Course Description
This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity …
This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.
Course Info
Instructor
Departments
Learning Resource Types
assignment_turned_in
Problem Sets with Solutions
grading
Exams with Solutions
![Photo series showing large drop formed from thin liquid stream.](/courses/2-25-advanced-fluid-mechanics-fall-2013/fe0b243e81452333f3abd2b462058f44_2-25f13.jpg)
This photo sequence shows the “gobbling droplets” phenomenon. A jet of liquid is unstable because of surface tension and usually breaks into small droplets. The addition of minute quantities of polymeric molecules provides an additive elastic stress which stabilizes the liquid column. In this situation the terminal droplet has the time to gobble many of its incoming neighbors before its detachment. (Photo by Jose Bico and Christian Clasen, used courtesy of Prof. Gareth McKinley.)