
    

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 17: Dyn. Prog. III 

Lecture 17: Dyn. Prog. III 

Dynamic Programming Steps (SRT BOT) 
1. Subproblem definition subproblem x ∈ X 

• Describe the meaning of a subproblem in words, in terms of parameters 

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence 

• Often multiply possible subsets across multiple inputs 

• Often record partial state: add subproblems by incrementing some auxiliary variables 

2. Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i 

• Identify a question about a subproblem solution that, if you knew the answer to, reduces 
the subproblem to smaller subproblem(s) 

• Locally brute-force all possible answers to the question 

3. Topological order to argue relation is acyclic and subproblems form a DAG 

4. Base cases 

• State solutions for all (reachable) independent subproblems where relation breaks down 

5. Original problem 

• Show how to compute solution to original problem from solutions to subproblem(s) 

• Possibly use parent pointers to recover actual solution, not just objective function 

6. Time analysis P 
• work(x), or if work(x) = O(W ) for all x ∈ X , then |X| · O(W )x∈X 

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time 

Recall: DAG Shortest Paths [L15] 
• Subproblems: δ(s, v) for all v ∈ V 

• Relation: δ(s, v) = min{δ(s, u) + w(u, v) | u ∈ Adj−(v)} ∪ {∞} 

• Topo. order: Topological order of G 
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Single-Source Shortest Paths Revisited 
1. Subproblems 

• Expand subproblems to add information to make acyclic! 
(an example we’ve already seen of subproblem expansion) 

• δk(s, v) = weight of shortest path from s to v using at most k edges 

• For v ∈ V and 0 ≤ k ≤ |V | 

2. Relate 

• Guess last edge (u, v) on shortest path from s to v 

• δk(s, v) = min{δk−1(s, u) + w(u, v) | (u, v) ∈ E} ∪ {δk−1(s, v)} 

3. Topological order 

• Increasing k: subproblems depend on subproblems only with strictly smaller k 

4. Base 

• δ0(s, s) = 0 and δ0(s, v) = ∞ for v 6= s (no edges) 

• (draw subproblem graph) 

5. Original problem 

• If has finite shortest path, then δ(s, v) = δ|V |−1(s, v) 

• Otherwise some δ|V |(s, v) < δ|V |−1(s, v), so path contains a negative-weight cycle 

• Can keep track of parent pointers to subproblem that minimized recurrence 

6. Time 

• # subproblems: |V | × (|V | + 1) 

• Work for subproblem δk(s, v): O(degin(v)) 

|V | |V |XX X 
O(degin(v)) = O(|E|) = O(|V | · |E|) 

k=0 v∈V k=0 

This is just Bellman-Ford! (computed in a slightly different order) 
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All-Pairs Shortest Paths: Floyd–Warshall 
• Could define subproblems δk(u, v) = minimum weight of path from u to v using at most k 

edges, as in Bellman–Ford 

• Resulting running time is |V | times Bellman–Ford, i.e., O(|V |2 · |E|) = O(|V |4) 

• Know a better algorithm from L14: Johnson achieves O(|V |2 log |V | + |V | · |E|) = O(|V |3) 

• Can achieve Θ(|V |3) running time (matching Johnson for dense graphs) with a simple dy-
namic program, called Floyd–Warshall 

• Number vertices so that V = {1, 2, . . . , |V |} 

1. Subproblems 

• d(u, v, k) = minimum weight of a path from u to v that only uses vertices from 
{1, 2, . . . , k} ∪ {u, v} 

• For u, v ∈ V and 1 ≤ k ≤ |V | 

2. Relate 

• x(u, v, k) = min{x(u, k, k − 1) + x(k, v, k − 1), x(u, v, k − 1)} 
• Only constant branching! No longer guessing previous vertex/edge 

3. Topological order 

• Increasing k: relation depends only on smaller k 

4. Base 

• x(u, u, 0) = 0 

• x(u, v, 0) = w(u, v) if (u, v) ∈ E 

• x(u, v, 0) = ∞ if none of the above 

5. Original problem 

• x(u, v, |V |) for all u, v ∈ V 

6. Time 

• O(|V |3) subproblems 

• Each O(1) work 

• O(|V |3) in total 

• Constant number of dependencies per subproblem brings the factor of O(|E|) in the 
running time down to O(|V |). 
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Arithmetic Parenthesization 
• Input: arithmetic expression a0 ∗ 1 a1 ∗ 2 a2 · · · ∗ n−1 an−1 

where each ai is an integer and each ∗ i ∈ {+, ×} 

• Output: Where to place parentheses to maximize the evaluated expression 

• Example: 7 + 4 × 3 + 5 → ((7) + (4)) × ((3) + (5)) = 88 

• Allow negative integers! 

