Introduction to Algorithms: 6.006

Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Lecture 6: Binary Trees I

Lecture 6: Binary Trees I

Previously and New Goal

Operations O(-)

Sequence Container Static Dynamic

Data StI'llCtllI'C build (X) get_at (1) insert_first (x) insert_last (x) insert_at (i, x)

set_at (i, x) delete_first () delete_last () delete_at (1)

Array n 1 n n n

Linked List n n 1 n n

Dynamic Array n 1 n L n

Goal m n H logn H logn ‘ logn ‘ logn]H
Operations O(-)

Set Container Static Dynamic Order

Data Structure build (X) find (k) insert (x) find_min () find_prev (k)
delete (k) find_max () find_next (k)

Array n n n n n

Sorted Array nlogn logn n 1 logn

Direct Access Array U 1 1 U u

Hash Table T (e) 1(6) 1(a)(e) n n

Goal \H nlogn H logn H logn H logn ‘ logn]H

How? Binary Trees!

e Pointer-based data structures (like Linked List) can achieve worst-case performance

e Binary tree is pointer-based data structure with three pointers per node

e Node representation: node.{item, parent, left, right}

o Example:

<A>

__<D>
<F>

<E>

<C>

node
item
parent
left
right

<A> | | <C>
A | B | C
- | <A> | <A>
 | <C> | -
<C> | <D> | -

| <D> | <E>
| D | E
| |
| <F> | -
| \

<F>

|
|
<D> |
|
|

2 Lecture 6: Binary Trees I

Terminology

e The root of a tree has no parent (Ex: <a>)

e A leaf of a tree has no children (Ex: <C>, <E>, and <F>)

e Define depth(<x>) of node <X> in a tree rooted at <R> to be length of path from <x> to <rR>
e Define height(<x>) of node <x> to be max depth of any node in the subtree rooted at <x>
e Idea: Design operations to run in O(h) time for root height h, and maintain h = O(logn)
e A binary tree has an inherent order: its traversal order

— every node in node <x>’s left subtree is before <x>

— every node in node <x>’s right subtree is after <x>
e List nodes in traversal order via a recursive algorithm starting at root:

— Recursively list left subtree, list self, then recursively list right subtree
— Runs in O(n) time, since O(1) work is done to list each node

— Example: Traversal order is (<F>, <D>, , <E>, <A>, <C>)
e Right now, traversal order has no meaning relative to the stored items

e Later, assign semantic meaning to traversal order to implement Sequence/Set interfaces

Tree Navigation
e Find first node in the traversal order of node <X>’s subtree (last is symmetric)
— If <x> has left child, recursively return the first node in the left subtree
— Otherwise, <X> is the first node, so return it

— Running time is O(h) where h is the height of the tree

— Example: first node in <A>’s subtree is <F>

e Find successor of node <x> in the traversal order (predecessor is symmetric)

If <x> has right child, return first of right subtree

Otherwise, return lowest ancestor of <x> for which <x> is in its left subtree

Running time is O(h) where h is the height of the tree

Example: Successor of: is <E>, <E> is <A>, and <C> is None

Lecture 6: Binary Trees 1

Dynamic Operations

e Change the tree by a single item (only add or remove leaves):

— add a node after another in the traversal order (before is symmetric)

— remove an item from the tree

Insert node <y> after node <x> in the traversal order

— If <x> has no right child, make <y> the right child of <x>

— Otherwise, make <y> the left child of <x>’s successor (which cannot have a left child)

— Running time is O(h) where h is the height of the tree

Example: Insert node <G> before <E> in traversal order

<A> <A>

____ <C> => _ <C>

__<D> <E> _ <D> _ <E>
<F> <F> <G>

Example: Insert node <H> after <A> in traversal order

<A> <A>
 <C> => <C>

__ <D> _ <E> __ <D> _ <E> <H>
<F> <G> <F> <G>

Delete the item in node <x> from <xX>’s subtree

— If <x> is a leaf, detach from parent and return

— Otherwise, <x> has a child

x If <x> has a left child, swap items with the predecessor of <x> and recurse

* Otherwise <x> has a right child, swap items with the successor of <X> and recurse

— Running time is O(h) where h is the height of the tree

— Example: Remove <F> (a leaf)

<A> <A>
 <C> => <C>

__<D> _ <E> <H> <D> __<E> <H>
<F> <G> <G>

— Example: Remove <A> (not a leaf, so first swap down to a leaf)

<A> <E>
 <C> => <C> =>

<D> _ _<E> <H> <D> _ <G> <H>
<G> <A>

<D>

<E>

<G>

<H>

<C>

4 Lecture 6: Binary Trees I

Application: Set

e Idea! Set Binary Tree (a.k.a. Binary Search Tree / BST):
Traversal order is sorted order increasing by key

— Equivalent to BST Property: for every node, every key in left subtree < node’s key <
every key in right subtree

e Then can find the node with key % in node <x>’s subtree in O(h) time like binary search:

— If k is smaller than the key at <x>, recurse in left subtree (or return None)
— If £ is larger than the key at <x>, recurse in right subtree (or return None)

— Otherwise, return the item stored at <X>

e Other Set operations follow a similar pattern; see recitation

Application: Sequence

e Idea! Sequence Binary Tree: Traversal order is sequence order

e How do we find i'" node in traversal order of a subtree? Call this operation subt ree_at (i)

Could just iterate through entire traversal order, but that’s bad, O(n)

However, if we could compute a subtree’s size in O(1), then can solve in O(h) time

How? Check the size nj, of the left subtree and compare to ¢

If ¢ < ny, recurse on the left subtree

If © > ny, recurse on the right subtree with i’ =7 —nj — 1

Otherwise, © = ny, and you’ve reached the desired node!

Maintain the size of each node’s subtree at the node via augmentation

— Add node. size field to each node
— When adding new leaf, add +1 to a.size for all ancestors a in O(h) time

— When deleting a leaf, add —1 to a. size for all ancestors a in O(h) time

Sequence operations follow directly from a fast subtree_at (i) operation

Naively, build (X) takes O(nh) time, but can be done in O(n) time; see recitation

Lecture 6: Binary Trees 1

So Far

Operations O(-)

Set Container Static Dynamic Order

Data Structure build (X) find (k) insert (x) find_min () find_prev (k)
delete (k) find_max () find_next (k)

Binary Tree nlogn h h h h

Goal \H nlogn H logn H logn H logn logn m
Operations O(-)

Sequence Container Static Dynamic

Data Structure build (X) get_at (i) insert_first (x) insert_last (x) insert_at (i, x)

set_at (i, x) delete_first () delete_last () delete_at (1)
Binary Tree n h h h h
Goal m n H logn H logn] logn logn m

Next Time

e Keep a binary tree balanced after insertion or deletion

e Reduce O(h) running times to O(log n) by keeping h = O(logn)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	L06.pdf
	cover.pdf
	Blank Page

