BONDING (4 problems, 50 points total)

Question 1. Local structure: in 1973, Yamnell and co-workers determincd the structurc of
argon at 85 K. The pair correlation function g(r) they found for this monoatomic substance is
shown below:

a. What 1s the definition of the pair correlation function? Why does it tend to 1.0 at large r?

Consider the material 1n its stable phase at 85 K, and imagine a sphere with one of the atoms at

the center of a sphere. A volumie of the material can be defined between a sphere with radius r
and a concentric sphere with radius r+dr. The pair correlation i1s defined

1 N(r,r+dr)
glr)y=————
p ¥ (r,r+dr)

where p 1s the densily of the material, N(r, r+dr) is (he number of atoms in the volume between r
and r+dr, and V(r,r+dr) is the volume.

g(r) is a useful quanitity because near the origin, the number of atoms in a shell of the spherc
fluctuates largely based on the arrangement of the atoms. g(r) tends to 1.0 at large distances
because the number of atoms per volume (N/V) becomes cqual to the density far away from the

origin. At far distances, the number of neighbors is so great that their individual contributions to
N/V do not appear as uniquc peaks in g(r).



b. What is the state of argon at 85 K7 [s it a solid, a liquid, or a gas, and why?

The peaks indicate some nonrandom arrangement of the atoms is present, which mecans the
material 1s not a gas. If the peaks were discrete, the distance to the neighbors would be exact,
and the matenial would be a solid. Since the function is continuous and the peaks have nonzero
width, the material must be a liquid at 85 K.

e. What 1s vour estimate for the diamecter of an argon atom?

The distance from the r = 0 to the beginning of the first peak in the g(r) plot ts the average
distance from the center of one atom to the center of the nearest neighbor atom.

2R=32A
diameter =2 R = 3.2 A

This diameter 1s somewhat larger than expected. Argon is a noble gas with electronic
configuration [Na] 3s*3p°. If the material is a liquid, however, the distance from the orgin of g(r)
to the first peak may not be the distance from the center of one hard sphere touching an adjacent
hard sphere.

d. What do the peaks on the g(r) shown above represent?

The peaks represent large fluctuations from the average density of the material. The large
fluctuations at short distances from the ortgin occur because the closest neighbors reside at
regular intervals from the atom at the origin. Arcas of cmpty space result in troughs in g(r), and
arvas where a nearcst neighbor resides is a peak in N/V,  The peaks show the first through the
fourth nearcst neighbors from the onigin.

e. Why does the pair-correfation [unction flatten beyond 135-20 A?

g(r) fattens because distinet neighbors are not present at long range in the liquid. The number of
necighbors per volume in the shell at (r,r+dr) is cqual to the density.



f. How can you calculate the number of first-neighbors around an argon atorn at 85 K?

R
N = pJ.g(r)47zr2dr

R =5 A, which is the end of the first solvation shell.

g. In which ways would the g(r) (reproduced below) change 1f the temperalurc were to increase
by a small amount {(small enough that the system doesn’t undergo a phase transition)?

The peaks would shorten and broaden.

h. How would the pair-correlation function for argon look like for the two other states not
considered in point b, ? (label cach of the two pair-correlation functions either as solid, liquid, or
gas)

i .



Question 2. Nematic liquid crystals

a. Whal characterizes a nematic liquid crystal? How is it different from a cholesteric liquid
crystal, or from a smectic one? Discuss these differences in terms of orientation and translation
order parameters, both long-range and short-range.

The translation () and orientation (S) order parameters are given by

¥ = CQSIZI—T; S:M
a 2

Nematic phases show strong translational order in short range. They show strong oricntational
order in long range due to a unique axis along which the mesogen orient themselves. The
nematic phases have some, but weaker orientational order at short range. Cholesteric phases are
similar to nematic phases, but in cholesteric phases, the mesogen orientation twists along the
unique axis. Cholesteric show orientational order at short range but little orientational order at
long range. Cholestric phases show little translational order. Smectic phases have long range
translational and orientational order.

b. The orientation order parameter S for & newmatic liquid crystal is (given above), where 0 is the
angle between a mesogen and the average preferred orientation 4, and the angular brackets
represent an average over all the mesogens in the sample. Show what the order parameter S will
be if all the mesogens are oriented perfectly in the direction n, and what will it be if they are
randomly oriented (derive explicitly your result).

