Lecture 12: Bellman-Ford

Previously

- Weighted graphs, shortest-path weight, negative-weight cycles
- Finding shortest-path tree from shortest-path weights in O(|V| + |E|) time
- DAG Relaxation: algorithm to solve SSSP on a weighted DAG in O(|V| + |E|) time
- SSSP for graph with negative weights
 - Compute $\delta(s, v)$ for all $v \in V$ ($-\infty$ if v reachable via negative-weight cycle)
 - If a negative-weight cycle reachable from *s*, return one

Warmups

- Exercise 1: Given undirected graph G, return whether G contains a negative-weight cycle
- Solution: Return Yes if there is an edge with negative weight in G in O(|E|) time :0
- So for this lecture, we restrict our discussion to **directed graphs**
- Exercise 2: Given SSSP algorithm A that runs in O(|V|(|V| + |E|)) time, show how to use it to solve SSSP in O(|V||E|) time
- Solution: Run BFS or DFS to find the vertices reachable from s in O(|E|) time
 - Mark each vertex v not reachable from s with $\delta(s, v) = \infty$ in O(|V|) time
 - Make graph G' = (V', E') with only vertices reachable from s in O(|V| + |E|) time
 - Run A from s in G'.
 - G' is connected, so |V'| = O(|E'|) = O(|E|) so A runs in O(|V||E|) time
- Today, we will find a SSSP algorithm with this running time that works for general graphs!

Restrictions		SSSP Algorithm			
Graph	Weights	Name	Running Time $O(\cdot)$	Lecture	
General	Unweighted	BFS	V + E	L09	
DAG	Any	DAG Relaxation	V + E	L11	
General	Any	Bellman-Ford	$ V \cdot E $	L12 (Today!)	
General	Non-negative	Dijkstra	$ V \log V + E $	L13	

Simple Shortest Paths

- If graph contains cycles and negative weights, might contain negative-weight cycles : (
- If graph does not contain negative-weight cycles, shortest paths are simple!
- Claim 1: If $\delta(s, v)$ is finite, there exists a shortest path to v that is simple
- **Proof:** By contradiction:
 - Suppose no simple shortest path; let π be a shortest path with fewest vertices
 - π not simple, so exists cycle C in π ; C has non-negative weight (or else $\delta(s, v) = -\infty$)
 - Removing C from π forms path π' with fewer vertices and weight $w(\pi') \leq w(\pi)$
- Since simple paths cannot repeat vertices, finite shortest paths contain at most |V| 1 edges

Negative Cycle Witness

- k-Edge Distance $\delta_k(s, v)$: the minimum weight of any path from s to v using $\leq k$ edges
- Idea! Compute $\delta_{|V|-1}(s, v)$ and $\delta_{|V|}(s, v)$ for all $v \in V$
 - If $\delta(s, v) \neq -\infty$, $\delta(s, v) = \delta_{|V|-1}(s, v)$, since a shortest path is simple (or nonexistent)
 - If $\delta_{|V|}(s,v) < \delta_{|V|-1}(s,v)$
 - * there exists a shorter non-simple path to v, so $\delta_{|V|}(s,v) = -\infty$
 - * call v a (negative cycle) witness
 - However, there may be vertices with $-\infty$ shortest-path weight that are not witnesses
- Claim 2: If $\delta(s, v) = -\infty$, then v is reachable from a witness
- **Proof:** Suffices to prove: every negative-weight cycle reachable from s contains a witness
 - Consider a negative-weight cycle C reachable from s
 - For $v \in C$, let $v' \in C$ denote v's predecessor in C, where $\sum_{v \in C} w(v', v) < 0$
 - Then $\delta_{|V|}(s, v) \leq \delta_{|V|-1}(s, v') + w(v', v)$ (RHS weight of some path on $\leq |V|$ vertices)
 - $\text{ So } \sum_{v \in C} \delta_{|V|}(s, v) \leq \sum_{v \in C} \delta_{|V|-1}(s, v') + \sum_{v \in C} w(v', v) < \sum_{v \in C} \delta_{|V|-1}(s, v)$
 - If C contains no witness, $\delta_{|V|}(s, v) \ge \delta_{|V|-1}(s, v)$ for all $v \in C$, a contradiction

