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18.02 Problem Set 6 - Solutions of Part B 

Problem 1 

⎧ a 
⎪ x = x0 + Δz 
⎪ 

⎨ c 
a) The parametric equations are y = y0 + 

b 
Δz 

⎪ 

⎪ c 
⎩ 

z = z0 + Δz 
The condition is c �= 0. 

In fact, the standard parametric equations (with parameter t) would be 
⎧ 

⎪x(t) = x0 + ta 
⎨ 

−P (t) = P0 + t→ v , that is in components y(t) = y0 + tb . 
⎪ 

⎩ 

z(t) = z0 + tc 
Δz 

From the third equation, if c �= 0, we get t = . 
c 

−Δ→ r a → r −b d a b 
b) = � , , 1� and (P0) = � , , 1�. 

Δz c c dz c c 
−Δ→ r Δx Δy Δz a b 

In fact, = � � = � , , 1�., , 
→ r 

Δz Δz− Δz Δz c c → r −dΔ
Being constant, coincides with the derivative along the line at any 

Δz dz 
point of the line. 

⎧ 

⎪x(t) = 1 − 4t 
⎨ 

c) Parametric equations y(t) = 1 − 5t 
⎪ 

⎩ 

z(t) = 1 − t 

→ r −
i) = �4, 5, 1� 

∂z u,v 

∂

→ r −
ii) = � , 1, � 

5 5∂y u,v 

∂ 4 1 

→ r −

iii) = �1, , �


∂x 4 4 u,v 

In fact, �1, −1, 1� is a normal vector to any plane given by u = x − y + z = c1 

and �−2, 1, 3� is a normal vector to any plane given by v = −2x + y + 3z = c2. 
Hence, their intersection is a line parallel to the vector 
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i ̂ ˆ
� 1 −1 1 � = −4̂i − 5ĵ 

j k̂ 
ˆ− k and the parametric �1,−1, 1� × �−2, 1, 3� = 

� −2 1 3 
equation is P (t) = (1, 1, 1) + t�−4,−5,−1�. 

−→ r −Δ→ r −4 1 Δ→ r 5 1Δ

→ r 

Following (b), we obtain = �4, 5, 1�, = � , 1, � and = �1, , �,
Δz Δy 5 5 Δx 4 4 

u = 1 
which hold along the line (and, in fact, along any line obtained in-

v = 2 

tersecting a plane u = c1 and a plane v = c2). 
− − −→ r → r∂ ∂ 4 1 ∂

This means that 
∂z u,v 

= �4, 5, 1�, 
∂y u,v 

= � 
5
, 1, 

5 
� and 

∂x u,v 

= 

5 1 
�1, 

4
, 
4 
�. 

→ r 

d ∂xx u = c1 

→ r 

d) The lines are all parallel (because they are parallel to �−4,−5,−1�). 
dx 

Given a curve C a point P on it, the derivative (P ) is the rate of change of 
dz 

x with respect to z along C (in other words, it is also the slope of the curve 
obtained by projecting C onto the xz-plane). 

In our case, the derivative along a line coincides with ,
dz v = c2 ∂z u,v 

dx ∂x 
so that the derivative = is constant along the line. 

dz ∂z u,v 

Moreover, if we vary c1 and c2, we obtain parallel lines, so Δz/Δx will be the 
same at any point (in other words, their projections will have the same slope). 

− −∂ ∂

→ r 

An analogous argument shows that the other derivatives ,
∂x u,v ∂y u,v 

−∂
and are constant. 

∂z u,v 

→ r 

→ r 

−
e) = �w · = fx + fy + fz

∂x ∂x 4 4 u,v u,v 
−

∂w ∂ 5 1 

∂w ∂ 4 1 

→ r 

= �w · = fx + fy + fz
5 5∂y u,v ∂y u,v 

−∂w ∂
= �w · = 4fx + 5fy + fz

∂z ∂z u,v u,v 

→ r 

∂w ∂f ∂f ∂y ∂f ∂z 
In fact, using the chain rule = + + = 

∂x ∂x ∂y ∂x u,v ∂z ∂x u,v 
−∂ 5 1 5 1 

= �w · = �w · �1, , � = fx + fy + fz. 
∂x 4 4 4 4 u,v 
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Similarly for the other derivatives. 

−→f) A tangent vector to the curve at (1, 2, 4) is v = �−208, 218, 84�. 
dw 52 109 

Along the curve, (1, 2, 4) = − fx + fy + fz and 
dz 21 42 

dw 109 21 
(1, 2, 4) = fx − fy − fz. 

dx 104 52 
dw 

If P is any point on the curve, then the derivative (P ) along the curve coin-
� � 

dx 
� � 

∂w dw ∂w 
cides with (P ) and (P ) along the curve coincides with (P ). 

∂x dz ∂z w1,w2 w1,w2 

In fact, �w1 = �3x2 − yz, −xz, −xy� and �w2 = �1, −2yz, −y2 + 3z2�.

