
Linear regression 
Class 26, 18.05 

Jeremy Orloff and Jonathan Bloom 

1 Learning Goals 

1. Be able to use the method of least squares to fit a line to bivariate data. 

2. Be able to give a formula for the total squared error when fitting any type of curve to 
data. 

3. Be able to say the words homoscedasticity and heteroscedasticity. 

2 Introduction 

Suppose we have collected bivariate data (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛. The goal of linear regression 
is to model the relationship between 𝑥 and 𝑦 by finding a function 𝑦 = 𝑓(𝑥) that is a close 
fit to the data. The modeling assumptions we will use are that 𝑥𝑖 is not random and that 
𝑦𝑖 is a function of 𝑥𝑖 plus some random noise. With these assumptions 𝑥 is called the 
independent or predictor variable and 𝑦 is called the dependent or response variable. 

Here is a series of examples showing the results of linear regression. We will discuss the 
details of how to do linear regression in the next section. 
Example 1. The cost of a first class stamp in cents over time is given in the following list. 
0.05 (1963) 0.06 (1968) 0.08 (1971) 0.10 (1974) 0.13 (1975) 0.15 (1978) 0.20 (1981) 
0.22 (1985) 0.25 (1988) 0.29 (1991) 0.32 (1995) 0.33 (1999) 0.34 (2001) 0.37 (2002) 
0.39 (2006) 0.41 (2007) 0.42 (2008) 0.44 (2009) 0.45 (2012) 0.46 (2013) 0.49 (2015) 
0.49 (2017) 0.50 (2018) 0.55 (2019) 

Using the R function lm we found the ‘least squares fit’ for a line to this data is 

𝑦 = −0.21390 + 0.88203𝑥, 

where 𝑥 is the number of years since 1960 and 𝑦 is in cents. 
Using this result we ‘predict’ that in 2021 (𝑥 = 61) the cost of a stamp will be 53.6 cents 
(since −0.21390 + 0.88203 ⋅ 61 = 53.6). 
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Stamp cost (cents) vs. time (years since 1960). Orange dot is predicted cost in 2021. 
Note that none of the data points actually lie on the line. Rather this line has the ‘best fit’ 
with respect to all the data, with a small error for each data point. 
(Note, the actual cost of a stamp dropped in January 2021 was 55 cents. See https: 
//en.wikipedia.org/wiki/History_of_United_States_postage_rates) 

Example 2. Suppose we have 𝑛 pairs of fathers and adult sons. Let 𝑥𝑖 and 𝑦𝑖 be the 
heights of the 𝑖th father and son, respectively. The least squares line for this data could be 
used to predict the adult height of a young boy from that of his father. 

Example 3. We are not limited to best fit lines. For all positive 𝑑, the method of least 
squares may be used to find a polynomial of degree 𝑑 with the ‘best fit’ to the data. Here’s 
a figure showing the least squares fit of a parabola (𝑑 = 2). 

Fitting a parabola, 𝑎𝑥2 + 𝑏𝑥 + 𝑐, to data 

Example 4. In fact, we can use linear regression to fit many other types of curves to 
bivariate data. 

https://en.wikipedia.org/wiki/History_of_United_States_postage_rates
https://en.wikipedia.org/wiki/History_of_United_States_postage_rates
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3 Fitting a line using least squares 

Suppose we have data (𝑥𝑖, 𝑦𝑖) as above. Our first goal is to find the line 

𝑦 = 𝑎𝑥 + 𝑏 

that ‘best fits’ the data. Our model says that each 𝑦𝑖 is predicted by 𝑥𝑖 up to some error 𝜖𝑖: 

𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏 + 𝜖𝑖. 

So 
𝜖𝑖 = 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏. 

The method of least squares finds the values 𝑎̂ and 𝑏̂ of 𝑎 and 𝑏 that minimize the sum of 
the squared errors: 

𝑆(𝑎, 𝑏) = ∑ 𝜖2
𝑖 = ∑(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2. 

𝑖 

Using calculus or linear algebra (details in the appendix), we find 

𝑠𝑥𝑦 𝑎̂ = 𝑏̂ = 𝑦 −̄ 𝑎̂ 𝑥̄ (1)𝑠𝑥𝑥 

where 

1 1 1 1𝑥̄ = 𝑛 ∑ 𝑥𝑖, 𝑦 ̄ = 𝑛 ∑ 𝑦𝑖, ̄ 𝑠𝑥𝑦 = ̄ ̄𝑠𝑥𝑥 = 𝑥)2, 𝑥)(𝑦𝑖−𝑦). (𝑛 − 1) 
∑(𝑥𝑖− (𝑛 − 1) 

∑(𝑥𝑖− 

Here 𝑥̄ is the sample mean of 𝑥, 𝑦 ̄ is the sample mean of 𝑦, 𝑠𝑥𝑥 is the sample variance of 𝑥, 
and 𝑠𝑥𝑦 is the sample covariance of 𝑥 and 𝑦. 

