
   

  
              

             
 

      

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 4 

Problem Set 4 

Please write your solutions in the LATEX and Python templates provided. Aim for concise 
solutions; convoluted and obtuse descriptions might receive low marks, even when they are 
correct. 

Problem 4-1. [10 points] Binary Tree Practice 

(a) [2 points] The Set Binary Tree T below is not height-balanced but does satisfy the 
binary search tree property, assuming the key of each integer item is itself. Indicate 
the keys of all nodes that are not height-balanced and compute their skew. 

47 

16 

3 37 

35 

28 

84 

64 

49 

86 

88 

Solution: The nodes containing the keys 16 and 37 are not height balanced. Their 
skews are 2 and −2 respectively. 
Rubric: 
• 1 point for each correct node and skew 
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(b) [5 points] Perform the following insertions and deletions, one after another in se-
quence on T, by adding or removing a leaf while maintaining the binary search tree 
property (a key may need to be swapped down into a leaf). For this part, do not use 
rotations to balance the tree. Draw the modified tree after each operation. 

1 T.insert(2) 
2 T.delete(49) 
3 T.delete(35) 
4 T.insert(85) 
5 T.delete(84) 

Solution: 
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insert(2) 
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delete(49) 
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delete(35) 

insert(85) 
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delete(84) (Two solutions, swap down predecessor/successor) 
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Rubric: 
• 1 point for each correct operation, relative to the previous tree 
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(c) [3 points] For each unbalanced node identified in part (a), draw the two trees that 
result from rotating the node in the original tree left and right (when possible). For 
each tree drawn, specify whether it is height-balanced, i.e., all nodes satisfy the AVL 
property. 
Solution: Node containing 16 is not height-balanced. 

• Rotating left at this node does not balance the tree: 
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• Rotating right at this node does not balance the tree: 
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86 

88 

Node containing 37 is not height-balanced. 

• Rotating left at this node is not possible 
• Rotating right at this node results in a height-balanced tree! 
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88 

Rubric: 
• 1 point for each correct rotation, relative to the previous tree 
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Note: Material on this page requires material that will be covered in L08 on March 3, 2020. We 
suggest waiting to solve these problem until after that lecture. All other pages of this assignment 
can be solved using only material from L07 and earlier. 

Problem 4-2. Heap Practice [10 points] 

For each array below, draw it as a complete1 binary tree and state whether the tree is a max-heap, 
a min-heap, or neither. If the tree is neither, turn the tree into a min-heap by repeatedly swapping 
items that are adjacent in the tree. Communicate your swaps by drawing a sequence of trees, 
marking on each tree the pair that was swapped. 

(a) [4, 12, 8, 21, 14, 9, 17] 
Solution: Min-heap 

4 

12 

21 14 

8 

9 17 

(b) [701, 253, 24, 229, 17, 22] 
Solution: Max-heap 

701 

253 

229 17 

24 

22 

(c) [2, 9, 13, 8, 0, 2] 
Solution: Neither: three swaps suffice to transform into a min-heap 

2 

9 

8 0 

13 

2 

2 

0 

8 9 

13 

2 
0 

2 

8 9 

13 

2 

0 

2 

8 9 

2 

13 

(d) [1, 3, 6, 5, 4, 9, 7] 
Solution: Min-heap 

1 

3 

5 4 

6 

9 7 

1Recall from Lecture 8 that a binary tree is complete if it has exactly 2i nodes of depth i for all i except possibly 
the largest, and at the largest depth, all nodes are as far left as possible. 
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Rubric: 

• 1 point per correct tree drawing 

• 1 point per correct categorization 

• 2 points for a correct sequence of swaps for part (c) 

Problem 4-3. [10 points] Gardening Contest 

Gardening company Wonder-Grow sponsors a nation-wide gardening contest each year where they 
rate gardens around the country with a positive integer2 score. A garden is designated by a garden 
pair (si, ri), where si is the garden’s assigned score and ri is the garden’s unique positive integer 
registration number. 

(a) [5 points] To support inclusion and reduce competition, Wonder-Grow wants to award 
identical trophies to the top k gardens. Given an unsorted array A of garden pairs and 
a positive integer k ≤ |A|, describe an O(|A| + k log |A|)-time algorithm to return the 
registration numbers of k gardens in A with highest scores, breaking ties arbitrarily. 
Solution: Build a max-heap from array A keyed on the garden scores si, which can 
be done in O(|A|) time. Then repeatedly remove the maximum pair k times using 
delete max(), and return the registration numbers of the pairs extracted (say in 
an array of size k). Because a max-heap correctly removes some maximum from 
the heap with each deletion in O(log |A|) time, this algorithm is correct and runs in 
O(|A| + k log |A|) time. 

