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18.02 Problem Set 11 - Solutions of Part B 

Problem 1 

The total flux is 2�2 .


Along the cylinder x2 + y2 = 1, we have r = x2 + y2 = 1 and ˆ
n = xı̂ + y�̂. 
x2 + y2 

So 
−
F ˆ
�

n = = 
1 

and dS = rd�dz = d�dz.· 
x2 + y2 + z2 1 + z2 

�� � +� � 2� 

Hence, 
S 

−�
F · n̂ dS = 

−� 0 

1 
1 + z2 

d�dz = 
−� 

2� 
1 + z2 

dz = 
� �+� 

= 2� arctan(z) = 2�2 . 
−� 

Problem 2 
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a) At the face:


n = −ı̂ and 
−


(P0P1P2) The normal ˆ
�

n = 0. F ˆ· 

(P0P1P3) The normal ˆ
1, −1, 1√ 

and so 
−
F ˆn = 

≥ �
n = −

→
3x � 0.→

3 
· 

1 



� � 
� � 

� 

�

� 

� �

In fact, a vector perpendicular to the face and pointing outwards is ob-

� ˆ �� ı̂ ˆ k 
tained as 1, 1, 0 0, 1, 1 = � 1 1 0 

� = ≥1, −1, 1 . 
� √≥ √ × ≥ √ 
� 0 �1 1 

(P0P2P3) The face is obtained from the face (P0P1P3) by reflecting with respect 

to the xy-plane (that is, (x, y, z) ≤� (x, y, −z) ). So ˆ
1, −1, −1√ 

andn = 
≥ →

3 
so 

−
F ˆ
�

n = −
→

3x � 0.· 

n = �̂ and 
−

(P1P2P3) The normal is ˆ
�

n = x � 0.F ˆ· 

b) The total flux is 0. 

The flux through the single faces is: 

(P0P1P2) Zero, because 
−�

n = 0. F ˆ· 

(P0P1P3) The face in on the plane x − y + z = 0, so dπS = 1, −1, 1 dxdy and − ≥ √
F
�

dπS = −xdxdy. Integrating over the shadow on the xy-plane, we obtain 
� 

· 
� 1 � 1 � 1 � 

3 2 �1 
x x

F
�

dπS = −x dydx = x(x − 1) dx = =
1
. 

face 

− · 
0 x 0 3 

− 
2 

0 

− 
6 

1 
(P0P2P3) The flux is the same as for the face (P0P1P3), that is − , because of the 

6 
symmetry discussed in (a). 

(P1P2P3) The face is parallel to the xz-plane, so dS = dxdz. 

Moreover, the face and 
−
F are invariant under reflection with respect to 

the xy-plane. So we can integrate only on the half with z > 0 and the 
multiply by 2. 

� 1 � 1−z � 1 (1 − z)2 (z − 1)3 �1 
1 

The flux is 2 xdxdz = 2 dz = = . 
2 3 30 0 0 0 

1 1 1 
Hence the total flux is − 

6 
− 

6
+ = 0. 

3 

F = 0, so the total flux of 
−

c) div 
−

F outgoing from the tetrahedron is 0. 

2 
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Problem 3 

The solid R is a cone with vertex in (0, 0, 10) and base on the xy-plane equal to 
the disc of radius 10 centered at the origin. 

We must show that div 
−�

FF dV = 
�

dπS, where �R is the boundary 
− ·

R �R 
of R (in our case, the base and the lateral surface of the cone). 

� � �102 10 2000� 
F = 2, so div 

−
(LHS) div 

−
F dV = 2 · Vol(R) = 2 

·
= . 