Example 5. Use least squares to fit a line to the following data: (0,1), (2,1), (3,4). 
Solution: In our case, (𝑥1, 𝑦1) = (0, 1), (𝑥2, 𝑦2) = (2, 1) and (𝑥3, 𝑦3) = (3, 4). So 

𝑥̄ = 3
5, 𝑦 ̄ = 2, 𝑠𝑥𝑥 = 3

7 , 𝑠𝑥𝑦 = 2 

Using the above formulas we get 
6 4𝑎̂ = 7 , 𝑏̂ = 7 . 
6So the least squares line has equation 𝑦 = 7𝑥 + 7

4 . This is shown as the orange line in the 

following figure. We will discuss the blue parabola soon. 

𝑥

𝑦

1

4

1 2 3

Least squares fit of a line (orange) and a parabola (blue) 
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Simple linear regression: It’s a little confusing, but the word linear in ‘linear regression’ 
does not refer to fitting a line. We will explain its meaning below. However, the most 
common curve to fit is a line. When we fit a line to bivariate data it is called simple linear 
regression. 

3.1 Residuals 

For a line the model is 
𝑦𝑖 = ̂ 𝑏 + 𝜖𝑖.𝑎𝑥 + ̂ 

We think of 𝑎𝑥̂ 𝑖+𝑏̂ as predicting or explaining 𝑦𝑖. The left-over term 𝜖𝑖 is called the residual, 
which we think of as random noise or measurement error. A useful visual check of the linear 
regression model is to plot the residuals. The data points should hover near the regression 
line. The residuals should look about the same across the range of 𝑥. 
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Data with regression line (left) and residuals (right). Note the homoscedasticity. 

3.2 Homoscedasticity 

An important assumption of the linear regression model is that the residuals 𝜖𝑖 have the 
same variance for all 𝑖. This is called homoscedasticity. You can see this is the case for 
both figures above. The data hovers in the band of fixed width around the regression line 
and at every 𝑥 the residuals have about the same vertical spread. 
Below is a figure showing heteroscedastic data. The vertical spread of the data increases as
𝑥 increases. Before using least squares on this data we would need to transform the data 
to be homoscedastic. 
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Heteroscedastic Data 

4 Linear regression for fitting polynomials 

When we fit a line to data it is called simple linear regression. We can also use linear 
regression to fit polynomials to data. The use of the word linear in both cases may seem 
confusing. This is because the word ‘linear’ in linear regression does not refer to fitting a 
line. Rather it refers to the linear algebraic equations for the unknown parameters. 

Example 6. Take the same data as in Example 5 and use least squares to find the best 
fitting parabola to the data. 
Solution: A parabola has the formula 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. The squared error is 

𝑆(𝑎, 𝑏, 𝑐) = ∑(𝑦𝑖 − (𝑎𝑥2
𝑖 + 𝑏𝑥𝑖 + 𝑐))2. 

After substituting the given values for each 𝑥𝑖 and 𝑦𝑖, we can use calculus to find the triple 
(𝑎, 𝑏, 𝑐) that minimizes 𝑆. With this data, we find that the least squares parabola has 
equation 

𝑦 = 𝑥2 − 2𝑥 + 1. 
Note that for 3 points the quadratic fit is perfect. 

𝑥

𝑦

1

4

1 2 3

Least squares fit of a line (orange) and a parabola (blue) 

Example 7. The pairs (𝑥𝑖, 𝑦𝑖) may give the age and vocabulary size of a 𝑛 children. Since 
we expect that young children acquire new words at an accelerating pace, we might guess 
that a higher order polynomial would best fit the data. 



6 18.05 Class 26, Linear regression, Spring 2022 

Example 8. (Transforming the data) Sometimes it is necessary to transform the data 
before using linear regression. For example, let’s suppose the relationship is exponential, 
i.e. 𝑦 = 𝑐𝑒𝑎𝑥. Then 

ln(𝑦) = 𝑎𝑥 + ln(𝑐). 
So we can use simple linear regression on the data (𝑥𝑖, ln(𝑦𝑖)) to obtain a model 