(b) [5 points] Wonder-Grow decides to be more objective and award a trophy to every 
garden receiving a score strictly greater than a reference score x. Given a max-heap A 
of garden pairs, describe an O(nx)-time algorithm to return the registration numbers 
of all gardens with score larger than x, where nx is the number of gardens returned. 
Solution: For this problem, we cannot afford O(nx log |A|) time to repeatedly delete 
the maximum from A until the deleted pair has score less than or equal to x. However, 
we can exploit the max-heap property to traverse only an O(nx) subset of the max-
heap containing the largest nx pairs. First observe that the max-heap property implies 
all nx items having key larger than x form a connected subtree of the heap containing 
the root (assuming any stored score is greater than x). So recursively search node v of 
the heap starting at the root. There are two cases, either: 

• the score at v is ≤ x, so return an empty set since, by the max-heap property, no 
pair in v’s subtree should be returned; or 

2In this class, when an integer or string appears in an input, without listing an explicit bound on its size, you should 
assume that it is provided inside a constant number of machine words in the input. 
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• the score at v is > x, so recursively search the children of v (if they exist) and 
return the score at v together with the scores returned by the recursive calls (which 
is correct by induction). 

This procedure visits at most 3nx nodes (the nodes containing the nx items reported 
and possibly each such node’s two children), so this procedure runs in O(nx) time. 

Rubric: 

• 1 points for a description of a correct algorithm 

• 1 point for analysis of correctness 

• 1 point for analysis of running time 

• 2 points correct algorithm is efficient 

• Partial credit may be awarded 

Problem 4-4. [15 points] Solar Supply 

Entrepreneur Bonty Murns owns a set S of n solar farms in the town of Fallmeadow. Each solar 
farm (si, ci) ∈ S is designated by a unique positive integer address si and a farm capacity ci: a 
positive integer corresponding to the maximum energy production rate the farm can support. Many 
buildings in Fallmeadow want power. A building (bj , dj ) is designated by a unique name string bj 
and a demand dj : a positive integer corresponding to the building’s energy consumption rate. 

To receive power, a building in Fallmeadow must be connected to a single solar farm under the 
restriction that, for any solar farm si, the sum of demand from all the buildings connected to si may 
not exceed the farm’s capacity ci. Describe a database supporting the following operations, and for 
each operation, specify whether your running time is worst-case, expected, and/or amortized. 

initialize(S) Initialize database with a list S = ((s0, c0), . . . , (sn−1, cn−1)) 
corresponding to n solar farms in O(n) time. 

power on(bj ,dj ) Connect a building with name bj and demand dj to any 
solar farm having available capacity at least dj in O(log n) time 
(or return that no such solar farm exists). 

power off(bj ) Remove power from the building with name bj in O(log n) time. 
customers(si) Return the names of all buildings supplied by the farm at address si 

in O(k) time, where k is the number of building names returned. 

Solution: Our approach will be to maintain the following data structures: 

• a Priority Queue P on the solar farms, storing for each solar farm its address si, capacity ci, 
and its available capacity ai (initially ai = ci), keyed on available capacity; 

• a Set data structure B mapping each powered building’s name bj to the address of the solar 
farm si that it is connected to and its demand dj ; and 
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• a Set data structure F mapping the address of each solar farm si to: (1) its own Set data struc-
ture Bi containing the buildings associated with that farm, and (2) a pointer to the location of 
si in P . 

Now we support the operations: 

• initialize(S): build Set data structures P and then F from S, and initialize all other data 
structures above as empty. This operation directly maintains the invariants of our database by 
reducing to build for F and P . There are O(n) empty data structures and pointers constructed, 
so if we implement P and F with data structures that can build in O(n) time, this operation 
will also take O(n) time. 

• power on(bj , dj ): assume that bj is not already connected to power (the operation is un-
specified otherwise). First, find a solor farm to connect by deleting a solar farm si from P 
having largest available capacity ci (delete max) and checking whether it’s capacity is at 
least dj . There are two cases: 

– dj > ci, so reinsert the solar farm back into P (relinking a pointer from F to a location 
in P ) and return that no solar farm can currently support the building. 

