
                          

                    
         

                             
                  

              

Final Exam Review 

To-do list: 

1. First we will cover continuity and uniform continuity, 

2. Then we will derivatives, and how to use the definition of a derivative to calculate it. 

3. Finally we will discuss pointwise and uniform convergence, and how to prove these. 

Note that these aren’t all of the topics that may be on the exam. The following will not be covered during this 
recitation, but may show up: 

• Materials from the first half of the class (covered during the Midterm Exam Review). 

• The Mean Value Theorem, the Fundamental Theorem of Calculus, and the Intermediate Value Theorem 

• L’Hospital’s Rule. 

Continuity and Uniform Continuity 
Lets start with the definitions. Let f : S → R. Then, 

• f is continuous at the point x0 ∈ S if ∀� > 0, ∃δ such that |f(x) − f(x0)| < � for |x − x0| < δ. 

• f is a continuous function if it is continuous for every x ∈ S. This is the definition of pointwise continuity. 
Note that with pointwise continuity, δ *can depend* on x0. 

• f is uniformly continuous on S if ∀� > 0 there exists δ > 0 such that ∀x0 ∈ S, |f(x) − f(x0)| < � when |x − x0| < 

δ. The di˙erence between this and the definition of pointwise continuity is where the x0 is in the mathematical 
statement– since the "∀x0 " occurs after the "δ", this means δ cannot depend on x0. 

2An example of a non-uniformly continuous function is f(x) = x , as given � > 0, δ depends on x. We can see 
this pictorally, but will not prove it rigorously here. 

Problem 10 
1Show that the function f(x) = is a uniformly continuous function on R (i.e. S = R). x2+1 
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Proof : We want to show that ∀� > 0 there exists δ > 0 such that ∀x0 ∈ S, |f(x) −f(x0)| < � when |x −x0| < δ. 
Thus, consider the following: 

21 1 |x0 + 1 − x2 − 1 − = 2 2x2 + 1 x + 1 |x2 + 1| · |x + 1|0 0 

|x0 − x| · |x0 + x|
= .2(x2 + 1)(x + 1) 0 

Now we have an |x − x0| in the numerator, which is useful for us to use δs and �s for. Now note that 

|x0 + x| → 02(x2 + 1)(x + 1) 0 

as x → ±∞. Furthermore, the function is continuous as a function of x and is thus bounded. Hence, ∃B such that 

|x + x0| 
< B2(x2 + 1)(x + 1) 0 

�for all x and x0. Thus, let δ = (notably, δ is independent of x0). Therefore, ∀� > 0,B 

21 1 |x0 + 1 − x2 − 1 − = 2 2x2 + 1 x + 1 |x2 + 1| · |x + 1|0 0 

|x0 − x| · |x0 + x|
= 2(x2 + 1)(x + 1) 0 

≤ B|x0 − x| 

< Bδ 

= �. 

Hence, f is uniformly continuous. 
Derivatives 

We will first use an example to show how we can calculate a derivative strictly using the definition. 

Problem 11 
Let ⎧√⎨ x2 + 1, x ≥ 0 

f(x) = .⎩x2 + 1, x < 0 

Compute f 0 , and prove whether or not f 00 is defined on all of R. 

Proof : To calculate f 0 , we first calculate f 0 for x > 0 and x < 0 using standard calculus: For x > 0 

2x 
f 0(x) = √ 

2 x2 + 1 
x 

= √ . 
x2 + 1 

For x < 0, 

f 0(x) = 2x. 

This is not meant to be the diÿcult analysis part of the problem– what makes it more tricky is finding the derivative 
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at x0 = x. To do this, we want to find 

f(x) − f(0) f(x) − 1 
lim = lim . 
x→0 x − 0 x→0 x 

To do so, we find the left and right sided limits and show they are equal. 
√ 

f(x) − 1 x2 + 1 − 1 
lim = lim 

x→0+ x x→0+ x√ √ 
x2 + 1 − 1 x2 + 1 + 1 

= lim · √ 
x→0+ x x2 + 1 + 1 

2x 
= lim √ 

x→0+ x · x2 + 1 + 1 

= 0. 

f(x) − 1 x2 + 1 − 1 
lim = lim 

x→0− x x→0+ x 

= 0. 

Therefore, f is di˙erentiable at 0 and f 0(0) = 0. Thus we can say ⎧ ⎨ x√ , x ≥ 0 
f 0(x) = x2+1 .⎩2x, x < 0 

Now we want to see whether or not f 00 is defined on all of R, and to start we once again calculate f 00 for x > 0, 
x < 0, and see what happens at 0. For x > 0, by the quotient rule, 

√ 2 
√ xx2 + 1 − 

f 00(x) = x2+1 

x2 + 1 
x2 + 1 − x2 

= 
(x2 + 1) 

3 
2 

1 
= . 

(x2 + 1) 
3 
2 

For x < 0, 

f 00(x) = 2. 

However, note that 
f 00(x) f 00(x) = 2,1 = lim 6= lim 

x→0+ x→0− 

and thus f 00(x) is not defined at x = 0. 