ln(𝑦) = ̂ 𝑏̂𝑎𝑥 + 

and then exponentiate to obtain the exponential model 
𝑏̂𝑒𝑎𝑥̂ .𝑦 = 𝑒 

4.1 Overfitting 

You can always achieve a better fit by using a higher order polynomial. For instance, given 6 
data points (with distinct 𝑥𝑖) one can always find a fifth order polynomial that goes through 
all of them. This can result in what’s called overfitting. That is, fitting the noise as well 
as the true relationship between 𝑥 and 𝑦. An overfit model will fit the original data better 
but perform less well on predicting 𝑦 for new values of 𝑥. Indeed, a primary challenge of 
statistical modeling is balancing model fit against model complexity. 
Example 9. In the plot below, we fit polynomials of degree 1, 2, and 9 to bivariate data 
consisting of 10 data points. The degree 2 model (maroon) gives a significantly better fit 
than the degree 1 model (blue). The degree 10 model (orange) gives fits the data exactly, 
but at a glance we would guess it is overfit. That is, we don’t expect it to do a good job 
fitting the next data point we see. 
In fact, we generated this data using a quadratic model, so the degree 2 model will tend to 
perform best fitting new data points. 

0 2 4 6 8 10
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5

10
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y

4.2 R function lm 

As you would expect we don’t actually do linear regression by hand. Computationally, 
linear regression reduces to solving simultaneous equations, i.e. to matrix calculations. The 
R function lm can be used to fit any order polynomial to data. (lm stands for linear model). 
We will explore this in the next studio class. In fact lm can fit many types of functions 
besides polynomials, as you can explore using R help or google. 
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5 Multiple linear regression 

Data is not always bivariate. It can be trivariate or even of some higher dimension. Suppose 
we have data in the form of tuples 

(𝑦𝑖, 𝑥1,𝑖, 𝑥2,𝑖, … 𝑥𝑚,𝑖) 

We can analyze this in a manner very similar to linear regression on bivariate data. That 
is, we can use least squares to fit the model 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑚𝑥𝑚. 

Here each 𝑥𝑗 is a predictor variable and 𝑦 is the response variable. For example, we might 
be interested in how a fish population varies with measured levels of several pollutants, or 
we might want to predict the adult height of a son based on the height of the mother and 
the height of the father. 
We don’t have time in 18.05 to study multiple linear regression, but we wanted you to see 
the name. 

6 Least squares as a statistical model 

The linear regression model for fitting a line says that the value 𝑦𝑖 in the pair (𝑥𝑖, 𝑦𝑖) is 
drawn from a random variable 

𝑌𝑖 = 𝑎𝑥𝑖 + 𝑏 + 𝜀𝑖 

where the ‘error’ terms 𝜀𝑖 are independent random variables with mean 0 and standard 
deviation 𝜎. The standard assumption is that the 𝜀𝑖 are i.i.d. with distribution 𝑁(0, 𝜎2). 
So, the mean of 𝑌𝑖 is given by: 

𝐸[𝑌𝑖] = 𝑎𝑥𝑖 + 𝑏 + 𝐸[𝜀𝑖] = 𝑎𝑥𝑖 + 𝑏. 

From this perspective, the least squares method chooses the values of 𝑎 and 𝑏 which minimize 
the sample variance about the line. 
In fact, under the assumption that 𝜀𝑖 ∼ 𝑁(0, 𝜎2), the least square estimate (𝑎,̂ 𝑏)̂ coincides 
with the maximum likelihood estimate for the parameters (𝑎, 𝑏); that is, among all possible 
coefficients, (𝑎,̂ 𝑏)̂ are the ones that make the observed data most probable. 

7 Regression to the mean 

The reason for the term ‘regression’ is that the predicted response variable 𝑦 will tend to 
be ‘closer’ to (i.e., regress to) its mean than the predictor variable 𝑥 is to its mean. Here 
closer is in quotes because we have to control for the scale (i.e. standard deviation) of each 
variable. The way we control for scale is to first standardize each variable. 

𝑥𝑖 − 𝑥̄ , 𝑦𝑖 − 𝑦 ̄.𝑢𝑖 = 𝑣𝑖 =√𝑠𝑥𝑥 
√𝑠𝑦𝑦 
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Standardization changes the mean to 0 and variance to 1: 

𝑢̄ = 𝑣̄ = 0, 𝑠𝑢𝑢 = 𝑠𝑣𝑣 = 1. 

The algebraic properties of covariance show 

𝑠𝑥𝑦 𝑠𝑢𝑣 = = 𝜌, √𝑠𝑥𝑥𝑠𝑦𝑦 

the correlation coefficient. Thus the least squares fit to 𝑣 = 𝑎𝑢 + 𝑏 has 

𝑠𝑢𝑣 ̂𝑎̂ = = 𝜌 and 𝑏 = 𝑣 −̄ 𝑎𝑢̂ ̄ = 0.𝑠𝑢𝑢 

So the least squares line is 𝑣 = 𝜌𝑢. Since 𝜌 is the correlation coefficient, it is between -1 and 
1. Let’s assume it is positive and less than 1 (i.e., 𝑥 and 𝑦 are positively but not perfectly 
correlated). Then the formula 𝑣 = 𝜌𝑢 means that if 𝑢 is positive then the predicted value 
of 𝑣 is less than 𝑢. That is, 𝑣 is closer to 0 than 𝑢. Equivalently, 

