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Background.:

» Cardiovascular problems following spaceflight have
been encountered since the Mercury missions

 Drastically increased heart rates have been noted
In upright tilt-table testing during the Gemini missions

» Post-spaceflight orthostatic intolerance was noted in
Apollo astronauts for up to 3 days after landing

» Skylab (1970s) mission explored human physiology during
long-term space missions

» Spacelab (1980s) provided a framework for studying human
physiology with emphasis on various organs systems

* Neurolab (1998) explored several hypotheses regarding the
the mechanisms underlying post-spaceflight Ol.

— Ol still persists



* Dizziness
e Syncope

... upon assumption of the upright posture.
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« Conflicting experimental observations




Cardiovascular Problems Associated with
Spaceflight:

* Orthostatic Intolerance upon Re-entry

e Arrhythmias

* Loss of Cardiac Mass

 Reduced Exercise Capacity

 Manifestation of Pre-Existing Cardiovascular
BDIE e



» Redistribution of volume

» Loss of intravascular volume

 Lack of regular exercise

» Lack of constant stimulation of
reflex mechanisms







measures




Goals:

e Simulate the short term (10 - 15 mins) response to
orthostatic stress in normals and microgravity
adapted individuals

e Test hypotheses concerning mechanisms of
orthostatic intolerance

e Simulate effects of countermeasures
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The Hemodynamic Model:
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Control System:

« Arterial Baroreflex

e Cardiopulmonary reflex;

e Individual gains adjustable

e Effector mechanisms:
heart rate, venous tone,
cardiac contractility, and
arteriolar resistance




Control System:
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Model Performance:

Parameter Model

Normal Value*

Pressures (mm HQ)

LVP 131/6
ABP 130/80
CVP 5/3
RVP 28/1
Stroke Vol. Ind. 50

(ml/beat per m?)

Cardiac Index 3.2
(I/min per m?)

130/7
130/70

715

24/4

47

3.4

* Based on: Hurst's The Heart, RW Alexander (ed.), vol.1, 9" ed.



Tilt Table Simulation:
C——

» Account for fluid shifts into dependent venous P =P sin(a(t)
compartments by varying bias pressures at bias™ * 0 o
C, and C,g

» Account for blood plasma leakage from
capillaries by reducing overall blood volume

over time
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. Acco_unt_for gravitational effect on sensed P.s = pgh sin(a(t))
carotid sinus pressure
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® Young males (20-29 y), N=15
Data taken from: Smith et al. Physiologist, 27, 210, 1984. O Older males (40-49 y), N=16
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Features taken from: Rossberg et al. Europ. J. Physiol., 50, 291, 1983.
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Transient Response to Tilt:
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Experiment Simulation

1 bpm 59.2+14.6 70.1
2 bpm 922+12.1 99.1
3 bpm 295+ 84 29.0
4 bpm 7571129 78.0
5 bpm 17.0+ 95 21.1
6 bpm 89.1+13.1 88.7
7 S 7.9+ 3.9 11.7
8 s 156+ 5.0 24.9

Data taken from: Rossberg et al. Europ. J. Physiol., 50, 291, 1983.



Stand-Test Simulation:
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Testing of Hypotheses:

e Simulate response to orthostatic stress test
for different sets of hemodynamic and/or
control parameters

« Compare simulation to experimental observation
based on some “measure”

* Repeat simulation with different sets of parameters
until “best fit” is achieved



Astronaut Stand Tests:
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Stand-Test Simulation:
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Cardiovascular Adaptation During Space Flight

Observations:
- Reduction in plasma volume by about 15%

e Reduction in baroreflex heart rate gain by 15%

 Increase in venous leg compliance by 26% - 45%

Hypothesis:
- Down-regulation of splanchnic venous receptors
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Conclusions:

* Even after 30+ years of research, Ol is still poorly understood.
e Current efforts rely on ground-based analogs such as bedrest.
« Computational models can:

 help interpret experimental observations

e test hypotheses
e simulate the effects of countermeasures.

—— Computational Models will save the world!