– dj ≤ ci, so subtract dj from ci and reinsert it back into P (relinking a pointer). Then, 
add bj to B mapping to si, and then find the Bi in F associated with si and add bj to Bi. 

This operation directly maintains the invariants of our database and takes time asymptotically 
upperbounded by the sum of: one delete max and one insert operation on P , an insert op-
eration on B, a find on F , an insertion into Bi, and constant additional work (to maintain 
pointers and perform arithmetic). 

• power off(bj ): assume that bj is already connected to power (the operation is unspecified 
otherwise). Lookup the si and dj associated with bj in B, lookup Bi in F using si, and 
remove bj from Bi. Lastly, go to si’s location in P and remove si from P , increase ci by 
dj , and reinsert si into P . This operation directly maintains the invariants of our database, 
and takes time asymptotically upperbounded by the sum of: one lookup in B, one lookup in 
F , one delete from Bi, one removal by location from P , one insertion into P , and constant 
additional work. 

• customers(si): lookup Bi in F using si, and return all names stored in Bi. This operation 
is correct based on the invariants maintained by the data structure (Bi contains the buildings 
associated with si), and takes time asymptotically upperbounded by the sum of: one lookup 
in F and one iteration through Bi. 

We have shown this database can correctly support the operations. Now we choose implementa-
tions of the data structures in the database that will allow the operations to be efficient. We need 
to be able to build B and F in O(n) time with O(log n) lookups, so we must use hash tables 
for these, leading to expected bounds on all operations, and amortized bounds on power on and 
power off. For each Bi, we need O(log n) lookup, insert, and delete, so can implement with ei-
ther a Set AVL Tree or a hash table. Lastly, P requires O(n) build, and O(log n) insert and delete 
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delete max, so either a Max-Heap or a Sequence AVL Tree augmented with subtree max items can 
be used. Note that removing an item from a Sequence AVL Tree via a pointer to its node is exactly 
the same as deleting the item after being found by index. Removing an item from a Max-Heap by 
index is not natively supported, but uses the same technique as removing the root: swap the item 
with the last leaf (the last item in the array), remove the item, and then swap the moved item up or 
down the tree to restore the Max-Heap property. 

Rubric: 

• 2 points for a description of a correct database 

• 1 point for correct algorithm for first and last operation (2) 

• 2 points for correct algorithm for middle two dynamic operations (2) 

• 1 points for correct argument of correctness 

• 2 points for correct argument of running times 

• 4 points if correct database is efficient 

• Partial credit may be awarded 

Problem 4-5. [15 points] Robot Wrangling 

Dr. Squid has built a robotic arm from n+1 rigid bars called links, each connected to the one before 
it with a rotating joint (n joints in total). Following standard practice in robotics3, the orientation 
of each link is specified locally relative to the orientation of the previous link. In mathematical 
notation, the change in orientation at a joint can be specified using a 4 × 4 transformation matrix. 
Let M = (M0, . . . ,Mn−1) be an array of transformation matrices associated with the arm, where 
matrix Mk is the change in orientation at joint k, between links k and k + 1. 

To compute the position of the end effector4, Dr. Squid will need the arm’s full transformation:Qn−1the ordered matrix product of the arm’s transformation matrices, k=0 Mk = M0 · M1 · . . . · Mn−1. 
Assume Dr. Squid has a function matrix multiply(M1,M2) that returns the matrix product5 

M1 × M2 of any two 4 × 4 transformation matrices in O(1) time. While tinkering with the arm 
changing one joint at a time, Dr. Squid will need to re-evaluate this matrix product quickly. De-
scribe a database to support the following worst-case operations to accelerate Dr. Squid’s work-
flow: 

initialize(M) Initialize from an initial input configuration M in O(n) time. 
update joint(k,M) Replace joint k’s matrix Mk with matrix M in O(log n) time. 
full transformation() Return the arm’s current full transformation in O(1) time. 

