18.02 Problem Set 4 - Solutions of Part B

Problem 1

12 35
a) The critical points are P = ( —) and @ = ( —).

33 274
In fact ﬁ =322 —6x+y+1 and 8_f =x—-2y+1.
or oy
The critical points are obtained setting f, = f, = 0.
6— =0 gives y = E
oy VS Y= o

0
Substituting inside 8_f =0 we get 622 — 11z 4+ 3 = 0, which has two solutions:
x

x=1/3;3/2.
Hence we get two critical points: P = (1/3,2/3) and Q = (3/2,5/4), which
belong both to the square S.

b) The points of S where f attains its maximum or its minimum can be either
the critical points found in (a) or points in the boundary of S.

13 1 2
¢) The maximum of f is 77 attained at P = (5, §>

4 /2 2
The minimum of fis —1 — g\/;, attained at (1 + §,0>.

Evaluating f at the critical points, we find f(P) = f(1/3,2/3) = 13/27 and
HQ) = f(3/2,5/4) = —5/16.

Now we analyze what happens at the boundary.

In this case we want to find minimum and maximum value of the function
f(x,0) =23 —32% + 2 with 0 <z < 2.
Its values at the extremal points are f(0,0) =0 and f(2,0) = —2.

df(z,0 2
f(x_, ) =322 — 6z + 1, which vanishes at 1 + \/;

dx
N 2 B 4 /2 2 B
Substituting we get f (1 — \/%,O) =—-1+ 5\/; and f <1+ §,0> =
4
a2
3V3

y = 2| In this case we have to analyze f(x,2) = 23 —322+3x—-2=(z —1)3 -1,
with 0 < x < 2.



It is immediate to realize that the minimum can only be at f(0,2) = —2
and the maximum at f(2,2) = 0.

In this case we have to analyze f(0,y) = —y?> +y = —y(y — 1) with

0<y<2
Hence the maximum can only be at f(0,1/2) = 1/4 and the minimum at
£(0,2) = —2.

In this case we have to analyze f(2,y) = —y?+3y —2=—(y— 1)(y — 2)
with 0 < y < 2.
Hence the minimum can only be at f(2,0) = —2 and the maximum at

f(2,3/2)=1/4.
Comparing the values that f attains at the previous points, we get our result.
. 1 2\ . . . 3 5) .
d) The point P = 33 is a local maximum; the point @ = 21 is a
saddle point.
In fact fyz = 62 — 6, fzy = fyz =1 and fy, = —2.
Hence the discriminant is A(z,y) = foxfyy — 2, = 11 — 122.
A(Q) = =7 < 0, so that Q is a saddle point.

A(P) = 7 > 0, so that P is either a local maximum or a local minimum.
In fact P is a local maximum because fy,(P) = —2 < 0 (and equivalently

fea(P) = -4 <0).
~_/

/N

The picture above represents a sketch of the level curves of f around the critical
points P and Q.

e) After (d), we can only say that (3/2,5/4) is neither a local minimum nor a
local maximum and so the minimum of f is attained at the boundary. Hence
we could have avoided to evaluate f at (3/2,5/4).



Problem 2

a) At the point (1,1/2) we have f;(1,1/2) <0 and f,(1,1/2) > 0.
At the point (1,1) we have f;(1,1) < 0 and f,(1,1) =0.

1.5

\

0" " o5 1 15 2

The part of the contour line through (1,1) on which f, < 0 is the one empha-
sized in the picture above.

b) At (1,1/2) we have f,(1,1/2) = —=3/2 and f,(1,1/2) = 1.

At (1,1) we have f;(1,1) = —1 and f,(1,1) = 0.

It is sufficient to plug (1,1/2) and (1,1) inside f(z,y) = 32? — 6z +y — 1 and
fy(z,y) =z — 2y + 1 obtained in (a).

c¢) Using “Level curves”.



The saddle is approximately at (1.5,1.2) and f(1.5,1.2) = —0.32.
The maximum is attained approximately at (0.4,0.7) and f(0.4,0.7) =~ 0.48.
The minimum is attained approximately at (1.8,0) and f(0.8,0) ~ —2.09.

d) Using “Partial derivatives”.

The maximum is approximately at (0.34,0.67).

The level curve through it reduces to a point.

If T move in any direction, then the value of f decreases (it’s a maximum!).

The saddle is approximately at (1.5,1.25). The level curve through it is made
of two branches that meet transversely.

If I move towards East or West, then the value of f increases.

If I move towards North or South, then the value of f decreases.

Problem 3
dL LdS dL dS

b) Using linear approximation, the new resistance R’ is R’ ~ 1.425 ohm.
The exact calculation gives R’ = 63/44 ~ 1.4318 ohm.

0.1
In fact the first order approximation gives AR ~ R (i — —) = —0.075, so

100 1

that R = R+ AR ~ 1.5 — 0.075 = 1.425.

To exactly compute the resistance, we notice that p = RS/L. Hence R’ =
r LS 105 1 63
— =R—— =15—-—=— =~ 1.4318.

