

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 17: Dyn. Prog. III

Lecture 17: Dyn. Prog. III

Dynamic Programming Steps (SRT BOT)
1. Subproblem definition subproblem x ∈ X

• Describe the meaning of a subproblem in words, in terms of parameters

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence

• Often multiply possible subsets across multiple inputs

• Often record partial state: add subproblems by incrementing some auxiliary variables

2. Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i

• Identify a question about a subproblem solution that, if you knew the answer to, reduces
the subproblem to smaller subproblem(s)

• Locally brute-force all possible answers to the question

3. Topological order to argue relation is acyclic and subproblems form a DAG

4. Base cases

• State solutions for all (reachable) independent subproblems where relation breaks down

5. Original problem

• Show how to compute solution to original problem from solutions to subproblem(s)

• Possibly use parent pointers to recover actual solution, not just objective function

6. Time analysis P
• work(x), or if work(x) = O(W) for all x ∈ X , then |X| · O(W)x∈X

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time

Recall: DAG Shortest Paths [L15]
• Subproblems: δ(s, v) for all v ∈ V

• Relation: δ(s, v) = min{δ(s, u) + w(u, v) | u ∈ Adj−(v)} ∪ {∞}

• Topo. order: Topological order of G

2 Lecture 17: Dyn. Prog. III

Single-Source Shortest Paths Revisited
1. Subproblems

• Expand subproblems to add information to make acyclic!
(an example we’ve already seen of subproblem expansion)

• δk(s, v) = weight of shortest path from s to v using at most k edges

• For v ∈ V and 0 ≤ k ≤ |V |

2. Relate

• Guess last edge (u, v) on shortest path from s to v

• δk(s, v) = min{δk−1(s, u) + w(u, v) | (u, v) ∈ E} ∪ {δk−1(s, v)}

3. Topological order

• Increasing k: subproblems depend on subproblems only with strictly smaller k

4. Base

• δ0(s, s) = 0 and δ0(s, v) = ∞ for v 6= s (no edges)

• (draw subproblem graph)

5. Original problem

• If has finite shortest path, then δ(s, v) = δ|V |−1(s, v)

• Otherwise some δ|V |(s, v) < δ|V |−1(s, v), so path contains a negative-weight cycle

• Can keep track of parent pointers to subproblem that minimized recurrence

6. Time

• # subproblems: |V | × (|V | + 1)

• Work for subproblem δk(s, v): O(degin(v))

|V | |V |XX X
O(degin(v)) = O(|E|) = O(|V | · |E|)

k=0 v∈V k=0

This is just Bellman-Ford! (computed in a slightly different order)

3 Lecture 17: Dyn. Prog. III

All-Pairs Shortest Paths: Floyd–Warshall
• Could define subproblems δk(u, v) = minimum weight of path from u to v using at most k

edges, as in Bellman–Ford

• Resulting running time is |V | times Bellman–Ford, i.e., O(|V |2 · |E|) = O(|V |4)

• Know a better algorithm from L14: Johnson achieves O(|V |2 log |V | + |V | · |E|) = O(|V |3)

• Can achieve Θ(|V |3) running time (matching Johnson for dense graphs) with a simple dy-
namic program, called Floyd–Warshall

• Number vertices so that V = {1, 2, . . . , |V |}

1. Subproblems

• d(u, v, k) = minimum weight of a path from u to v that only uses vertices from
{1, 2, . . . , k} ∪ {u, v}

• For u, v ∈ V and 1 ≤ k ≤ |V |

2. Relate

• x(u, v, k) = min{x(u, k, k − 1) + x(k, v, k − 1), x(u, v, k − 1)}
• Only constant branching! No longer guessing previous vertex/edge

3. Topological order

• Increasing k: relation depends only on smaller k

4. Base

• x(u, u, 0) = 0

• x(u, v, 0) = w(u, v) if (u, v) ∈ E

• x(u, v, 0) = ∞ if none of the above

5. Original problem

• x(u, v, |V |) for all u, v ∈ V

6. Time

• O(|V |3) subproblems

• Each O(1) work

• O(|V |3) in total

• Constant number of dependencies per subproblem brings the factor of O(|E|) in the
running time down to O(|V |).

4 Lecture 17: Dyn. Prog. III

Arithmetic Parenthesization
• Input: arithmetic expression a0 ∗ 1 a1 ∗ 2 a2 · · · ∗ n−1 an−1

where each ai is an integer and each ∗ i ∈ {+, ×}

• Output: Where to place parentheses to maximize the evaluated expression

• Example: 7 + 4 × 3 + 5 → ((7) + (4)) × ((3) + (5)) = 88

• Allow negative integers!

