
   

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 9: Breadth-First Search 

Lecture 9: Breadth-First Search 

New Unit: Graphs! 
• Quiz 1 next week covers lectures L01 - L08 on Data Structures and Sorting 

• Today, start new unit, lectures L09 - L14 on Graph Algorithms 

Graph Applications 
• Why? Graphs are everywhere! 

• any network system has direct connection to graphs 

• e.g., road networks, computer networks, social networks 

• the state space of any discrete system can be represented by a transition graph 

• e.g., puzzle & games like Chess, Tetris, Rubik’s cube 

• e.g., application workflows, specifications 

Graph Definitions 
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• Graph G = (V, E) is a set of vertices V and a set of pairs of vertices E ⊆ V × V . 

• Directed edges are ordered pairs, e.g., (u, v) for u, v ∈ V 

• Undirected edges are unordered pairs, e.g., {u, v} for u, v ∈ V i.e., (u, v) and (v, u) 

• In this class, we assume all graphs are simple: 

– edges are distinct, e.g., (u, v) only occurs once in E (though (v, u) may appear), and 

– edges are pairs of distinct vertices, e.g., u =6 v for all (u, v) ∈ E � � � �|V | |V |– Simple implies |E| = O(|V |2), since |E| ≤ for undirected, ≤ 2 for directed 
2 2 



2 Lecture 9: Breadth-First Search 

Neighbor Sets/Adjacencies 
• The outgoing neighbor set of u ∈ V is Adj+(u) = {v ∈ V | (u, v) ∈ E} 

• The incoming neighbor set of u ∈ V is Adj−(u) = {v ∈ V | (v, u) ∈ E} 

• The out-degree of a vertex u ∈ V is deg+(u) = |Adj+(u)| 

• The in-degree of a vertex u ∈ V is deg−(u) = |Adj−(u)| 

• For undirected graphs, Adj−(u) = Adj+(u) and deg−(u) = deg+(u) 

• Dropping superscript defaults to outgoing, i.e., Adj(u) = Adj+(u) and deg(u) = deg+(u) 

Graph Representations 
• To store a graph G = (V, E), we need to store the outgoing edges Adj(u) for all u ∈ V 

• First, need a Set data structure Adj to map u to Adj(u) 

• Then for each u, need to store Adj(u) in another data structure called an adjacency list 

• Common to use direct access array or hash table for Adj, since want lookup fast by vertex 

• Common to use array or linked list for each Adj(u) since usually only iteration is needed1 

• For the common representations, Adj has size Θ(|V |), while each Adj(u) has size Θ(deg(u)) P 
• Since u∈V deg(u) ≤ 2|E| by handshaking lemma, graph storable in Θ(|V | + |E|) space 

• Thus, for algorithms on graphs, linear time will mean Θ(|V | + |E|) (linear in size of graph) 

Examples 
• Examples 1 and 2 assume vertices are labeled {0, 1, . . . , |V | − 1}, so can use a direct access 

array for Adj, and store Adj(u) in an array. Example 3 uses a hash table for Adj. 

Ex 1 (Undirected) | Ex 2 (Directed) | Ex 3 (Undirected) 
G1 = [ | G2 = [ | G3 = { 

[2, 1], # 0 | [2], # 0 | a: [s, b], b: [a], 
[2, 0, 3], # 1 | [2, 0], # 1 | s: [a, c], c: [s, d, e], 
[1, 3, 0], # 2 | [1], # 2 | d: [c, e, f], e: [c, d, f], 
[1, 2], # 3 | ] | f: [d, e], g: [], 

] | | } 

• Note that in an undirected graph, connections are symmetric as every edge is outgoing twice 

1A hash table for each Adj(u) can allow checking for an edge (u, v) ∈ E in O(1)(e) time 
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Paths 
• A path is a sequence of vertices p = (v1, v2, . . . , vk) where (vi, vi+1) ∈ E for all 1 ≤ i < k. 

