
  

Restrictions SSSP Algorithm 
Graph Weights Name Running Time O(·) Lecture 

General Unweighted BFS |V | + |E| L09 
L11 
L12 (Today!) 
L13 

DAG Any DAG Relaxation |V | + |E|
General Any Bellman-Ford 

Dijkstra 
|V | · |E|

General Non-negative 

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 12: Bellman-Ford 

Lecture 12: Bellman-Ford 

Previously 

• Weighted graphs, shortest-path weight, negative-weight cycles 

• Finding shortest-path tree from shortest-path weights in O(|V | + |E|) time 

• DAG Relaxation: algorithm to solve SSSP on a weighted DAG in O(|V | + |E|) time 

• SSSP for graph with negative weights 

– Compute δ(s, v) for all v ∈ V (−∞ if v reachable via negative-weight cycle) 

– If a negative-weight cycle reachable from s, return one 

Warmups 

• Exercise 1: Given undirected graph G, return whether G contains a negative-weight cycle 

• Solution: Return Yes if there is an edge with negative weight in G in O(|E|) time :O 

• So for this lecture, we restrict our discussion to directed graphs 

• Exercise 2: Given SSSP algorithm A that runs in O(|V |(|V | + |E|) time, 
show how to use it to solve SSSP in O(|V ||E|) time 

• Solution: Run BFS or DFS to find the vertices reachable from s in O(|E|) time 

– Mark each vertex v not reachable from s with δ(s, v) = ∞ in O(|V |) time 

– Make graph G0 = (V 0, E 0) with only vertices reachable from s in O(|V | + |E|) time 

– Run A from s in G0 . 

– G0 is connected, so |V 0| = O(|E 0|) = O(|E|) so A runs in O(|V ||E|) time 

• Today, we will find a SSSP algorithm with this running time that works for general graphs! 

|V | log |V | + |E| 
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Simple Shortest Paths 

• If graph contains cycles and negative weights, might contain negative-weight cycles :( 

• If graph does not contain negative-weight cycles, shortest paths are simple! 

• Claim 1: If δ(s, v) is finite, there exists a shortest path to v that is simple 

• Proof: By contradiction: 

– Suppose no simple shortest path; let π be a shortest path with fewest vertices 

– π not simple, so exists cycle C in π; C has non-negative weight (or else δ(s, v) = −∞) 

– Removing C from π forms path π0 with fewer vertices and weight w(π0) ≤ w(π) 

• Since simple paths cannot repeat vertices, finite shortest paths contain at most |V | − 1 edges 

Negative Cycle Witness 

• k-Edge Distance δk(s, v): the minimum weight of any path from s to v using ≤ k edges 

• Idea! Compute δ|V |−1(s, v) and δ|V |(s, v) for all v ∈ V 

– If δ(s, v) =6 −∞, δ(s, v) = δ|V |−1(s, v), since a shortest path is simple (or nonexistent) 

– If δ|V |(s, v) < δ|V |−1(s, v) 

∗ there exists a shorter non-simple path to v, so δ|V |(s, v) = −∞ 

∗ call v a (negative cycle) witness 

– However, there may be vertices with −∞ shortest-path weight that are not witnesses 

• Claim 2: If δ(s, v) = −∞, then v is reachable from a witness 

• Proof: Suffices to prove: every negative-weight cycle reachable from s contains a witness 

– Consider a negative-weight cycle C reachable from s P 0– For v ∈ C, let v0 ∈ C denote v’s predecessor in C, where v∈C w(v , v) < 0 

– Then δ|V |(s, v) ≤ δ|V |−1(s, v0)+w(v0, v) (RHS weight of some path on ≤ |V | vertices) P P P P 
– So δ|V |(s, v) ≤ δ|V |−1(s, v0) + w(v0, v) < δ|V |−1(s, v) 

v∈C v∈C v∈C v∈C 

– If C contains no witness, δ|V |(s, v) ≥ δ|V |−1(s, v) for all v ∈ C, a contradiction 
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Bellman-Ford 

• Idea! Use graph duplication: make multiple copies (or levels) of the graph 

• |V | + 1 levels: vertex vk in level k represents reaching vertex v from s using ≤ k edges 

• If edges only increase in level, resulting graph is a DAG! 

