These are the solutions to Exam 2 of 18.02, Spring 2006.

Notice that these solutions contain some explanations

in square parentheses [...] that were not required.
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18.02 Exam 2 Thursday, Mar 16th, 2006

Directions: Do all the work on these pages; use reverse side if needed. Answers without
accompanying reasoning may only receive partial credit. No books, notes, or calculators. Please
stop when asked to and don't talk until your paper is handed in.
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Problem 1
Let f(z,y) = zy?® — 8y.
a) (5) Find Vf at (2,3).

v\{_’=<92/ 2)<?——3>
Ve (2,3)=< ¥, 223-8> =<34>

b) (5) Write the equation for the tangent plane to the graph of f through the point (2,3, —6).
Z-(-G) =9.(x-2) +4 (3—3)
Z+6= 9x- 13 +4y =12
Equ.t IX+Hy -2 =36

c) (5) Use a linear approximation to approximate the value f(2.1,2.9).

@(u_ 2.9~ §(2,2) + —Q(zs) (01)+-—£(z 3). <01>-

=-C+ 3 (oN+4 (-o1)=-55

d) (5) Find the directional derivative of f at (2,3) in the direction 2 + 7.
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Problem 2

a) (10) On the contour plot below, mark the points of the level curve f(z,y) = 6 at which f, > 0
and f, = 0.
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b). (5) On the contour plot below, mark the points of the level curve f(z,y) = 8 at which the slope
of steepest (|V f| is largest).
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Problem 3
Let f(z,y) = 22 + zy + 9 + 3.

a) (10) Find and classify the critical points of f.
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2(-23)+4+3=9

d=1
x=-17

b) (10) Find the minimum and maximum values of f in the plane. Justify your answer.
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¢) (5) Find the minimum and maximum values of f in the region = > 1.
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Problem 4

Suppose that u =z + 3%, v = zy~2.

a) (10) Express the derivatives w, and wy in terms of w,, w, (and = and y).
\NK = W(L' ux + W,v..'D_X
Wy =W,- Uy + Wy Vy

(I{X-i fU\x= g~2

B i
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H"/“‘-CQ_/ Wx = W(,L + g_z- W,V.-
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b) (10) Express zwy + %ywy in terms of w,, and w,. Write the coefficients as functions of u and v.
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Problem 5

(10) Set up (but do not solve) Lagrange multiplier equations for the point of the surface
20% — yz? + xyz = 4 closest to the origin.

Ve wart o memwimze  {(xg2)= ><+g 12
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Logharge  melbiplir  equasions
§\7€ Vg

aQ =0
V§:<zx, 2y, 22>
Va=Cxryz, 2@, 22+ vy >

2X= X(ze,pgz)
24 = r\(~2z+x2>
= X(—Zga—x;)

2X S_gzz+ xY2 -4 =©




Problem 6

Suppose that f(z,v, z) is a function satisfying V f = 2t +37 +k at (7,-8,1) and that z = z(z, y)
is the root of the cubic equation 2% +zz+vy = 0. There is only one root z if z > 0 and, in particular,
at (z,y) = (7,-8), z = 1.

(10) Let g(z,y) = f(z,y,2(z,v)); find Vg at (z,y) = (7,-8).
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