18.02 Problem Set 2 - Solutions of Part B

Problem 1
a) The position vector is T (t) = (cos(m — t),sin(m —t)) = (— cos(t), sin(t)).

In fact, the position vector of a uniform circular motion centered at the origin
is given by
T (t) = (Rcos(at + b), Rsin(at + b))

where R > 0 is the radius.
Its velocity vector is

V(t) = (—aRsin(at 4+ b),aR cos(at + b))
and so the speed is |V ()| = Rlal.

Now T (0) = (Rcos(b), Rsin(b)) = (—1,0).

This forces R =1 and b = 7 (or (2k + 1)7 with k integer).
The condition on the speed |V ()| = 1 implies a = +1.

As the motion is clockwise, then a = —1.

Concluding we get T () = {cos(m — t),sin(r — t)).

b) The position vector is T (t) = (10 cos(6t), 10 sin(6t)).

Similarly to (a), T (t) = (Rcos(b), Rsin(b)) = (10,0), so that R = 10 and b = 0
(or 2km with k integer).

Then |V (t)] = 60 implies 10ja] = 60, so that a = 6 because the motion is
counterclockwise.

¢) The position vector is T () = (10 cos(1207t), 10 sin(1207t)).

As in (b), we have R =10 and b = 0.
Moreover, 60 rotations per minute means an angle of 60 - 2 = 1207 radiants
per minute.
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d) The position vector is T (t) = (1 — cos(t) — t,1 4 sin(t) — t, §t2>.

d
In fact, Ev(t) = (cos(t), —sin(t), 1) implies that

—

vV (t) = {a +sin(t), b+ cos(t), c + t).



Butv()z( ,0,0), so that a:—l b=1and c=0.
Hence V' (t) = (sin(t) — 1,cos(t) — 1,1).
Similarly, dg (t) = (sin(t) — 1,cos(t) — 1,t) implies that
T (t) = (a' — cos(t) —t,b +sin(t) —t,c + 1152).
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But T'(0) = (0,1,0) forces ' =1, =1 and ¢’ = 0.
Hence T (t) = (1 — cos(t) — t,1 +S1n( ) —t, 2t?).

Problem 2

a) The hypothesis is that | T ()| = R for all values of ¢, where R is some positive
number (the radius of the sphere).
Taking the square of both sides we get

T() - T() =T =R
Differentiating both sides with respect to ¢t we get

dT(t)
dt

FO+TE) I;h:(t) = % (T(t)-T(t) =0

which means V' (¢) - T (¢) = 0 for all ¢.
We proved that V(t) is orthogonal to T (t) at all times, thus V¥ (t) is tangent
to the sphere of radius R centered at the origin.

b) We have to check that | T'(¢)| = 1 for all . We have
|T(2)]? = cos®(t) sin?(2t) + sin?(¢) sin?(2t) + cos?(2t) = sin?(2t) + cos?(2t) = 1

so that |7 (t)] = 1.

¢) V() = (—sin(t) sin(2t) + 2 cos(t) cos(2t), cos(t) sin(2t) + 2sin(t) cos(2t), —2sin(2t))
just differentiating T (t) componentwise.

d) The angle is 6 = arccos(1/v/5) (or arccos(—1/v/5) = m — arccos(1/v/5)).
The points of intersection between the trajectory and the equator are

(\/5/2’ \/5/2’ 0)7 (\/§/2a _\/5/27 0)’ (_\/5/27 _\/5/25 0)7 (_\/5/2’ \/5/2’ 0)'



First we have to find the point(s) where the trajectory intersects the equator,
that is where
z(t) = cos(2t) = 0.

It happens for t = w/4 + kn/2 with k integer. These values of ¢ determine four
points on the sphere:

= (v/2/2,4/2/2,0) (corresponding to ¢t = 7/4)

= (v/2/2,—+/2/2,0) (corresponding to t = 37/4)
= (—v/2/2,—/2/2,0) (corresponding to t = 57/4)
(—v/2/2,4/2/2,0) (corresponding to t = 77 /4).

Notice that, if P is a point on the unit circle in the plane, then a tangent vector
at P to the circle can be obtained rotating O.I)D by 7/2 (or by —m/2, in this case
we would get the opposite vector, which is still tangent to the equator).

As a consequence, a vector w1 tangent at P; to the equator is

= (—v/2/2,V/2/2,0)
and a vector wo tangent at Ps to the equator is
Wao = (V2/2,V2/2,0).
Similarly we get
Ws = (V2/2,—v2/2,0)  and = W4 = (—V2/2,-v2/2,0).

Using the formula for the velocity of the given trajectory from (c), we can
compute its velocity vectors ©v'; at P; for i = 1,2,3,4. We get

U=V (r/4) = (-V2/2,v2/2,-2) Ty =V(3r/4) = (V2/2,V2/2,2).
Vs =V(r/4) = (V2/2,—V2/2,-2)  T4=V(Tn/4) = (—V2/2,—V/2/2,2).

Call 6; one of the two angles between the trajectory and the equator at P; for
1=1,2,3,4. Then
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