• Construct new DAG G0 = (V 0, E 0) from G = (V, E): 

– G0 has |V |(|V | + 1) vertices vk for all v ∈ V and k ∈ {0, . . . , |V |} 
– G0 has |V |(|V | + |E|) edges: 

∗ |V | edges (vk−1, vk) for k ∈ {1, . . . , |V |} of weight zero for each v ∈ V 
∗ |V | edges (uk−1, vk) for k ∈ {1, . . . , |V |} of weight w(u, v) for each (u, v) ∈ E 

• Run DAG Relaxation on G0 from s0 to compute δ(s0, vk) for all vk ∈ V 0 

• For each vertex: set d(s, v) = δ(s0, v|V |−1) 

• For each witness u ∈ V where δ(s0, u|V |) < δ(s0, u|V |−1): 

– For each vertex v reachable from u in G: 
∗ set d(s, v) = −∞ 

Example 

G G0 

a b 

c d 

6 

3 

−5 

−1 
−4 

a0 b0 d0c0 

a1 b1 d1c1 

a2 b2 d2c2 

a3 b3 d3c3 

a4 b4 d4c4 

−5 
6 −4 

−1 3 
0 0 

00 

δ(a0, vk) 

k \ v a b c d 

0 0 ∞ ∞ ∞ 

1 0 −5 6 ∞ 

2 0 −5 −9 9 

3 0 −5 −9 −6 

4 0 −7 −9 −6 

δ(a, v) 0 −∞ −∞ −∞ 
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Correctness 

• Claim 3: δ(s0, vk) = δk(s, v) for all v ∈ V and k ∈ {0, . . . , |V |} 

• Proof: By induction on k: 

– Base case: true for all v ∈ V when k = 0 (only v0 reachable from s0 is v = s) 
– Inductive Step: Assume true for all k < k0, prove for k = k0 

δ(s0, vk0 ) = min{δ(s0, uk0−1) + w(uk0−1, vk0 ) | uk0−1 ∈ Adj−(vk0 )} 
= min{{δ(s0, uk0−1) + w(u, v) | u ∈ Adj−(v)} ∪ {δ(s0, vk0−1)}} 
= min{{δk0−1(s, u) + w(u, v) | u ∈ Adj−(v)} ∪ {δk0−1(s, v)}} (by induction) 
= δk0 (s, v) 

• Claim 4: At the end of Bellman-Ford d(s, v) = δ(s, v) 

• Proof: Correctly computes δ|V |−1(s, v) and δ|V |(s, v) for all v ∈ V by Claim 3 

– If δ(s, v) =6 −∞, correctly sets d(s, v) = δ|V |−1(s, v) = δ(s, v) 

– Then sets d(s, v) = −∞ for any v reachable from a witness; correct by Claim 2 

Running Time 

• G0 has size O(|V |(|V | + |E|)) and can be constructed in as much time 

• Running DAG Relaxation on G0 takes linear time in the size of G0 

• Does O(1) work for each vertex reachable from a witness 

• Finding reachability of a witness takes O(|E|) time, with at most O(|V |) witnesses: O(|V ||E|) 

• (Alternatively, connect super node x to witnesses via 0-weight edges, linear search from x) 

• Pruning G at start to only subgraph reachable from s yields O(|V ||E|)-time algorithm 

Extras: Return Negative-Weight Cycle or Space Optimization 

• Claim 5: Shortest s0 − v|V | path π for any witness v contains a negative-weight cycle in G 

• Proof: Since π contains |V | + 1 vertices, must contain at least one cycle C in G 

– C has negative weight (otherwise, remove C to make path π0 with fewer vertices and 
w(π0) ≤ w(π), contradicting witness v) 

• Can use just O(|V |) space by storing only δ(s0, vk−1) and δ(s0, vk) for each k from 1 to |V | 

• Traditionally, Bellman-Ford stores only one value per vertex, attempting to relax every edge 
in |V | rounds; but estimates do not correspond to k-Edge Distances, so analysis trickier 

• But these space optimizations don’t return a negative weight cycle 
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