• Example: 7 + (−4) × 3 + (−5) → ((7) + ((−4) × ((3) + (−5)))) = 15 

1. Subproblems 

• Sufficient to maximize each subarray? No! (−3) × (−3) = 9 > (−2) × (−2) = 4 

• x(i, j, opt) = opt value obtainable by parenthesizing ai ∗ i+1 · · · ∗ j−1 aj−1 

• For 0 ≤ i < j ≤ n and opt ∈ {min, max} 

2. Relate 

• Guess location of outermost parentheses / last operation evaluated 

• x(i, j, opt) = opt {x(i, k, opt0) ∗ k x(k, j, opt00)) | i < k < j; opt0 , opt00 ∈ {min, max}} 

3. Topological order 

• Increasing j − i: subproblem x(i, j, opt) depends only on strictly smaller j − i 

4. Base 

• x(i, i + 1, opt) = ai, only one number, no operations left! 

5. Original problem 

• X(0, n, max) 
• Store parent pointers (two!) to find parenthesization (forms binary tree!) 

6. Time 

2)• # subproblems: less than n · n · 2 = O(n

• work per subproblem O(n) · 2 · 2 = O(n) 

• O(n3) running time 
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Piano Fingering 
• Given sequence t0, t1, . . . , tn−1 of n single notes to play with right hand (will generalize to 

multiple notes and hands later) 

• Performer has right-hand fingers 1, 2, . . . , F (F = 5 for most humans) 

• Given metric d(t, f, t0, f 0) of difficulty of transitioning from note t with finger f to note t0 

with finger f 0 

– Typically a sum of penalties for various difficulties, e.g.: 

– 1 < f < f 0 and t > t0 is uncomfortable 

– Legato (smooth) play requires t =6 t0 (else infinite penalty) 

– Weak-finger rule: prefer to avoid f 0 ∈ {4, 5} 
– {f, f 0} = {3, 4} is annoying 

• Goal: Assign fingers to notes to minimize total difficulty 

• First attempt: 

1. Subproblems 

• x(i) = minimum total difficulty for playing notes ti, ti+1, . . . , tn−1 

2. Relate 

• Guess first finger: assignment f for ti 
• x(i) = min{x(i + 1) + d(ti, f, ti+1, ?) | 1 ≤ f ≤ F } 
• Not enough information to fill in ? 

• Need to know which finger at the start of x(i + 1) 

• But different starting fingers could hurt/help both x(i + 1) and d(ti, f, ti+1, ?) 

• Need a table mapping start fingers to optimal solutions for x(i + 1) 

• I.e., need to expand subproblems with start condition 
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• Solution: 

1. Subproblems 

• x(i, f) = minimum total difficulty for playing notes ti, ti+1, . . . , tn−1 starting with fin-
ger f on note ti 

• For 0 ≤ i < n and 1 ≤ f ≤ F 

2. Relate 

• Guess next finger: assignment f 0 for ti+1 

• x(i, f) = min{x(i + 1, f 0) + d(ti, f, ti+1, f
0) | 1 ≤ f 0 ≤ F } 

3. Topological order 

• Decreasing i (any f order) 

4. Base 

• x(n − 1, f) = 0 (no transitions) 

5. Original problem 

• min{x(0, f) | 1 ≤ f ≤ F } 

6. Time 

• Θ(n · F ) subproblems 

• Θ(F ) work per subproblem 

• Θ(n · F 2) 

• No dependence on the number of different notes! 
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Guitar Fingering 
• Up to S = number of strings different ways to play the same note 

• Redefine “finger” to be tuple (finger playing note, string playing note) 

• Throughout algorithm, F gets replaced by F · S 

• Running time is thus Θ(n · F 2 · S2) 

Multiple Notes at Once 
• Now suppose ti is a set of notes to play at time i 

• Given a bigger transition difficulty function d(t, f, t0, f 0) 

• Goal: fingering fi : ti → {1, 2, . . . , F } specifying how to finger each note (including which P n−1string for guitar) to minimize i=1 d(ti−1, fi−1, ti, fi) 

• At most T F choices for each fingering fi, where T = maxi |ti| 

– T ≤ F = 10 for normal piano (but there are exceptions) 

– T ≤ S for guitar 

• Θ(n · T F ) subproblems 

• Θ(T F ) work per subproblem 

• Θ(n · T 2F ) time 

• Θ(n) time for T, F ≤ 10 

Video Game Appliactions 
• Guitar Hero / Rock Band 

– F = 4 (and 5 different notes) 

• Dance Dance Revolution 

– F = 2 feet 

– T = 2 (at most two notes at once) 

– Exercise: handle sustained notes, using “where each foot is” (on an arrow or in the 
middle) as added state for suffix subproblems 
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