Solution: Store the matrices in a Sequence AVL tree T , where every node v stores a matrix v.M 
and is augmented with v.P: the ordered product of all matrices in v’s subtree. This property at a 
node v can be computed in O(1) time from the augmentations of its children. Specifically, let PL 

3More on forward kinematic robotics computation here: https://en.wikipedia.org/wiki/Forward_kinematics 
4i.e., the device at the end of a robotic arm: https://en.wikipedia.org/wiki/Robot_end_effector 
5Recall, matrix multiplication is not commutative, i.e., M1 · M2 6= M2 · M1, except in very special circumstances. 

https://en.wikipedia.org/wiki/Forward_kinematics
https://en.wikipedia.org/wiki/Robot_end_effector
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and PR be v.left.P and v.right.P respectively (or the 4 × 4 identity matrix if the respective 
left or right child is missing); then v.P = PL · v.M · PR which can be computed in O(1) time 
using the provided matrix multiply function, so this augmentation can be maintained. (Note 
that, because the number of items and traversal order never changes, AVL behavior is not needed 
here, since no operation will change the structure of the tree. So a static binary tree or even an 
implicitly represented complete binary tree stored in an array, as in a binary heap, would suffice.) 

Now we support the operations: 

• initialize(M): build T from the matrices in worst-case M in O(|M|) = O(n) time, 
maintaining the new augmentation from the leaves to the root. 

• update joint(k, M): find the node v containing matrix k in the traversal order using 
get at(k) at the root of T in O(log n) time, and replace v.M with M . Then recompute the 
augmentations up the tree in O(log n) time. 

• full transformation(): the augmentation stored at the root of T corresponds exactly to 
the arm’s full transformation, so simply return T.root.P in O(1) time. 

Rubric: 

• 2 points for a description of a correct database 

• 1 point for a correct augmentation 

• 2 points for description of a correct algorithm for each operation (3) 

• 1 point for correct argument of correctness 

• 2 points for correct argument of running times 

• 3 points if correct database is efficient 

• Partial credit may be awarded 

Problem 4-6. [40 points] πz2a Optimization 

Liza Pover has found a Monominos pizza left over from some big-TEX recruiting event. The pizza 
is a disc6 with radius z, having n toppings labeled 0, . . . , n − 1. Assume z fits in a single machine 
word, so integer arithmetic on O(1) such integers can be done in O(1) time. Each topping i: 

• is located at Cartesian coordinates (xi, yi) where xi, yi are integers from range R = {−z, . . . , z}
(you may assume that all coordinates are distinct), and 

• has integer tastiness ti ∈ R (note, topping tastiness can be negative, e.g., if it’s pineapple7). 

Liza wants to pick a point (x0, y0) and make a pair of cuts from that point, one going straight down 
and one going straight left, and take the resulting slice, i.e., the intersection of the pizza with the 
two half-planes x ≤ x0 and y ≤ y0 . The tastiness of this slice is the sum of all ti such that xi ≤ x0 

and yi ≤ y0 . Liza wants to find a tastiest slice, that is, a slice of maximum tastiness. Assume there 
exists a slice with positive tastiness. 

6The pizza has thickness a, so it has volume πz2a. 
7If you believe that Liza’s Pizza preferences are objectively wrong, feel free to assert your opinions on Piazza. 
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(a) [2 points] If point (x0, y0) results in a slice with tastiness t 6= 0, show there exists 
i, j ∈ {0, 1, . . . , n − 1} such that point (xi, yj) results in a slice of equal tastiness t 
(i.e., a tastiest slice exists resulting from a point that is both vertically and horizontally 
aligned with toppings). 
Solution: Pick the largest xi ≤ x0 and the largest yj ≤ y0 . Because t 6= 0, the slice 
contains at least one topping, so there exists such toppings i and j. And since the 
slice S corresponding to point (xi, yj ) contains exactly the same toppings as the slice 
corresponding to (x0, y0), then slice S also has tastiness t. 
Rubric: 
• 2 points for a correct algorithm 
• Partial credit may be awarded 

(b) [8 points] To make finding a tastiest slice easier, show how to modify a Set AVL Tree 
so that: 

• it stores key–value items, where each item x contains a value x.val (in addition 
to its key x.key on which the Set AVL is ordered); 

• it supports a new tree-level operation max prefix() which returns in worst-
case O(1) time a pair (k∗ , prefix(k∗)), where k∗ is any key stored in the tree TP 
that maximizes the prefix sum, prefix(k) = {x.val | x ∈ T and x.key ≤ k}
(that is, the sum of all values of items whose keys are ≤ k); and 

• all other Set AVL Tree operations maintain their running times. 

Solution: We augment the Set AVL Tree so that each node v stores three additional 
subtree properties: 

• v.sum: the sum of all item values stored in v’s subtree, which can be computed 
in O(1) time by: v.sum = v.left.sum + v.item.val + v.right.sum, 
or with zeros for the left and right sums if the respective children do not exist. 

