Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 12: Bellman-Ford

Lecture 12: Bellman-Ford

Previously
e Weighted graphs, shortest-path weight, negative-weight cycles
e Finding shortest-path tree from shortest-path weights in O(|V| + |E|) time
e DAG Relaxation: algorithm to solve SSSP on a weighted DAG in O(|V| + | E|) time
e SSSP for graph with negative weights

— Compute (s, v) for all v € V' (—o0 if v reachable via negative-weight cycle)

— If a negative-weight cycle reachable from s, return one

Warmups
e Exercise 1: Given undirected graph G, return whether G contains a negative-weight cycle

e Solution: Return Yes if there is an edge with negative weight in G in O(|E|) time :0

So for this lecture, we restrict our discussion to directed graphs

e Exercise 2: Given SSSP algorithm A that runs in O(|V|(|]V| 4 |E|) time,
show how to use it to solve SSSP in O(|V||E|) time

Solution: Run BFS or DFS to find the vertices reachable from s in O(| E|) time

— Mark each vertex v not reachable from s with (s, v) = oo in O(|V]) time
Make graph G’ = (V’, E') with only vertices reachable from s in O(|V| + | E|) time
- Run A from s in G'.

- @ is connected, so |V'| = O(|E'|) = O(|E|) so A runs in O(|V||E|) time

e Today, we will find a SSSP algorithm with this running time that works for general graphs!

Restrictions SSSP Algorithm

Graph | Weights Name Running Time O(+) | Lecture
General | Unweighted | BFS V| + |E| | LO9

DAG Any DAG Relaxation V| +|E| | L11

General | Any Bellman-Ford V|- |E| | L12 (Today!)
General | Non-negative | Dijkstra |V|log|V|+ |E| | L13

2 Lecture 12: Bellman-Ford

Simple Shortest Paths

e [f graph contains cycles and negative weights, might contain negative-weight cycles : (

If graph does not contain negative-weight cycles, shortest paths are simple!

Claim 1: If (s, v) is finite, there exists a shortest path to v that is simple

Proof: By contradiction:

— Suppose no simple shortest path; let 7 be a shortest path with fewest vertices
— 7 not simple, so exists cycle C' in 7; C has non-negative weight (or else §(s,v) = —00)

— Removing C from 7 forms path 7’ with fewer vertices and weight w(7’) < w(w) [J

Since simple paths cannot repeat vertices, finite shortest paths contain at most |V'| — 1 edges

Negative Cycle Witness
e k-Edge Distance 0, (s, v): the minimum weight of any path from s to v using < k edges
e Idea! Compute 6)y/|_1(s,v) and §y(s,v) forallv € V
- If §(s,v) # —00, d(s,v) = djv|-1(s, v), since a shortest path is simple (or nonexistent)
- If (S‘V‘ (8, 1}) < 5|V|_1(S, U)

* there exists a shorter non-simple path to v, so éjy|(s,v) = —o0
* call v a (negative cycle) witness

— However, there may be vertices with —oo shortest-path weight that are not witnesses

e Claim 2: If §(s,v) = —oo, then v is reachable from a witness

e Proof: Suffices to prove: every negative-weight cycle reachable from s contains a witness

Consider a negative-weight cycle C reachable from s

Forv € C,letv' € C denote v’s predecessor in C, where > - w(v',v) <0

Then d)y|(s,v) < Oyj-1(s,v")+w(v',v) (RHS weight of some path on < |V| vertices)
= So > Oi(s,v) < X7 Oi—i(s,v) + D w',v) < Y dv-1(s,v)
veC

veC veC veC

If C' contains no witness, djy|(s,v) > 0jy|—1(s,v) forall v € C, a contradiction U

Lecture 12: Bellman-Ford

Bellman-Ford

e Idea! Use graph duplication: make multiple copies (or levels) of the graph

|V | + 1 levels: vertex vy in level k represents reaching vertex v from s using < k edges

If edges only increase in level, resulting graph is a DAG!

Construct new DAG G = (V', E’) from G = (V, E):

- G'has [V|(|]V] + 1) vertices vy, forall v € V and k € {0,...,|V]|}
- G'has [V|(|V] + |E|) edges:
« |V| edges (vg_1,vg) for k € {1,...,|V|} of weight zero for each v € V'
x|V edges (ug_1,vx) for k € {1,...,|V]} of weight w(u, v) for each (u,v) € E

Run DAG Relaxation on G’ from s, to compute §(sg, vy) for all v, € V’

For each vertex: set d(s,v) = (so, vjv|-1)

For each witness u € V' where 0(so, uv|) < 0(So, tjy|-1):

— For each vertex v reachable from v in G

% setd(s,v) = —o0

Example

«Q

(@
|
‘ W
|
[a—
w

i

®
5
@)
©)

4 Lecture 12: Bellman-Ford

Correctness
e Claim 3: 0(sg, vy) = Ox(s,v) forallv € Vand k € {0,...,|V]|}
e Proof: By induction on k:

— Base case: true for all v € V when k£ = 0 (only v, reachable from sg is v = s)
— Inductive Step: Assume true for all & < k', prove for k = £/
5(80, Uk/) = min{5(so, uk/_l) + w(uk/_l,vk/) | Uk —1 € Adj_(vk/>}
= min{{d(so, urr—1) + w(u, v) [u € Adj~(v)} U{0(s0, vw-1)}}
= min{{dp—1(s,u) + w(u,v) | v € Adj (v)} U{ow_1(s,v)}} (by induction)
= 5k/(8, U) L]
e Claim 4: At the end of Bellman-Ford d(s,v) = (s, v)
e Proof: Correctly computes 6jy|—1(s,v) and djy|(s,v) for all v € V by Claim 3

- If 6(s,v) # —o0, correctly sets d(s,v) = djy|—1(s,v) = (s, v)
— Then sets d(s,v) = —oo for any v reachable from a witness; correct by Claim 2~ [
Running Time
e G’ hassize O(|V|(]V] + |E|)) and can be constructed in as much time

Running DAG Relaxation on G’ takes linear time in the size of G’

Does O(1) work for each vertex reachable from a witness

Finding reachability of a witness takes O(| F'|) time, with at most O(|V|) witnesses: O(|V|| E|)

(Alternatively, connect super node x to witnesses via 0-weight edges, linear search from x)

Pruning G at start to only subgraph reachable from s yields O(|V|| E|)-time algorithm

Extras: Return Negative-Weight Cycle or Space Optimization
e Claim 5: Shortest s) — v}y path 7 for any witness v contains a negative-weight cycle in GG
e Proof: Since 7 contains |V/| + 1 vertices, must contain at least one cycle C'in G

— (C has negative weight (otherwise, remove C' to make path 7’ with fewer vertices and
w(n') < w(n), contradicting witness v) U

Can use just O(|V]) space by storing only d(so, vx—1) and d(sg, vy) for each k from 1 to |V/|

Traditionally, Bellman-Ford stores only one value per vertex, attempting to relax every edge
in |V| rounds; but estimates do not correspond to k-Edge Distances, so analysis trickier

But these space optimizations don’t return a negative weight cycle

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