• A path is simple if it does not repeat vertices2 

• The length `(p) of a path p is the number of edges in the path 

• The distance δ(u, v) from u ∈ V to v ∈ V is the minimum length of any path from u to v, 
i.e., the length of a shortest path from u to v 
(by convention, δ(u, v) = ∞ if u is not connected to v) 

Graph Path Problems 
• There are many problems you might want to solve concerning paths in a graph: 

• SINGLE PAIR REACHABILITY(G, s, t): is there a path in G from s ∈ V to t ∈ V ? 

• SINGLE PAIR SHORTEST PATH(G, s, t): return distance δ(s, t), and 
a shortest path in G = (V, E) from s ∈ V to t ∈ V 

• SINGLE SOURCE SHORTEST PATHS(G, s): return δ(s, v) for all v ∈ V , and 
a shortest-path tree containing a shortest path from s to every v ∈ V (defined below) 

• Each problem above is at least as hard as every problem above it 
(i.e., you can use a black-box that solves a lower problem to solve any higher problem) 

• We won’t show algorithms to solve all of these problems 

• Instead, show one algorithm that solves the hardest in O(|V | + |E|) time! 

Shortest Paths Tree 
• How to return a shortest path from source vertex s for every vertex in graph? 

• Many paths could have length Ω(|V |), so returning every path could require Ω(|V |2) time 

• Instead, for all v ∈ V , store its parent P (v): second to last vertex on a shortest path from s 

• Let P (s) be null (no second to last vertex on shortest path from s to s) 

• Set of parents comprise a shortest paths tree with O(|V |) size! 
(i.e., reversed shortest paths back to s from every vertex reachable from s) 

2A path in 6.006 is a “walk” in 6.042. A “path” in 6.042 is a simple path in 6.006. 
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Breadth-First Search (BFS) 
• How to compute δ(s, v) and P (v) for all v ∈ V ? 

• Store δ(s, v) and P (v) in Set data structures mapping vertices v to distance and parent 

• (If no path from s to v, do not store v in P and set δ(s, v) to ∞) 

• Idea! Explore graph nodes in increasing order of distance 

• Goal: Compute level sets Li = {v | v ∈ V and d(s, v) = i} (i.e., all vertices at distance i) 

• Claim: Every vertex v ∈ Li must be adjacent to a vertex u ∈ Li−1 (i.e., v ∈ Adj(u)) 

• Claim: No vertex that is in Lj for some j < i, appears in Li 

• Invariant: δ(s, v) and P (v) have been computed correctly for all v in any Lj for j < i 

• Base case (i = 1): L0 = {s}, δ(s, s) = 0, P (s) = None 

• Inductive Step: To compute Li: 

– for every vertex u in Li−1: 

∗ for every vertex v ∈ Adj(u) that does not appear in any Lj for j < i: 
· add v to Li, set δ(s, v) = i, and set P (v) = u 

• Repeatedly compute Li from Lj for j < i for increasing i until Li is the empty set 

• Set δ(s, v) = ∞ for any v ∈ V for which δ(s, v) was not set 

• Breadth-first search correctly computes all δ(s, v) and P (v) by induction 

• Running time analysis: 

– Store each Li in data structure with Θ(|Li|)-time iteration and O(1)-time insertion 
(i.e., in a dynamic array or linked list) 

– Checking for a vertex v in any Lj for j < i can be done by checking for v in P 

– Maintain δ and P in Set data structures supporting dictionary ops in O(1) time 
(i.e., direct access array or hash table) 

– Algorithm adds each vertex u to ≤ 1 level and spends O(1) time for each v ∈ Adj(u)P 
– Work upper bounded by O(1) × deg(u) = O(|E|) by handshake lemma u∈V 

– Spend Θ(|V |) at end to assign δ(s, v) for vertices v ∈ V not reachable from s 

– So breadth-first search runs in linear time! O(|V | + |E|) 

• Run breadth-first search from s in the graph in Example 3 
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