3 3R 

k and 
−
F k) = 0, (RHS) The unit normal vector outgoing from the base is −ˆ � · (−ˆ

so the flux through the base is 0. 
The lateral surface is given by z = f(x, y) = 10 − x2 + y2, so 

dπS = ≥−fx, −fy, 1 dxdy = 
x

, 
y
, 1 rdrd� (we switched to polar coordi-√

r r

nates) and 

−

F
�

dπS = r 2drd�.·
� 2� � 10 � 

3 �10 

Hence, the flux is r 2drd� = 2�
r

= 
2000� 

. 
3 30 0 0 

Problem 4 

ˆa) (f�g) · n dS = div(f�g) dV. 
S D 

�g 
ˆOn the LHS, f�g · n = f . 

�n 



On the RHS, div (f�g) = div fgxı̂ + fgyˆ ˆ
� + fgzk = 

= (fgx)x + (fgy)y + (fgz)z = fxgx + fgxx + fygy + fgyy + fzgz + fgzz = 
= (fxgx + fygy + fzgz) + f(gxx + gyy + gzz) = �f · �g + f�2 g. 

b) If f = 1 and g = u is harmonic, then �f = 0 and �2 g = 0, so

2g = 0.
�f · �g + f�

�u

Hence, Green’s first identity gives dS = 0.


�n S 

�g � 
c) f dS = g dV 

�n D 
�f · �g + f�2 

� 

�� S 
��� 

�f � 
g dS = dV 

S �n D 
�g · �f + g�2f 

� 

3 

)
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� � � � 
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� � � � 
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Subtracting the second row from the first row we obtain 

�g �f � 
f� g − g�2f 

� 
f 

�n 
− g

�n 
dS = 2 dV. 

S D 

1 
d) �2 v = 0 (that is, v = is harmonic) outside the origin. 

∂ 
1 x x 1 3x x 1 3x2 

In fact, vx = ∂x = and vxx = = + = + .− 
∂2 

− 
∂3 

− 
∂3 

− 
∂3 ∂4 ∂ 

− 
∂3 ∂5 

x 
3y2 3z21 1 

Similarly, vyy = + and vzz = + , so that − 
∂3 ∂5 

− 
∂3 ∂5 

23 3x2 + 3y2 + 3z2 � v = − 
∂3 + 

∂5 = 0. 

Let’s apply Green’s second identity to u and v, with D equal to the region 
a < ∂ < b and S equal to the union of the two spheres Sa and Sb. 

�v �u � 
u

�n 
− v

�n 
dS = u�2 v − v�2 u 

� 
dV. 

S D 
The RHS is zero, because �2u = 2v = 0, so we get 
��

� � 
��

� � � 
�v �u �v �u 

u
�n 

− v
�n 

dS + u
�n 

− v
�n 

dS = 0. 
Sa Sb 

�u 1 �u 
Along Sb, v = 1/b, so −v dS = − dS = 0 because of (b). 

Sb 
�n b Sb 

�n 
�u 

Similarly, −v dS = 0. 
�n Sa 

ˆxı̂ + y�̂ + zk 
n = � = ,The normal vector on Sb outgoing from the region D is ˆ ˆ

b 
�v �v 1 1 

so = = = along Sb. 
�n �∂ 

− 
∂2 

− 
b2 

ˆxı̂ + y�̂ + zk 
n = −ˆThe normal vector on Sa outgoing from the region D is ˆ � = ,− 

a 
�v �v 1 1 

so = = = along Sa. 
�n 

− 
�∂ ∂2 a2 

1 1 
Therefore, u dS = u dS. 

a2 b2 
Sa Sb 

1 
e) Let b > 0. We want to show that w dS = w(0), where Sb is the 

4�b2 
Sb 

sphere of radius b centered at the origin 0. 
1 1 

Using (d), we have w dS = w dS for every a > 0. 
4�b2 

Sb 
4�a2 

Sa 

1 1 
In particular, w dS = lim w dS = w(0).

4�b2 
Sb 

a�0 4�a2 
Sa 
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To deduce the Mean Value Theorem for the point P , we must choose D to be 
given by the locus of points whose distance from P is between a and b (that is, 
the region enclosed by two spheres of radii a and b centered at P ) and v(x, y, z) 

1 
to be the function given by v(Q) = 

|−−�
. 

PQ| 
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