

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 9: Breadth-First Search

Lecture 9: Breadth-First Search

New Unit: Graphs!
• Quiz 1 next week covers lectures L01 - L08 on Data Structures and Sorting

• Today, start new unit, lectures L09 - L14 on Graph Algorithms

Graph Applications
• Why? Graphs are everywhere!

• any network system has direct connection to graphs

• e.g., road networks, computer networks, social networks

• the state space of any discrete system can be represented by a transition graph

• e.g., puzzle & games like Chess, Tetris, Rubik’s cube

• e.g., application workflows, specifications

Graph Definitions

G1

0 1

2 3

G2

0

1 2

G3

a

b

s

c

d

e

f

g

• Graph G = (V, E) is a set of vertices V and a set of pairs of vertices E ⊆ V × V .

• Directed edges are ordered pairs, e.g., (u, v) for u, v ∈ V

• Undirected edges are unordered pairs, e.g., {u, v} for u, v ∈ V i.e., (u, v) and (v, u)

• In this class, we assume all graphs are simple:

– edges are distinct, e.g., (u, v) only occurs once in E (though (v, u) may appear), and

– edges are pairs of distinct vertices, e.g., u =6 v for all (u, v) ∈ E � � � �|V | |V |– Simple implies |E| = O(|V |2), since |E| ≤ for undirected, ≤ 2 for directed
2 2

2 Lecture 9: Breadth-First Search

Neighbor Sets/Adjacencies
• The outgoing neighbor set of u ∈ V is Adj+(u) = {v ∈ V | (u, v) ∈ E}

• The incoming neighbor set of u ∈ V is Adj−(u) = {v ∈ V | (v, u) ∈ E}

• The out-degree of a vertex u ∈ V is deg+(u) = |Adj+(u)|

• The in-degree of a vertex u ∈ V is deg−(u) = |Adj−(u)|

• For undirected graphs, Adj−(u) = Adj+(u) and deg−(u) = deg+(u)

• Dropping superscript defaults to outgoing, i.e., Adj(u) = Adj+(u) and deg(u) = deg+(u)

Graph Representations
• To store a graph G = (V, E), we need to store the outgoing edges Adj(u) for all u ∈ V

• First, need a Set data structure Adj to map u to Adj(u)

• Then for each u, need to store Adj(u) in another data structure called an adjacency list

• Common to use direct access array or hash table for Adj, since want lookup fast by vertex

• Common to use array or linked list for each Adj(u) since usually only iteration is needed1

• For the common representations, Adj has size Θ(|V |), while each Adj(u) has size Θ(deg(u)) P
• Since u∈V deg(u) ≤ 2|E| by handshaking lemma, graph storable in Θ(|V | + |E|) space

• Thus, for algorithms on graphs, linear time will mean Θ(|V | + |E|) (linear in size of graph)

Examples
• Examples 1 and 2 assume vertices are labeled {0, 1, . . . , |V | − 1}, so can use a direct access

array for Adj, and store Adj(u) in an array. Example 3 uses a hash table for Adj.

Ex 1 (Undirected) | Ex 2 (Directed) | Ex 3 (Undirected)
G1 = [| G2 = [| G3 = {

[2, 1], # 0 | [2], # 0 | a: [s, b], b: [a],
[2, 0, 3], # 1 | [2, 0], # 1 | s: [a, c], c: [s, d, e],
[1, 3, 0], # 2 | [1], # 2 | d: [c, e, f], e: [c, d, f],
[1, 2], # 3 |] | f: [d, e], g: [],

] | | }

• Note that in an undirected graph, connections are symmetric as every edge is outgoing twice

1A hash table for each Adj(u) can allow checking for an edge (u, v) ∈ E in O(1)(e) time

3 Lecture 9: Breadth-First Search

Paths
• A path is a sequence of vertices p = (v1, v2, . . . , vk) where (vi, vi+1) ∈ E for all 1 ≤ i < k.