• v.max prefix: max{prefix(k) | k ∈ subtree(v)}. We can compute the max 
prefix in the subtree in O(1) time by comparing three values: 
v.max_prefix = max( 

v.left.max_prefix, # left 
v.left.sum + v.item.val, # middle 
v.left.sum + v.item.val + v.right.max_prefix) # right 

where augmentations are considered zero on non-existent nodes. 
• v.max prefix key: arg max{prefix(k) | k ∈ subtree(v)}. We can compute 

the maximizing key in O(1) time based on which of the three cases is maximum in 
the above computation: key is v.left.max prefix key if the left is maximiz-
ing, v.item.key if the middle is maximizing, and v.right.max prefix key 
if the right is maximizing. 

Because these augmentations can be computed locally in O(1) time, they can be main-
tained without effecting the running times of the normal Set AVL Tree operations. To 
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support T.max prefix(), simply return 
(T.root.max prefix, T.root.max prefix key) 
in O(1) time via the augmentations stored at the root. 
Rubric: 
• 3 points for correct augmentations 
• 1 point for description of algorithm to support new operation 
• 1 point for correct argument of correctness 
• 1 point for correct argument of running time 
• 2 points if correct implementation is efficient 
• Partial credit may be awarded 

(c) [5 points] Using the data structure from part (b) as a black box, describe a worst-case 
O(n log n)-time algorithm to return a triple (x, y, t), where point (x, y) corresponds 
to a slice of maximum tastiness t. 
Solution: Sort the input topping points by their x coordinates in O(n log n) time (e.g., 
using merge sort), and initialize the data structure T from part (b), initially empty. 
Then for each topping (xi, yi, ti), insert it into T as a key-value item with key yi and 
value ti in O(log n) time, and then evaluate the max prefix (y ∗ , t ∗) in T . The max 
prefix t ∗ is then by definition the maximum tastiness of any slice with x coordinate xi, 
specifically the slice corresponding to the point (xi, y ∗). By repeating this procedure 
for each topping sorted by x, we can compute the maximum tastiness of any slice at xi 

for every xi in O(n log n) time (along with its associated point). Since some slice of 
maximum tastiness exists with an x coordinate at some xi for i ∈ {0, . . . , n − 1}, as 
argued in part (a), then taking the maximum of all slices found in O(n) time will 
correctly return a tastiest slice possible. 
Rubric: 
• 3 points for description of a correct augmentations 
• 1 point for correct argument of correctness 
• 1 point for correct argument of running time 
• Partial credit may be awarded 

(ci) [25 points] Write a Python function tastiest slice(toppings) that implements 
your algorithm from part (c), including an implementation of your data structure from 
part (b). You can download a code template containing some test cases from the 
website. 



13 Problem Set 4 

Solution: 

1 class Part_B_Node(BST_Node): 
2 def subtree_update(A): 
3 super().subtree_update() 
4 A.sum = A.item.val # sum 
5 if A.left: A.sum += A.left.sum 
6 if A.right: A.sum += A.right.sum 
7 left = -float(’inf’) # max prefix 
8 right = -float(’inf’) 
9 middle = A.item.val 

10 if A.left: 
11 left = A.left.max_prefix 
12 middle += A.left.sum 
13 if A.right: 
14 right = middle + A.right.max_prefix 
15 A.max_prefix = max(left, middle, right) 
16 if left == A.max_prefix: # max prefix key 
17 A.max_prefix_key = A.left.max_prefix_key 
18 elif middle == A.max_prefix: 
19 A.max_prefix_key = A.item.key 
20 else: 
21 A.max_prefix_key = A.right.max_prefix_key 
22 

23 class Part_B_Tree(Set_AVL_Tree): 
24 def __init__(self): 
25 super().__init__(Part_B_Node) 
26 

27 def max_prefix(self): 
28 k = self.root.max_prefix_key 
29 s = self.root.max_prefix 
30 return (k, s) 
31 

32 def tastiest_slice(toppings): 
33 B = Part_B_Tree() # use data structure from part (b) 
34 X, Y, T = 0, 0, 0 
35 n = len(toppings) 
36 toppings.sort(key = lambda topping: topping[0]) 
37 for (x, y, t) in toppings: 
38 B.insert(Key_Val_Item(y, t)) 
39 (Y_, T_) = B.max_prefix() 
40 if T < T_: 
41 X, Y, T = x, Y_, T_ 
42 return (X, Y, T) 
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