At (1, 2, 4) we find �w1(1, 2, 4) = �−5, −4, −2� and �w2(1, 2, 4) = �1, −16, 44�.


w1 = −7 
Hence a vector parallel to the curve at (1, 2, 4) is 

w2 = 49 

� î ˆ �ĵ k 

�−5, −4, −2� × �1, −16, 44� = � −5 −4 −2 � = −208̂i + 218ĵ + 84k̂. 
� 1 �−16 44 

dw −208 218 
Therefore, along the curve we have (1, 2, 4) = fx(1, 2, 4) +fy(1, 2, 4) + 

dz 84 84 
dw 218 84 

fz(1, 2, 4) and (1, 2, 4) = fx(1, 2, 4) + fy(1, 2, 4) + fz(1, 2, 4). 
dx −208 −208 

Problem 2 

a) Let (0, 0), (x0, 0), (x0, y0), (0, y0) be the vertices of the rectangular base. The 
volume of the prism is 

y0 x0 y0 x0 y0 � a �x0 

V = zdxdy = (ax+by+c)dxdy = x 2 + bxy + cx dy = 
0 0 0 0 0 2 0 

y0 a a 2 b 2 

�y0 ax0 + by0 + 2c2 x0 + bx0y + cx0dy = x0y + x0y + cx0y = x0y0 .

0 0


2 2 2 2 
The lengths of the four vertical edges are: z(0, 0) = c, z(x0, 0) = ax0 + c, 
z(x0, y0) = ax0 + by0 + c and z(0, y0) = by0 + c. 
Hence the average of the lengths of the four vertical edges is 

c + (ax0 + c) + (ax0 + by0 + c) + (by0 + c) 2c + ax0 + by0 

4 2 
The area of the base is clearly A = x0y0. 
Therefore V = A · �. 
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Problem 3 

� a � 

e−xy 
�y=a 

−ax e−x − e
a) e −xydy = = 

−x x1 y=1 

� +∞ e−x − e−ax � +∞ a � a � +∞ 

b) dx = e −xydydx = e −xydxdy = 
0 x 0 1 1 0 

� a � 

e−xy 
�x=+∞ � a 1 

= dy = dy = [ln(y)]
a 

= ln(a) 
1 −y x=0 1 y 1 

Problem 4 

π 
a) The mass is m = . 

8 
32 

The centroid is (x, y) = (0, ). 
15π

π 
The moment of inertia with respect to the x-axis is Ix = . 

16 
π 

The moment of inertia with respect to the y-axis is Iy = . 
48 

π 
The polar moment of inertia is I0 = . 

12 

0 ≤ r ≤ 1 
In fact, the domain D is described in polar coordinates by and 

0 ≤ θ ≤ π 

the density in polar coordinates is δ(r, θ) = r2 sin 2 θ. 
�� � π � 1 

The mass is given by m = δdA = r 2 sin 2 θ · rdrdθ = 
D 0 0 

� π � 

4 
�1 � �π

1 − cos(2θ) 1 θ sin(2θ) 1 π π 
= sin 2 θ

r
dθ =

1 
� π 

dθ = − = = 
4 

0 
4 0 2 4 2 4 4 2 80 0 

Because D and δ are symmetric with respect to the y-axis (that is, they are 
invariant under the transformation x �→ −x), then the x-coordinate of the 
centroid x = 0. 

8 
� π � � 

5 
�11 

Instead y = D 
yδdA 

= r 3 sin 3 θ · rdrdθ =
8 

� π 

sin 3 θ
r

dθ = 
π 0 5 

0
m π 0 0 

8 
� π 8 cos3 θ 

�π 
8 4 32 

= sin θ(1 − cos 2 θ)dθ = − cos θ + = = 
5π 0 5π 3 

0 
5π 3 15π 

�� � π � 1 

Ix = y 2δdA = r 4 sin 4 θ·rdrdθ = 
D 0 0 

� 

6 
�1 

sin 4 θ
r

dθ =
1 

� π 

sin 4 θdθ 
0 6 

0 
6 0 

� π 
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Now, notice that sin 4 θ = (sin 2 θ)2 =

(1 − cos 2θ)2 
= (1−2 cos 2θ +cos 2 2θ) = 

� � 

4 4
1 1 + cos 4θ 1 

= 1 − 2 cos 2θ + = (3 − 4 cos 2θ + cos 4θ)
4 2 8

1 
� π � �π

1 sin 4θ π 
Hence Ix = (3− 4 cos 2θ + cos 4θ)dθ = 3θ − 2 sin 2θ + = 

48 0 48 4 
0 

16 

[In the calculations above, we could have used 3B from the Notes, which tells us 
� π � π/2 4 

� π � π/2 

that sin 3 θdθ = 2 sin 3 θdθ = and sin 4 θdθ = 2 sin 4 θdθ = 
3 00 0 0 

3π 
.] 
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�� � π � 1 1 
� π 1 

Iy = x 2δdA = r 4 sin 2 θ cos 2 θ · rdrdθ = (2 sin θ cos θ)2dθ = 
D 0 0 6 0 4

1 
� π � �π

1 
� π 1 − cos 4θ 1 sin 4θ π 

= sin 2 2θdθ = dθ = θ − = 
24 0 24 0 2 48 4 

0 
48 

The polar moment of inertia is obtained from Ix and Iy in the following way: 
π π 3π + π π2I0 = (x 2 + y )δdA = Ix + Iy = + = = . 
16 48 48 12 D 
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