• A path is simple if it does not repeat vertices2

• The length `(p) of a path p is the number of edges in the path

• The distance δ(u, v) from u ∈ V to v ∈ V is the minimum length of any path from u to v,
i.e., the length of a shortest path from u to v
(by convention, δ(u, v) = ∞ if u is not connected to v)

Graph Path Problems
• There are many problems you might want to solve concerning paths in a graph:

• SINGLE PAIR REACHABILITY(G, s, t): is there a path in G from s ∈ V to t ∈ V ?

• SINGLE PAIR SHORTEST PATH(G, s, t): return distance δ(s, t), and
a shortest path in G = (V, E) from s ∈ V to t ∈ V

• SINGLE SOURCE SHORTEST PATHS(G, s): return δ(s, v) for all v ∈ V , and
a shortest-path tree containing a shortest path from s to every v ∈ V (defined below)

• Each problem above is at least as hard as every problem above it
(i.e., you can use a black-box that solves a lower problem to solve any higher problem)

• We won’t show algorithms to solve all of these problems

• Instead, show one algorithm that solves the hardest in O(|V | + |E|) time!

Shortest Paths Tree
• How to return a shortest path from source vertex s for every vertex in graph?

• Many paths could have length Ω(|V |), so returning every path could require Ω(|V |2) time

• Instead, for all v ∈ V , store its parent P (v): second to last vertex on a shortest path from s

• Let P (s) be null (no second to last vertex on shortest path from s to s)

• Set of parents comprise a shortest paths tree with O(|V |) size!
(i.e., reversed shortest paths back to s from every vertex reachable from s)

2A path in 6.006 is a “walk” in 6.042. A “path” in 6.042 is a simple path in 6.006.

4 Lecture 9: Breadth-First Search

Breadth-First Search (BFS)
• How to compute δ(s, v) and P (v) for all v ∈ V ?

• Store δ(s, v) and P (v) in Set data structures mapping vertices v to distance and parent

• (If no path from s to v, do not store v in P and set δ(s, v) to ∞)

• Idea! Explore graph nodes in increasing order of distance

• Goal: Compute level sets Li = {v | v ∈ V and d(s, v) = i} (i.e., all vertices at distance i)

• Claim: Every vertex v ∈ Li must be adjacent to a vertex u ∈ Li−1 (i.e., v ∈ Adj(u))

• Claim: No vertex that is in Lj for some j < i, appears in Li

• Invariant: δ(s, v) and P (v) have been computed correctly for all v in any Lj for j < i

• Base case (i = 1): L0 = {s}, δ(s, s) = 0, P (s) = None

• Inductive Step: To compute Li:

– for every vertex u in Li−1:

∗ for every vertex v ∈ Adj(u) that does not appear in any Lj for j < i:
· add v to Li, set δ(s, v) = i, and set P (v) = u

• Repeatedly compute Li from Lj for j < i for increasing i until Li is the empty set

• Set δ(s, v) = ∞ for any v ∈ V for which δ(s, v) was not set

• Breadth-first search correctly computes all δ(s, v) and P (v) by induction

• Running time analysis:

– Store each Li in data structure with Θ(|Li|)-time iteration and O(1)-time insertion
(i.e., in a dynamic array or linked list)

– Checking for a vertex v in any Lj for j < i can be done by checking for v in P

– Maintain δ and P in Set data structures supporting dictionary ops in O(1) time
(i.e., direct access array or hash table)

– Algorithm adds each vertex u to ≤ 1 level and spends O(1) time for each v ∈ Adj(u)P
– Work upper bounded by O(1) × deg(u) = O(|E|) by handshake lemma u∈V

– Spend Θ(|V |) at end to assign δ(s, v) for vertices v ∈ V not reachable from s

– So breadth-first search runs in linear time! O(|V | + |E|)

• Run breadth-first search from s in the graph in Example 3

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