mesogens orient perlectly in 1 2 8=20
cos’ 0 = |

S S=1

mesogens randomly oriented 2 0=0..90°
cos®=+1...0
cos’B =+ ..0
average of cos” 0 = <cos” 0>=0.5
LS5=0



¢. Suppose that a matenial goes through 4 phases as temperature is increased; first it is a solid,
then a smectic liquid crystal, then a nematic liquid crystal, and finally an isotropic liquid. How

will the orientation order parameter change with temperature (the phase-transition temperatures
are labeled as T1, T2, and T3)?
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Question 3. X-ray diffraction
a. Supposc we havc a rcal space Bravais lattice with principal crystallographic vectors «,,4a,,
and a,. What condition does the wavector k,ofa plane wave Acxp(:‘fc- . F) must satisfy so that

the planewave has the same value at every point (,m,n) = la, + ma, + nd, of the Bravais lattice?
(As always, demonstrate your statement)
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b. Explain how the Laue conditions arisc for constructive interference of a plane wave incident
on a moneatomic erystal that has one atom at each point of the Bravais
lattice (/, m,n) = la, + ma, +nda,
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¢. The Ewald construction can be used to determine if Laue diffraction will be present of not 1 4
given sample, Describe, first in words, and only at the end with a figure, the Ewald construction,
its relation to the incoming and outgoing versors for the diffracted x-ray beams, and the
reciprocal lattice of the crystal you are investigating,

The incoming xrays to a sample may be represented by a vector of length 2n/ and dircetion
ziven by a versor (vector of unit Iength) §,. Outgeing xrays from a sample may be represented
by a vector of length 2n/4 and direction given by a versor S. Laue conditions state that when the
difference between incoming and outgoing vectors is equal to an integer number of wavelengths,
diffraction occurs. d represents 8-S, vectors giving constructive interference, d vectors must
represent orientations in the crystal allowing some intcger combination of wavelengths.

To figure out what orientations give rise to intcger number of wavelengths, consider an array of
points in three dimensions. Each point has an index (h k 1) that represents how many integer
number of 27/2. lengths occur in the three orthogonal directions. The array of points 1s the
reciprocal space. Now imagine the vector S in the reciprocal space. If' S has a constant length
and 1s rotated in every direction with one end as a pivot, it creates a sphere of all possible points
a vector of 2n/). can make. We are interested in finding the places where S-S, give risc to
diffraction. The places where the sphere intersects the points of reciprocal space are the points
that are integer numbers of 2/A. These points are the endpoints of the d” vectors. The points or
indices (h k 1) in reciprocal space represent real spacc directions in the crystal that have give rise
to diftraction in a sample,
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d. Why do we use monochromatic x-rays in a Debye-Scherrer expenment?

To measure diftracted rays from a sample, one must either look at the sample from a range of
views but with a single wavclength or one must look from one direction and monitor a variety of
wavelengths in order to determine characteristic d spacings. The Debye-Scherrer cxperiment
uses the first approach. A camera circles a samplc of crystalline powder irradiated with x-rays.
The powder contains many orientations of the crystals, and diffracted beams occur in many
dircetions. Using Bragg’s Law nd = 2 d sin6, many angles ¢ are known, 4 is constant, and thus
d can be solved for.



Question 4. Symmetry constraints of physical properties: at a well-known Institute of
Technology in the Northeast of the United States, Prof. Superman, Prof. Laue, and two UROP
students are busy at work. Prof. Superman has brought a crystal of kryptonite and gone off to
ereater glories. Prof. Laue has given it a glance (Prof, Laue emits x-rays n his spare time) and
proclaimed that kryptonite is metallic and has point group made only by a 4-lold rotation axis
and a mirror plane perpendicular to that axis. The UROPs are asked to figure out what the
symmetry properties of the clectrical conductivity tensor ¢ are ( ¢ relates an applied field to a

current density via j = oF | i.e. j; = o L), write a convincing explanation for it, and invoke a

clear statement of the Neumann principle in the process. Can you help them out and grant them
a well deserved break?
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