• Example: 7 + (−4) × 3 + (−5) → ((7) + ((−4) × ((3) + (−5)))) = 15

1. Subproblems

• Sufficient to maximize each subarray? No! (−3) × (−3) = 9 > (−2) × (−2) = 4

• x(i, j, opt) = opt value obtainable by parenthesizing ai ∗ i+1 · · · ∗ j−1 aj−1

• For 0 ≤ i < j ≤ n and opt ∈ {min, max}

2. Relate

• Guess location of outermost parentheses / last operation evaluated

• x(i, j, opt) = opt {x(i, k, opt0) ∗ k x(k, j, opt00)) | i < k < j; opt0 , opt00 ∈ {min, max}}

3. Topological order

• Increasing j − i: subproblem x(i, j, opt) depends only on strictly smaller j − i

4. Base

• x(i, i + 1, opt) = ai, only one number, no operations left!

5. Original problem

• X(0, n, max)
• Store parent pointers (two!) to find parenthesization (forms binary tree!)

6. Time

2)• # subproblems: less than n · n · 2 = O(n

• work per subproblem O(n) · 2 · 2 = O(n)

• O(n3) running time

5 Lecture 17: Dyn. Prog. III

Piano Fingering
• Given sequence t0, t1, . . . , tn−1 of n single notes to play with right hand (will generalize to

multiple notes and hands later)

• Performer has right-hand fingers 1, 2, . . . , F (F = 5 for most humans)

• Given metric d(t, f, t0, f 0) of difficulty of transitioning from note t with finger f to note t0

with finger f 0

– Typically a sum of penalties for various difficulties, e.g.:

– 1 < f < f 0 and t > t0 is uncomfortable

– Legato (smooth) play requires t =6 t0 (else infinite penalty)

– Weak-finger rule: prefer to avoid f 0 ∈ {4, 5}
– {f, f 0} = {3, 4} is annoying

• Goal: Assign fingers to notes to minimize total difficulty

• First attempt:

1. Subproblems

• x(i) = minimum total difficulty for playing notes ti, ti+1, . . . , tn−1

2. Relate

• Guess first finger: assignment f for ti
• x(i) = min{x(i + 1) + d(ti, f, ti+1, ?) | 1 ≤ f ≤ F }
• Not enough information to fill in ?

• Need to know which finger at the start of x(i + 1)

• But different starting fingers could hurt/help both x(i + 1) and d(ti, f, ti+1, ?)

• Need a table mapping start fingers to optimal solutions for x(i + 1)

• I.e., need to expand subproblems with start condition

6 Lecture 17: Dyn. Prog. III

• Solution:

1. Subproblems

• x(i, f) = minimum total difficulty for playing notes ti, ti+1, . . . , tn−1 starting with fin-
ger f on note ti

• For 0 ≤ i < n and 1 ≤ f ≤ F

2. Relate

• Guess next finger: assignment f 0 for ti+1

• x(i, f) = min{x(i + 1, f 0) + d(ti, f, ti+1, f
0) | 1 ≤ f 0 ≤ F }

3. Topological order

• Decreasing i (any f order)

4. Base

• x(n − 1, f) = 0 (no transitions)

5. Original problem

• min{x(0, f) | 1 ≤ f ≤ F }

6. Time

• Θ(n · F) subproblems

• Θ(F) work per subproblem

• Θ(n · F 2)

• No dependence on the number of different notes!

7 Lecture 17: Dyn. Prog. III

Guitar Fingering
• Up to S = number of strings different ways to play the same note

• Redefine “finger” to be tuple (finger playing note, string playing note)

• Throughout algorithm, F gets replaced by F · S

• Running time is thus Θ(n · F 2 · S2)

Multiple Notes at Once
• Now suppose ti is a set of notes to play at time i

• Given a bigger transition difficulty function d(t, f, t0, f 0)

• Goal: fingering fi : ti → {1, 2, . . . , F } specifying how to finger each note (including which P n−1string for guitar) to minimize i=1 d(ti−1, fi−1, ti, fi)

• At most T F choices for each fingering fi, where T = maxi |ti|

– T ≤ F = 10 for normal piano (but there are exceptions)

– T ≤ S for guitar

• Θ(n · T F) subproblems

• Θ(T F) work per subproblem

• Θ(n · T 2F) time

• Θ(n) time for T, F ≤ 10

Video Game Appliactions
• Guitar Hero / Rock Band

– F = 4 (and 5 different notes)

• Dance Dance Revolution

– F = 2 feet

– T = 2 (at most two notes at once)

– Exercise: handle sustained notes, using “where each foot is” (on an arrow or in the
middle) as added state for suffix subproblems

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	L17.pdf
	cover.pdf
	Blank Page