Po =Ly 10011 44

Problem 4

2 (2)-(5 B)( ) (5 2),
we Ty Yo wy o Yo



Just put

Oow Owdr  Owdy
or “ozor  oyor
Oow Owdr  Owdy
90 "0z 00 0y 00

in matrix form.

b) A= ( fiossif()e) rséggi)g) )

Just differentiate z(r, ) = r cos(f) and y(r,d) = rsin(f) with respect to r and
0 and use (a).

< Y
C)(ux)<rx gz><ur> :E2y+y2 x2$+y2 (ur )
1o 2 2 2 2 1o
Vi +y ety

z Y

/2 2 - 2+ 2
So B = :pery xac Y
Va2 g2 2t y?

1 5” __Y
cos(f) ——sin() o1 .2 2 1 2
d) A~ = " = :zzery x;ry = B.

sin(f) - cos(0) Pty Pt

Straightforward computation, using that det(A4) = r = /22 + y2.

e) At r=5,0 = —m/2 we have u, = 4 and u, = —1.

In fact, the point r = 5,0 = —m/2 has Cartesian coordinates z = 0,y = —5.

(=YY= — (2 20 = D P
Henceum—rur—i—( T2)u9— (52)20—4anduy—rur+rzu9_ 7 1=
—1.

Problem 5

V1
a) Maximum of j—f (1,1/2) = 73
Sla



d 13
Minimum of d—J; (1,1/2) = 7%'

u

In fact, the maximum of the directional derivative is attained in direction of the
gradient (and the minimum in the opposite direction). Hence, to achieve the

. . Vf(1,1/2) df .
maximum we have to set 1 = —————=-. Moreover —| =Vf-1
IVf(1,1/2)] ds |y
. odf i .
As a consequence the maximum is ol = V- W = |Vf]|. Evaluating the
a

gradient at (1,1/2) we get Vf(1,1/2) = (—3/2,1) and |V f(1,1/2)| = @

Hence the minimum of the directional derivative is —|V f(1,1/2)].

and

<73ﬂ 2>
V13

<37 — >
\/ﬁ .

b) The maximum occurs at . =

the minimum occurs at a =

. . . : : X Vf(1,1/2)
As discussed in (a), the maximum is achieved at 1 = —————=— and the
" IVf(1,1/2)|
minimum at 4 = —M
IVF(1,1/2)]

2,3
¢) The directional derivative is zero for &1 = j:u.

V13
In fact the directional derivative vanishes in directions perpendicular to the
gradient (and so tangential to the level curves). Hence it is sufficient to rotate
the direction of the gradient of +7/2.

d) We have used the point (x,y) = (1.01,0.5).

The maximum of the directional derivative is approximately 1.8 and it is at-
tained at 6 = 145° or 6 = 146° or 6 = 148°.

The yellow half-line (direction @) points in the same direction as the purple
half-line (the gradient) and both are perpendicular to the blue level curve pass-
ing through the point.

The minimum is approximately —1.8 and it is attained at 8 = 324° or § = 326°.
The yellow half-line is in the opposite direction than the purple one, and both
are perpendicular to the blue level curve passing through the point.

The directional derivative is approximately zero at § = 236° (where it takes
value —0.00533) and 6 = 56° (where it takes value —0.00533).



The yellow half-line is tangent to blue level curve through the point and per-
pendicular to the purple half-line.

Problem 6
8,2,—1
a) The direction is 1 = M
V69
2,1,10
In fact the direction of fastest decrease is u = % and Vg(z,y,z) =

(—4x,—2y, 1), so that Vg(2,1,10) = (-8, -2, 1).

b) Using linear approximation, we find that the point is

8 2 1 146 71 689
P=(24+—14+—10——)=(—,—=,=—2).
(+69’ 59 69) (69’69’ 69)

44
The exact value of g at p is g(P) = ~Tea7 —0.028.

The value of g at Py = (2,1,10) is g(Py) =10 —2-2? — 12 =1.

If we move from Py in direction —Vg(Fy), we end up at the point P = Py —
sVg(Py) with s > 0.

Hence the problem is: find s > 0 such that g (Py — sVg(Fy)) = 0.

Using linear approximation, we have

g (Po —sVg(P)) = g(Po) + g2 (Po)Ar + gy (Po) Ay + g.(Po) Az =

g
9(Po) + g2 (Po)[—592(FPo)] + gy (Fo)[—59y(Po)] + g-(Po)[—59-(Fo)] =
9(Po) + Vg(Ry) - (—=sVg(Py)) = g(Po) — s|Vg(Po)|*.

. 9(Po) 1
H bt = ——*—==—andso P=Fy—sVg(F) =(2,1,10) —
ence we obtain s NP~ 69 and so 0 — sVg(Po) = (2,1,10)
1 8 2 1
—(=8,-2,)=(2+ —,14+ —,10— — ).
44
Using a calculator we get the exact value g(P) = ~ g7 —0.028.



