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PATRIOT PROBLEMS FOR 18.102, SPRING 2009
DON'T HAND THEM IN!.

RICHARD MELROSE

Here I suggest that for fun over the Patriot’s Day long weekend you work
your way through the theory of Hilbert-Schmidt operators on a separable, infinite-
dimensional, Hilbert space.

Let {e; }ien be an orthonormal basis of a Hilbert space H. An operator T' € B(H)
is said to be Hilbert-Schmidt (really ‘with respect to this orthonormal basis’ but
see below) if
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Show that a finite rank operator is Hilbert-Schmidt.
Show that the Hilbert-Schmidt operators form a linear space.
Let {f;} be another (or of course even the same) orthonormal basis. Use
the expansion of the norm to see that
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Use the preceding identity to see that
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Applying this conclusion twice check that the sum on the right in (9.1) is
independent of the orthonormal basis used to define it and hence HS(H) C
B(H) is a well-defined subspace.
Show that T' € HS(H) = T € HS(H).
Show that HS(H) C K(H) consists of compact operators. (Hint: Finite
rank approximation is one approach that works).
Show, directly from the original definition, that if B € B(H) and T' € HS(H)
then BT € HS(H).
Using the results above show that HS() is an ideal, meaning that B;TB; €
HS(H) it T € HS(H) and B, By € B(H).
Show that HS(H) is a Hilbert space with an inner product which is com-
patible with the norm || - ||us.
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