Class 22 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Critical values

1.
$$z_{0.025} =$$

- (a) -1.96
- (b) -0.95
- (c) 0.95
- (d) 1.96
- (e) 2.87

2.
$$-z_{0.16} =$$

- (a) -1.33
- (b) -0.99
- (c) 0.99
- (d) 1.33
- (e) 3.52

Board questions

Problem 1. Computing confidence intervals

The data 4, 1, 2, 3 is drawn from $N(\mu, \sigma^2)$ with μ unknown.

(a) Find a 90% z confidence interval for μ , given that $\sigma = 2$.

For the remaining parts, suppose σ is unknown.

- (b) Find a 90% t confidence interval for μ .
- (c) Find a 90% χ^2 confidence interval for σ^2 .
- (d) Find a 90% χ^2 confidence interval for σ .
- (e) Given a normal sample with n = 100, $\overline{x} = 12$, and s = 5,

find the rule-of-thumb 95% confidence interval for μ .

Problem 2. Confidence intervals and non-rejection regions

Suppose $x_1, \dots, x_n \sim \mathcal{N}(\mu, \sigma^2)$ with σ known.

Consider two intervals:

- 1. The z confidence interval around \overline{x} at confidence level $1-\alpha$.
- 2. The z non-rejection region for $H_0: \mu = \mu_0$ at significance level α .

Compute and sketch these intervals to show that:

 μ_0 is in the first interval $\Leftrightarrow \overline{x}$ is in the second interval.

Problem 3. Polling

For a poll to find the proportion θ of people supporting X we know that a $(1-\alpha)$ confidence interval for θ is given by

$$\left[\,\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}},\ \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}}\,\right].$$

1

- (a) How many people would you have to poll to have a margin of error of 0.01 with 95% confidence? (You can do this in your head.)
- (b) How many people would you have to poll to have a margin of error of 0.01 with 80% confidence. (You'll want R or other calculator here.)
- (c) If n = 900, compute the 95% and 80% confidence intervals for θ .

Discussion questions

1. Width of confidence intervals

The quantities $n, c = \text{confidence}, \overline{x}, \sigma$ all appear in the z confidence interval for the mean.

How does the width of a confidence interval for the mean change if:

- 1. We increase n and leave the others unchanged?
- 2. We increase c and leave the others unchanged?
- 3. We increase μ and leave the others unchanged?
- 4. We increase σ and leave the others unchanged?
 - (A) it gets wider (B) it gets narrower (C) it stays the same.

MIT OpenCourseWare

https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.