

Restrictions SSSP Algorithm
Graph Weights Name Running Time O(·)
General Unweighted BFS |V | + |E|
DAG Any DAG Relaxation |V | + |E|
General Non-negative Dijkstra

Bellman-Ford
|V | log |V | + |E|

General Any

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 14

Recitation 14

Single Source Shortest Paths Review

We’ve learned four algorithms to solve the single source shortest paths (SSSP) problem; they are
listed in the table below. Then, to solve shortest paths problems, you must first define or construct
a graph related to your problem, and then running an SSSP algorithm on that graph in a way that
solves your problem. Generally, you will want to use the fastest SSSP algorithm that solves your
problem. Bellman-Ford applies to any weighted graph but is the slowest of the four, so we prefer
the other algorithms whenever they are applicable.

|V | · |E|

We presented these algorithms with respect to the SSSP problem, but along the way, we also
showed how to use these algorithms to solve other problems. For example, we can also count
connected components in a graph using Full-DFS or Full-BFS, topologically sort vertices in a
DAG using DFS, and detect negative weight cycles using Bellman-Ford.

All Pairs Shortest Paths

Given a weighted graph G = (V, E, w), the (weighted) All Pairs Shortest Paths (APSP) problem
asks for the minimum weight δ(u, v) of any path from u to v for every pair of vertices u, v ∈ V . To
make the problem a little easier, if there exists a negative weight cycle in G, our algorithm is not
required to return any output. A straight-forward way to solve this problem is to reduce to solving
an SSSP problem |V | times, once from each vertex in V . This strategy is actually quite good for
special types of graphs! For example, suppose we want to solve ASPS on an unweighted graph
that is sparse (i.e. |E| = O(|V |)). Running BFS from each vertex takes O(|V |2) time. Since
we need to return a value δ(u, v) for each pair of vertices, any ASPS algorithm requires at least
Ω(V 2) time, so this algorithm is optimal for graphs that are unweighted and sparse. However,
for general graphs, possibly containing negative weight edges, running Bellman-Ford |V | times is
quite slow, O(|V |2|E|), a factor of |E| larger than the output. By contrast, if we have a graph that
only has non-negative weights, applying Dijkstra |V | times takes O(|V |2 log |V | + |V ||E|) time.
On a sparse graph, running Dijkstra |V | times is only a log |V | factor larger than the output, while
|V | times Bellman-Ford is a linear |V | factor larger. Is it possible to solve the APSP problem on
general weighted graphs faster than O(|V |2|E|)?

Recitation 14 2

Johnson’s Algorithm

The idea behind Johnson’s Algorithm is to reduce the ASPS problem on a graph with arbitrary
edge weights to the ASPS problem on a graph with non-negative edge weights. The algorithm
does this by re-weighting the edges in the original graph to non-negative values in such a way so
that shortest paths in the re-weighted graph are also shortest paths in the original graph. Then find-
ing shortest paths in the re-weighted graph using |V | times Dijkstra will solve the original problem.
How can we re-weight edges in a way that preserves shortest paths? Johnson’s clever idea is to
assign each vertex v a real number h(v), and change the weight of each edge (a, b) from w(a, b) to
w0(a, b) = w(a, b) + h(a) − h(b), to form a new weight graph G0 = (V, E, w0).

Claim: A shortest path (v1, v2, . . . , vk) in G0 is also a shortest path in G from v1 to vk. Pk−1Proof. Let w(π) = i=1 w(vi, vi+1) be the weight of path π in G. Then weight of π in G0 is:
k−1 k−1X X

w 0(vi, vi+1) = w(vi, vi+1) + h(vi) − h(vi+1)
i=1 i=1 ! ! !

k−1 k−1 k−1X X X
= w(vi, vi+1) + h(vi) − h(vi+1) = w(π) + h(v1) − h(vk).

i=1 i=1 i=1

So, since each path from v1 to vk is increased by the same number h(v1) − h(vk), shortest paths
remain shortest.

It remains to find a vertex assignment function h, for which all edge weights w0(a, b) in the modi-
fied graph are non-negative. Johnson’s defines h in the following way: add a new node x to G with
a directed edge from x to v for each vertex v ∈ V to construct graph G∗ , letting h(v) = δ(x, v).
This assignment of h ensures that w0(a, b) ≥ 0 for every edge (a, b).

Claim: If h(v) = δ(x, v) and h(v) is finite, then w0(a, b) = w(a, b) + h(a) − h(b) ≥ 0 for every
edge (a, b) ∈ E.

Proof. The claim is equivalent to claiming δ(x, b) ≤ w(a, b)+ δ(x, a) for every edge (a, b) ∈ E,
i.e. the minimum weight of any path from x to b in G∗ is not greater than the minimum weight of
any path from x to a than traversing the edge from a to b, which is true by definition of minimum
weight. (This is simply a restatement of the triangle inequality.)

Johnson’s algorithm computes h(v) = δ(x, v), negative minimum weight distances from the added
node x, using Bellman-Ford. If δ(x, v) = −∞ for any vertex v, then there must be a negative
weight cycle in the graph, and Johnson’s can terminate as no output is required. Otherwise, John-
son’s can re-weight the edges of G to w0(a, b) = w(a, b)+ h(a) − h(b) ≥ 0 into G0 containing only
positive edge weights. Since shortest paths in G0 are shortest paths in G, we can run Dijkstra |V |
times on G0 to find a single source shortest paths distances δ0(u, v) from each vertex u in G0 . Then
we can compute each δ(u, v) by setting it to δ0(u, v)−δ(x, u)+δ(x, y). Johnson’s takes O(|V ||E|)
time to run Bellman-Ford, and O(|V |(|V | log |V | + |E|)) time to run Dijkstra |V | times, so this
algorithm runs in O(|V |2 log |V | + |V ||E|) time, asymptotically better than O(|V |2|E|).

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

