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Previously and New Goal 

Sequence 
Data Structure 

Operations O(·) 
Container Static Dynamic 
build(X) get at(i) 

set at(i,x) 

insert first(x) 

delete first() 

insert last(x) 

delete last() 

insert at(i, x) 

delete at(i) 

Array n 1 n n n 
Linked List n n 1 n n 
Dynamic Array n 1 n 1(a) n 

Goal n log n log n log n log n 

Set 
Data Structure 

Operations O(·) 
Container Static Dynamic Order 
build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Array n n n n n 
Sorted Array n log n log n n 1 log n 
Direct Access Array u 1 1 u u 
Hash Table n(e) 1(e) 1(a)(e) n n 

Goal n log n log n log n log n log n 

How? Binary Trees! 
• Pointer-based data structures (like Linked List) can achieve worst-case performance 

• Binary tree is pointer-based data structure with three pointers per node 

• Node representation: node.{item, parent, left, right} 

• Example: 

1 

2 

3 

4 

5 

________<A>_____ 
__<B>_____ <C> 

__<D> <E> 
<F> 

node | 
item | 
parent | 
left | 
right | 

<A> | 
A | 
- | 

<B> | 
<C> | 

<B> 
B 

<A> 
<C> 
<D> 

| 
| 
| 
| 
| 

<C> | 
C | 

<A> | 
- | 
- | 

<D> | 
D | 

<B> | 
<F> | 
- | 

<E> | 
E | 

<B> | 
- | 
- | 

<F> 
F 

<D> 
-
-

| 
| 
| 
| 
| 
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Terminology 
• The root of a tree has no parent (Ex: <A>) 

• A leaf of a tree has no children (Ex: <C>, <E>, and <F>) 

• Define depth(<X>) of node <X> in a tree rooted at <R> to be length of path from <X> to <R> 

• Define height(<X>) of node <X> to be max depth of any node in the subtree rooted at <X> 

• Idea: Design operations to run in O(h) time for root height h, and maintain h = O(log n) 

• A binary tree has an inherent order: its traversal order 

– every node in node <X>’s left subtree is before <X> 

– every node in node <X>’s right subtree is after <X> 

• List nodes in traversal order via a recursive algorithm starting at root: 

– Recursively list left subtree, list self, then recursively list right subtree 

– Runs in O(n) time, since O(1) work is done to list each node 

– Example: Traversal order is (<F>, <D>, <B>, <E>, <A>, <C>) 

• Right now, traversal order has no meaning relative to the stored items 

• Later, assign semantic meaning to traversal order to implement Sequence/Set interfaces 

Tree Navigation 
• Find first node in the traversal order of node <X>’s subtree (last is symmetric) 

– If <X> has left child, recursively return the first node in the left subtree 

– Otherwise, <X> is the first node, so return it 

– Running time is O(h) where h is the height of the tree 

– Example: first node in <A>’s subtree is <F> 

• Find successor of node <X> in the traversal order (predecessor is symmetric) 

– If <X> has right child, return first of right subtree 

– Otherwise, return lowest ancestor of <X> for which <X> is in its left subtree 

– Running time is O(h) where h is the height of the tree 

– Example: Successor of: <B> is <E>, <E> is <A>, and <C> is None 
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Dynamic Operations 
• Change the tree by a single item (only add or remove leaves): 

– add a node after another in the traversal order (before is symmetric) 

– remove an item from the tree 

• Insert node <Y> after node <X> in the traversal order 

– If <X> has no right child, make <Y> the right child of <X> 

– Otherwise, make <Y> the left child of <X>’s successor (which cannot have a left child) 

– Running time is O(h) where h is the height of the tree 

• Example: Insert node <G> before <E> in traversal order 
1 _____<A>__ ________<A>__ 
2 __<B>__ <C> => __<B>_____ <C> 
3 __<D> <E> __<D> __<E> 
4 <F> <F> <G> 

• Example: Insert node <H> after <A> in traversal order 
1 ________<A>___ ________<A>_____ 
2 __<B>_____ <C> => __<B>_____ __<C> 
3 __<D> __<E> __<D> __<E> <H> 
4 <F> <G> <F> <G> 

• Delete the item in node <X> from <X>’s subtree 

– If <X> is a leaf, detach from parent and return 

– Otherwise, <X> has a child 

∗ If <X> has a left child, swap items with the predecessor of <X> and recurse 
∗ Otherwise <X> has a right child, swap items with the successor of <X> and recurse 

– Running time is O(h) where h is the height of the tree 

– Example: Remove <F> (a leaf) 
1 ________<A>_____ ________<A>_____ 
2 __<B>_____ __<C> => __<B>_____ __<C> 
3 __<D> __<E> <H> <D> __<E> <H> 
4 <F> <G> <G> 

– Example: Remove <A> (not a leaf, so first swap down to a leaf) 

1 ________<A>_____ ________<E>_____ _____<E>_____ 
2 __<B>_____ __<C> => __<B>_____ __<C> => __<B>__ __<C> 
3 <D> __<E> <H> <D> __<G> <H> <D> <G> <H> 
4 <G> <A> 
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Application: Set 
• Idea! Set Binary Tree (a.k.a. Binary Search Tree / BST): 

Traversal order is sorted order increasing by key 

– Equivalent to BST Property: for every node, every key in left subtree ≤ node’s key ≤ 
every key in right subtree 

• Then can find the node with key k in node <X>’s subtree in O(h) time like binary search: 

– If k is smaller than the key at <X>, recurse in left subtree (or return None) 

– If k is larger than the key at <X>, recurse in right subtree (or return None) 

– Otherwise, return the item stored at <X> 

• Other Set operations follow a similar pattern; see recitation 

Application: Sequence 
• Idea! Sequence Binary Tree: Traversal order is sequence order 

• How do we find ith node in traversal order of a subtree? Call this operation subtree at(i) 

• Could just iterate through entire traversal order, but that’s bad, O(n) 

• However, if we could compute a subtree’s size in O(1), then can solve in O(h) time 

– How? Check the size nL of the left subtree and compare to i 

– If i < nL, recurse on the left subtree 

– If i > nL, recurse on the right subtree with i0 = i − nL − 1 

– Otherwise, i = nL, and you’ve reached the desired node! 

• Maintain the size of each node’s subtree at the node via augmentation 

– Add node.size field to each node 

– When adding new leaf, add +1 to a.size for all ancestors a in O(h) time 

– When deleting a leaf, add −1 to a.size for all ancestors a in O(h) time 

• Sequence operations follow directly from a fast subtree at(i) operation 

• Naively, build(X) takes O(nh) time, but can be done in O(n) time; see recitation 
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So Far 

Set 
Data Structure 

Operations O(·) 
Container Static Dynamic Order 
build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Binary Tree n log n h h h h 

Goal n log n log n log n log n log n 

Sequence 
Data Structure 

Operations O(·) 
Container Static Dynamic 
build(X) get at(i) 

set at(i,x) 

insert first(x) 

delete first() 

insert last(x) 

delete last() 

insert at(i, x) 

delete at(i) 

Binary Tree n h h h h 

Goal n log n log n log n log n 

Next Time 
• Keep a binary tree balanced after insertion or deletion 

• Reduce O(h) running times to O(log n) by keeping h = O(log n) 
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