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PARTITION FUNCTIONS 
  
When can we write canonical partition function as a simple product of molecular 
partition functions?  
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These hold when the system microstate energy Ei is a sum of independent 
molecule energies εi (denoted here by εni where ni represent various quantum 
numbers for molecule i).  
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Then the sum over system microstate energies is just a sum over all the possible 
combinations of molecular energies ε1, ε2, …, εN
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And for indistinguishable particles 1/N! corrects for overcounting.  
 
So if system energy = sum over individual molecular energies ⇒ 
Canonical partition function = product of molecular partition functions  
 
Same approach justifies writing the molecular partition function as a product of 
separate partition functions for individual degrees of freedom.  
 
If molecular energy = sum of independent energy terms ⇒  
Molecular partition function = product of independent partition functions  
 
e.g. for molecules in the gas phase we have (approximately) 
 
 ε = εtrans + εrot + εvib + εelec + ... ⇒ q = qtrans qrot qvib qelec ∝ 
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For a polymer in a liquid,  
 

ε ≈ ε(everything else) + εconf  ⇒ q ≈ q(everything else) qconf  
 

which means that if there is a largely independent configurational energy 
contribution, we can calculate qconf and use it to draw conclusions about the 
likely polymer configurations even if the rest of the polymer energy 
contributions are hard to calculate quantitatively.   
  
All the thermodynamic functions can be calculated from the canonical partition 
function. Entropy is directly related to the number of available states.  
 
Examples of macroscopic thermodynamic results 
Entropically driven 
 

V2 

gas 
vacuum 

V1 

gas 
Free expansion of a gas 
 
 
“Lattice” model for ideal gas  
~ 1 in 1 million lattice sites filled  

V1 

V2 

Total volume V & molecular volume v determine # sites 
In this model, all the microstates have = energy 
Count # distinguishable system states = degeneracy Ω 
 
  gives entropy change lnS k= Ω
  
# lattice sites = molecular degeneracy ω = V/v = q 
because all lattice sites have equal energy ≡ 0  
 
# ways to place N molecules into lattice sites = (V/v)N 
= ωN = qN.  
# distinguishable system microstates = Ω  
To avoid overcounting divide by N! 
 
 Ω = (V/v)N/N! 
 
If we expand from volume V1 to V2, we have 
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Should look familiar! And 2

1

lnVG H T S nRT
V

Δ = Δ − Δ = −  

Entropy change is positive, free energy change is negative, as we expect. 
 
  

NB 

VB

NA 

VA

N = NA + NB 

V = VA + VB 
Ideal gas mixture  
 
 
Assume same initial (p,T) for A & B 
⇒ same (p,T) for mixture  
Assume equal molecular volumes & lattice cell sizes. 
Then initially 
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After mixing, how many ways to distribute NA 
molecules of A and NB molecules of B among the (V/v) 
lattice sites?  
As before, the number of ways to distribute N 
molecules among (V/v) sites is (V/v)N. To correct for 
indistinguishability, this time we divide by NA!NB! So 
the final state entropy is  
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Since the initial pressures are the same, the initial volumes must be in the ratio 
of the number of molecules, i.e. VA/V = NA/N = XA and VB/V = XB, so 
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With a simple microscopic model we can derive the macroscopic entropy change! 
 
Ideal liquid mixture 
Lattice model is different from gas because all the cells are occupied. Then in 
the pure liquid there is no disorder at all! 
 
 

+ 

 

A Aln ln1 0S k k= Ω = =  
 
 
 
 

B Bln ln1 0S k k= Ω = =  
 
 
 
Mixture: N molecules for N sites.  
First molecule has N choices, second (N – 1), etc.  
# ways to put the molecules into sites = N!  
Correct for overcounting by dividing by NA!NB!  
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Stirling’s approximation  lnN! ≈ NlnN – N ⇒ 
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Note that the lattice model would not work for solid-liquid phase equilibria since 
it says liquid and crystal have identical (zero) entropy! Really the liquid has many 
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more possible intermolecular configurations in the liquid, molecular rotation, & 
diffusion – but these occur in both the pure and mixed liquids, so ΔSmix is 
dominated by the disorder in molecular positions that the lattice model 
describes reasonably well.  
 
Energy & entropy changes 
We saw one example earlier, with 4-segment polymers.  
 
 
 

Microstate i: 

Energy εi:                     0                   εint          εint        εint   
 
Degeneracy g:              1                                   3     

 
 
 
 
 
 
 
 
We’ve redefined the zero of energy as the ground state energy. 
“Configurational” molecular partition function is 
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For a solution of noninteracting polymer molecules,  
 

= N
conf confQ q   

 
Note no factor of 1/ N! That’s for Qtrans only. Indistinguishability needs to be 
accounted for when the molecules are interchanged, i.e. switch positions. 

 
Check this with a system of 5 molecules: 2 of A, 3 of B, in 5 cells. First 
determine how many distinguishable arrangements there are with all the 
molecules in the ground state, then with one molecule configurationally excited. 
 



5.60 Spring 2007  Lecture #25     page 
 

6

How many distinguishable arrangements?  
Ωtrans = 5!/2!3! = 10  
All the arrangements are shown.  
 
Now imagine one of the two A molecules is in a 
configurationally excited state with energy econf.  
For each of the 10 arrangements, there are now two 
possibilities – one or the other A molecule is excited, 
and they are distinguishable based on location! So 
there are 20 total combinations.  
 
Ωtrans Ωconf = 20 ⇒ Ωconf = 2  
 
No correction by 1/NA for Ωconf

 
Back to our polymer problem… 
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We can immediately start determining the thermodynamic properties! 
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Energy scales with N: molecules are not interacting with each other so total 
energy is just a sum of individual molecule energies.  
Average energy per molecule is  
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∑  Yes! Same result 
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Also scales with N – sum over individual molecule entropy contributions 
Average molecular configurational entropy is  
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In high-T (low-β) limit, it’s kln(4) as expected. In low-T limit, it’s kln(1) = 0.  
 

( )int

, ,

ln ln 1 3conf
T V T V

A QkT kT e
N N

βεμ −∂ ∂⎛ ⎞⎛ ⎞= = − = − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

 
Chemical potential is just A per molecule, and A scales with N so it’s just A/N.  
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The function is complicated, but its limits are understandable. Also, it scales 
with N, so we can think of a configurational heat capacity per molecule.  
 

0  as  0
confVC T→ →  

0 

εint

kT 

Low-T 
limit 

In the low-T limit, all the molecules are in the 
lowest state. If kT increases infinitesimally, all 
the molecules are still in the lowest state! So the 
configurational energy doesn’t change!  
 
  0  as  

confVC T→ → ∞

0 
εint

kT 

High-T 
limit 

In the high-T limit, the molecules are equally 
distributed among all the states. If kT increases, 
they are still equally distributed among all the 
states! So Uconf doesn’t change.  
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