information to fill in ?
 - Need to know which finger at the start of x(i+1)
 - But different starting fingers could hurt/help both x(i + 1) and $d(t_i, f, t_{i+1}, ?)$
 - Need a table mapping start fingers to optimal solutions for x(i+1)
 - I.e., need to expand subproblems with start condition

• Solution:

1. Subproblems

- x(i, f) =minimum total difficulty for playing notes $t_i, t_{i+1}, \ldots, t_{n-1}$ starting with finger f on note t_i
- For $0 \le i < n$ and $1 \le f \le F$

2. Relate

- Guess next finger: assignment f' for t_{i+1}
- $x(i, f) = \min\{x(i+1, f') + d(t_i, f, t_{i+1}, f') \mid 1 \le f' \le F\}$

3. Topological order

• Decreasing i (any f order)

4. Base

• x(n-1, f) = 0 (no transitions)

5. Original problem

• $\min\{x(0, f) \mid 1 \le f \le F\}$

6. Time

- $\Theta(n \cdot F)$ subproblems
- $\Theta(F)$ work per subproblem
- $\Theta(n \cdot F^2)$
- No dependence on the number of different notes!

Guitar Fingering

- Up to S = number of strings different ways to play the same note
- Redefine "finger" to be tuple (finger playing note, string playing note)
- Throughout algorithm, F gets replaced by $F \cdot S$
- Running time is thus $\Theta(n \cdot F^2 \cdot S^2)$

Multiple Notes at Once

- Now suppose t_i is a set of notes to play at time i
- Given a bigger transition difficulty function d(t, f, t', f')
- Goal: fingering f_i: t_i → {1, 2, ..., F} specifying how to finger each note (including which string for guitar) to minimize ∑ⁿ⁻¹_{i=1} d(t_{i-1}, f_{i-1}, t_i, f_i)
- At most T^F choices for each fingering f_i , where $T = \max_i |t_i|$
 - $T \leq F = 10$ for normal piano (but there are exceptions)
 - $T \leq S$ for guitar
- $\Theta(n \cdot T^F)$ subproblems
- $\Theta(T^F)$ work per subproblem
- $\Theta(n \cdot T^{2F})$ time
- $\Theta(n)$ time for $T, F \leq 10$

Video Game Appliactions

- Guitar Hero / Rock Band
 - F = 4 (and 5 different notes)
- Dance Dance Revolution
 - F = 2 feet
 - T = 2 (at most two notes at once)
 - Exercise: handle sustained notes, using "where each foot is" (on an arrow or in the middle) as added state for suffix subproblems

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>