18.02 Problem Set 6 - Solutions of Part B

Problem 1

a
T =1x9+ —Az
c
a) The parametric equations are y=yo+ b Az
c

z =29+ Az
The condition is ¢ # 0.

In fact, the standard parametric equations (with parameter t) would be
z(t) = x0 + ta

P(t) = Py +tV, that is in components { y(t) = yo + tb
z(t) = zp + te

A
From the third equation, if ¢ # 0, we get t = 22
c
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AT dr
Being constant, N coincides with the derivative e along the line at any
z z

point of the line.

x(t) =1—4t
¢) Parametric equations < y(t) = 1 — 5¢
2(t)=1—1t
or
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In fact, (1, —1,1) is a normal vector to any plane given by u =z —y+2 = ¢1
and (—2,1,3) is a normal vector to any plane given by v = —2z + y + 3z = cs.
Hence, their intersection is a line parallel to the vector



i

1,-1,1) x (-=2,1,3) = | 1 -1
-2 1

equation is P(t) = (1,1,1) + ¢t(—4, =5, —1).
—

A AT 4 1 AT 1
Following (b), we obtain A—Z = (4,5,1), A—Z =(<,1,-) and —; = (1,§ -,

= —4i— 5j — k and the parametric

w = R/

5775

=1
which hold along the line “ ) (and, in fact, along any line obtained in-
v =

tersecting a plane u = ¢; and a plane v = cg).

- = 41 T
This means that (%—Z)u,v = (4,5,1), (%—Z)uv = <ga 1, 5> and (aa—;)uv —

5 1
1,—,-).
<7474>

d) The lines are all parallel (because they are parallel to (—4, —5, —1)).

d
Given a curve C' a point P on it, the derivative d—I(P) is the rate of change of
z

x with respect to z along C' (in other words, it is also the slope of the curve
obtained by projecting C' onto the zz-plane).

dx u=c oz
In our case, the derivative — along a line ' coincides with | — ,
dz V= cy 0z

u,v

d 0
so that the derivative d_:c = (a—z> is constant along the line.
z z

Moreover, if we vary ¢; and ¢z, we obtain parallel lines, so Az/Ax will be the
same at any point (in other words, their projections will have the same slope).
or or
An analogous argument shows that the other derivatives (5‘—> , (8—)
€z Y
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and (—) are constant.
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In fact, using the chain rule <8x> - = 8x + 8y (817)%1) + 5.\ ) =

_vw'<%—;>uv_vw'< 5 1> fz+ fy+ fz

)



Similarly for the other derivatives.

f) A tangent vector to the curve at (1,2,4) is v = (—208,218,84).

d 52 109
Along the curve, d—w(l 2,4) = _ifx fy + f» and

dw 109, 21
—(1,2,4) = f, :
dx( » = ) f-L 104fy fZ

dw
If P is any point on the curve, then the derivative — (P) along the curve coin-

. . ow dw . . ow
cides with (8_:13) (P) and P (P) along the curve coincides with <5> (P).

w1, w2 w1, w2

In fact, Vwy = (322 — yz, —xz, —wy) and Vwy = (1, —2yz, —y? + 322).

At (1,2,4) we find Vwy(1,2,4) = (—5,—4,—2) and Vwy(1,2,4) = (1, —16,44).
wy = —7

Hence a vector parallel to the curve ! at (1,2,4) is
wo = 49

i j Kk A A A
(=5, —4,-2) x (1,—-16,44) = | -5 —4 —2 | = —208i+ 218j + 84k.

1 -16 44

dw 208 21
Therefore, along the curve we have — P (1,2,4) = f.(1,2,4) 841) +fy(1,2,4) 848
dw 218

(1,2,4) and —(1,2,4) = £,(1,2,4 1,2,4 .
Fo0,2,4) and G212, 0) = £o(1,2,4) + f(1,2,4) 20 + 57 (1,9,4),

Problem 2

a) Let (0,0), (x0,0), (z0, %0), (0,y0) be the vertices of the rectangular base. The
volume of the prism is

Yo o a o
/ / zdaxdy = / / (ax+by+c)dady = / {ixz + bxy + cx} dy =
0

b axg + byo + 2¢
5960 + broy + cxody = 2w0y + 2x0y +cxoy| = ToYo——— -
0

The lengths of the four vertical edges are: z(0,0) = ¢, z(x9,0) = azo + ¢,
z(z0,y0) = axo + byo + ¢ and 2(0, yo) = byo + c.

Hence the average of the lengths of the four vertical edges is

0 c+ (axg + ¢) + (awo + byo +¢) + (byo +¢)  2c+ axg + byo

4 2
The area of the base is clearly A = xgyo.
Therefore V= A - (.




Problem 3
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Problem 4

a) The mass is m = g
32
) E)
The moment of inertia with respect to the z-axis is I, =

The centroid is (Z,7) = (0

&2z =

The moment of inertia with respect to the y-axis is [, =

The polar moment of inertia is Iy = %

0<r<i
In fact, the domain D is described in polar coordinates by =r= and
0<o6<nm

the density in polar coordinates is d(r, ) = 2 sin® 6.

The mass is given by m = // 0dA = / / r2sin? 6 - rdrdfd =

_ r 1 — cos(20) 1[0 sin(20)]" 1m «
_/Osme[z;hde_z;/o 2 d9_4[2 4 ), 423

Because D and ¢ are symmetric with respect to the y-axis (that is, they are
invariant under the transformation x +— —z), then the z-coordinate of the
centroid x = 0.

6dA 51!
Instead 3y = fny / / r2sin® @ - rdrdd = 8/ sin® # {%] df =
0

cos? 91" 84 32
3 0 T 573 157w

:—/ sin@(1 — cos? §)df = [co 0+

™

1

T 1 T 6 1 T
Iz:// yzédA:/ / r4sin49~rdrd9:/ sin* @ {’”—] do = —/ sin* 0d6
D 0 0 0 6 0 6 0



1- 20)2 1
Now, notice that sin® = (sin? §)* = (1 = cos26)” = —(1—2cos26 + cos? 20) =

4 4
1 1 46 1
=1 (1 — 2cos260 + i) = §(3—4C0829+COS49)

1 (" 1
Hence I, = —/ (3—4cos20 + cos46)df = — |30 — 2sin 26 +
18 J, 18
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[In the calculations above, we could have used 3B from the Notes, which tells us

T /2 4 T /2
that / sin® 6df = 2 / sin®#df = — and / sin?6do = 2 / sin® 0do =
0 0 0 0

3
5

™ 1 1 ™1
I, = // z20dA = / / 4 sin? @ cos® 0 - rdrdf = —/ —(2sinf cos §)*df =
D o Jo 6Jo 4

1" 1 [™1—cosdf 1 in40]"
:—/ sin220d0 = — | — e — |p_ 2 -
24 J, 24 /, 2 48 1 |, 18

The polar moment of inertia is obtained from I, and I, in the following way:
T 3m+m T

Iy = 2 L yVdA = [+ I, = = + = — -
0 //D(x +v7) T T RT T8 T 12