𝑦 − ̄ < 𝑥 − 𝑥̄
√𝑠𝑦𝑦 

𝑦 √𝑠𝑥𝑥 

i.e., 𝑦 regresses to 𝑦.̄ Notice how the standardization takes care of controlling the scale. 
Consider the extreme case of 0 correlation between 𝑥 and 𝑦. Then, no matter what the 𝑥 
value, the predicted value of 𝑦 is always 𝑦.̄ That is, 𝑦 has regressed all the way to its mean. 
Note also that the regression line always goes through the point (𝑥,̄ 𝑦)̄ . 

Example 10. Regression to the mean is important in longitudinal studies. Rice (Math-
ematical Statistics and Data Analysis) gives the following example. Suppose children are 
given an IQ test at age 4 and another at age 5 we expect the results will be positively 
correlated. The above analysis says that, on average, those kids who do poorly on the first 
test will tend to show improvement (i.e. regress to the mean) on the second test. Thus, a 
useless intervention might be misinterpreted as useful since it seems to improve scores. 

Example 11. Another example with practical consequences is reward and punishment. 
Imagine a school where high performance on an exam is rewarded and low performance is 
punished. Regression to the mean tells us that (on average) the high performing students 
will do slightly worse on the next exam and the low performing students will do slightly 
better. An unsophisticated view of the data will make it seem that punishment improved 
performance and reward actually hurt performance. There are real consequences if those in 
authority act on this idea. 

8 Appendix 

We collect in this appendix a few things you might find interesting. You will not be asked 
to know these things for exams. 
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8.1 Proof of the formula for least square fit of a line 

The most straightforward proof is to use calculus. The sum of the squared errors is 

𝑛 

𝑆(𝑏, 𝑎) = ∑(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2. 
𝑖=1 

Taking partial derivatives (and remembering that 𝑥𝑖 and 𝑦𝑖 are the data, hence constant) 

𝑛 𝜕𝑆 = ∑ −2(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏) = 0𝜕𝑏 𝑖=1 
𝑛 𝜕𝑆 = ∑ −2𝑥𝑖(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏) = 0𝜕𝑎 𝑖=1 

Summing this up we get two linear equations in the unknowns 𝑏 and 𝑎: 

(∑ 𝑥𝑖) 𝑎 + 𝑛𝑏 = ∑ 𝑦𝑖 

(∑ 𝑥2
𝑖 ) 𝑎 + (∑ 𝑥𝑖) 𝑏 = ∑ 𝑥𝑖𝑦𝑖 

Solving for 𝑎 and 𝑏 gives the formulas in Equation (1). 
A sneakier approach which avoids calculus is to standardize the data, find the best fit line, 
and then unstandardize. We omit the details. 

For a slew of applications across disciplines see: 
https://en.wikipedia.org/wiki/Linear_regression#Applications_of_linear_regression 

8.2 Measuring the fit 

Once one computes the regression coefficients, it is important to check how well the regres-
sion model fits the data (i.e., how closely the best fit line tracks the data). A common but 
crude ‘goodness of fit’ measure is the coefficient of determination, denoted 𝑅2. We’ll need 
some notation to define it. The total sum of squares is given by: 

TSS = ∑(𝑦𝑖 − 𝑦)̄ 2. 

The residual sum of squares is given by the sum of the squares of the residuals. When 
fitting a line, this is: 

RSS = ∑(𝑦𝑖 − 𝑎 𝑥̂ 𝑖 − 𝑏)̂ 2. 
The RSS is the “unexplained” portion of the total sum of squares, i.e. unexplained by the 
regression equation. The difference TSS − RSS is the “explained” portion of the total sum 
of squares. The coefficient of determination 𝑅2 is the ratio of the “explained” portion to 
the total sum of squares: 

TSS − RSS𝑅2 = .TSS 

In other words, 𝑅2 measures the proportion of the variability of the data that is accounted 
for by the regression model. A value close to 1 indicates a good fit, while a value close to 0 

https://en.wikipedia.org/wiki/Linear_regression#Applications_of_linear_regression
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indicates a poor fit. In the case of simple linear regression, 𝑅2 is simply the square of the 
correlation coefficient between the observed values 𝑦𝑖 and the predicted values 𝑎𝑥𝑖 + 𝑏. 
Example 12. In the overfitting example (9), the values of 𝑅2 are: 

degree 𝑅2 

1 0.3968
2 0.9455
9 1.0000 

Notice the goodness of fit measure increases as 𝑛 increases. The fit is better, but the 
model also becomes more complex, since it takes more coefficients to describe higher order 
polynomials. 
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