Bellman-Ford

- Idea! Use graph duplication: make multiple copies (or levels) of the graph
- |V| + 1 levels: vertex v_k in level k represents reaching vertex v from s using $\leq k$ edges
- If edges only increase in level, resulting graph is a DAG!
- Construct new DAG G' = (V', E') from G = (V, E):
 - G' has |V|(|V|+1) vertices v_k for all $v \in V$ and $k \in \{0, \dots, |V|\}$
 - G' has |V|(|V| + |E|) edges:
 - * |V| edges (v_{k-1}, v_k) for $k \in \{1, \dots, |V|\}$ of weight zero for each $v \in V$
 - * |V| edges (u_{k-1}, v_k) for $k \in \{1, \ldots, |V|\}$ of weight w(u, v) for each $(u, v) \in E$
- Run DAG Relaxation on G' from s_0 to compute $\delta(s_0, v_k)$ for all $v_k \in V'$
- For each vertex: set $d(s, v) = \delta(s_0, v_{|V|-1})$
- For each witness $u \in V$ where $\delta(s_0, u_{|V|}) < \delta(s_0, u_{|V|-1})$:
 - For each vertex v reachable from u in G:
 - * set $d(s, v) = -\infty$

Example

 $\delta(a_0, v_k)$

$k \setminus v$	a	b	c	d
0	0	∞	∞	∞
1	0	-5	6	∞
2	0	-5	-9	9
3	0	-5	-9	-6
4	0	-7	-9	-6
$\delta(a, v)$	0	$-\infty$	$-\infty$	$-\infty$

Correctness

- Claim 3: $\delta(s_0, v_k) = \delta_k(s, v)$ for all $v \in V$ and $k \in \{0, ..., |V|\}$
- **Proof:** By induction on *k*:
 - Base case: true for all $v \in V$ when k = 0 (only v_0 reachable from s_0 is v = s)
 - Inductive Step: Assume true for all k < k', prove for k = k'

$$\delta(s_0, v_{k'}) = \min\{\delta(s_0, u_{k'-1}) + w(u_{k'-1}, v_{k'}) \mid u_{k'-1} \in \operatorname{Adj}^-(v_{k'})\} \\ = \min\{\{\delta(s_0, u_{k'-1}) + w(u, v) \mid u \in \operatorname{Adj}^-(v)\} \cup \{\delta(s_0, v_{k'-1})\}\} \\ = \min\{\{\delta_{k'-1}(s, u) + w(u, v) \mid u \in \operatorname{Adj}^-(v)\} \cup \{\delta_{k'-1}(s, v)\}\}$$
 (by induction)
$$= \delta_{k'}(s, v) \qquad \Box$$

- Claim 4: At the end of Bellman-Ford $d(s, v) = \delta(s, v)$
- **Proof:** Correctly computes $\delta_{|V|-1}(s, v)$ and $\delta_{|V|}(s, v)$ for all $v \in V$ by Claim 3
 - If $\delta(s, v) \neq -\infty$, correctly sets $d(s, v) = \delta_{|V|-1}(s, v) = \delta(s, v)$
 - Then sets $d(s, v) = -\infty$ for any v reachable from a witness; correct by Claim 2

Running Time

- G' has size O(|V|(|V| + |E|)) and can be constructed in as much time
- Running DAG Relaxation on G' takes linear time in the size of G'
- Does O(1) work for each vertex reachable from a witness
- Finding reachability of a witness takes O(|E|) time, with at most O(|V|) witnesses: O(|V||E|)
- (Alternatively, connect super node x to witnesses via 0-weight edges, linear search from x)
- Pruning G at start to only subgraph reachable from s yields O(|V||E|)-time algorithm

Extras: Return Negative-Weight Cycle or Space Optimization

- Claim 5: Shortest $s_0 v_{|V|}$ path π for any witness v contains a negative-weight cycle in G
- **Proof:** Since π contains |V| + 1 vertices, must contain at least one cycle C in G
 - C has negative weight (otherwise, remove C to make path π' with fewer vertices and $w(\pi') \le w(\pi)$, contradicting witness v)
- Can use just O(|V|) space by storing only $\delta(s_0, v_{k-1})$ and $\delta(s_0, v_k)$ for each k from 1 to |V|
- Traditionally, Bellman-Ford stores only one value per vertex, attempting to relax every edge in |V| rounds; but estimates do not correspond to k-Edge Distances, so analysis trickier
- But these space optimizations don't return a negative weight cycle

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>