Problem 12 
Calculate 

d 
Z 2 x 

sin(t2) dt. 
dx 0 

Proof : Given the structure of this problem, it should be clear that we want to use the Fundamental Theorem 
2of Calculus, but we have to be careful with that x . Firstly, we will restate the Fundamental Theorem. Let 

F 0(x) = f(x). Then, Z x 

f(t) dt = F (x) − F (0), 
0 
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and thus Z xd d 
f(t) dt = (F (x) − F (0)) = f(x). 

dx dx0 

It will be helpful in this problem (and in general on exams!) to go a bit slowly. Let F 0(x) = sin(x2). Therefore, Z 2 xd 
sin(t2) dt = 

d
(F (x 2) − F (0))

dx dx0 

=
d 
F (x 2). 

dx 

Using the chain rule and the fact that F 0(x) = sin(x2), we have 

= 2x · F 0(x 2) 

= 2x sin(x 4). 

Pointwise vs Uniform Convergence 
Firstly, we define both. Let fn : S → R be a sequence of functions. 

• We say that fn converges to f pointwise if for all x ∈ S, 

lim fn(x) = f(x). 
n→∞ 

• We say that fn → f uniformly if ∀� > 0, ∃N such that 

sup |fn(x) − f(x)| < � 
x 

for all n > N . Notice that this is true if and only if 

|fn(x) − f(x)| < � 

for all n > N and ∀x ∈ S. This statement may feel trivial, but allows us another way to prove uniform 
convergence. 

Lets discuss both separately. 

⎧⎨ ⎩ 

Example 13 
nConsider the sequence of functions fn(x) = x for x ∈ [0, 1]. Show that fn → f pointwise where 

0, x =6 1 
f(x) . 

1, x = 1 

nProof : Pick x0 ∈ [0, 1] and let an = fn(x0) = x0 . Then, ⎧⎨ ⎩ 

0, x =6 1 

1, x = 1 
. nlim an = lim x = 0 

n→∞ n→∞ 

Example 14 
xConsider the sequence of functions fn(x) = for x ∈ R. Show that fn → f pointwise f(x) = 0 for all x ∈ R. n 
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x0Proof: Pick x0 ∈ R and let an = fn(x0) = . Then,n 

x0
lim an = lim = 0. 
n→∞ n→∞ n 

Example 15 
nx+1Consider the sequence of functions fn(x) = for x ∈ R. Show that fn → f uniformly where n(x2+1) 

x 
f(x) = . 

x2 + 1 

Proof : Well, firstly note that 

x 1 1 
fn(x) = + = f(x) + . 

x2 + 1 n(x2 + 1) n(x2 + 1) 

Furthermore, we want to show that for all � > 0, there exists an N such that 

|fn(x) − f(x)| < � 

1for all n > N and x ∈ R. Let N be the smallest natural number such that < � (we can similar have let N = d 1 e).N � 

Then, 
1 1 1 |fn(x) − f(x)| = ≤ < < � 

n(x2 + 1) n N 

for all n > N. 

To finish o˙ this review, lets consider the similarities and di˙erences of uniform continuity and convergence. 

Uniform Continuity Uniform Convergence 
- Deals with a single function - Deals with a sequence of functions 
- It is continuous and "the same δ" works for all points - "The same N" works for every point 

- These functions have a limit (namely another function) 

Problem 16 
Let f : R → R be a uniformly continuous function, and let 

n 
Z 1x+ n 

fn(x) = 
2 x− 1 

f(t) dt. 
n 

Show that fn → f uniformly. 

Proof : One useful way to start approaching problems like this is to figure out where certain terms/coeÿcients 
ncome from. For instance, why do we have a ? Well, we can notice that 2 Z 1 R 1+ 1 R x− 1 

x+ n nn n f(t) dt − f(t) dt
0f(t) dt = .12 x− 1 x + − (x − 1 )n nn 
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Let F 0(x) = f(x), and thus by the Fundamental Theorem of Calculus we have that 

1Z 1+ 1 R x+ n 
R x− n 

1 

nn f(t) dt − f(t) dt
0 0f(t) dt = 12 x− 1 x + − (x − 1 )n nn 

1F (x + ) − F (0) − (F (x − 1 ) − F (0))n n= 1x + − (x − 1 )n n 
1F (x + ) − F (x − 1 )n n= .1x + − (x − 1 )n n 

Now we want to relate this back to f , and we can notice that what we have so far is in the form of the mean value 
1theorem, which states that ∃x0 ∈ (x − 1 , x + ) such that n n 

1F (x + ) − F (x − 1 )n n = F 0(x0) = f(x0).1 x + − (x − 1 )n n 

1Therefore, for some x0 ∈ (x − 1 , x + ), fn(x) = f(x0). Hence, |fn(x) − f(x)| = |f(x0) − f(x)|. Since f is uniformly n n 
1continuous, for all � > 0 there exists a δ > 0 such that |f(x) − f(x0)| < � when |x − x0| < δ. Let δ = .N 

Therefore, fn → f uniformly. 
Best of luck on your exam! 
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