14.15/6.207 Networks Problem Set #6

Problem 1 (Morris contagion model). (a) (Exercise 9.16 in Jackson) Consider a

network (N, g) where each node take action a € {0,1}, and action 1 is the
optimal action for a node if and only if a fraction of at least g of his or her
neighbors take action 1. Show that a sufficient condition for never having a
contagion from any group of m nodes is to have at least m + 1 disjoint sets of
nodes that are each more than (1 — ¢) cohesive.

(b) Consider a variant of the Morris contagion model where in period ¢t = 0 some
nodes play a = 0 and others play a = 1 (arbitrarily), and subsequently in each
period t each node ¢ plays a = 1 if and only if at least ¢ = 0.5 of its neighbors
played a = 1 in period ¢ — 1. (The difference from the model in lecture is that
now nodes can switch from a = 1 to a = 0 in addition to switching from a = 0
to a = 1.) Give an example where this process cycles forever.
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Problem 2. In each part of this question, we verbally describe a classic multi-agent
decision problem. Formally express each one as a normal form game, and find all
(pure and mixed) Nash equilibria.

(a)

Partnership: Two partners in a firm each decide whether to work or rest. Each
partner earns $100 of profit for the firm if she works, regardless of what the
other partner does. All profits earned are divided equally between the two
partners. Each partner also derives a private benefit worth $75 to her from
resting. This private benefit cannot be shared with the other partner.

Stag Hunt: Two hunters can each hunt stag or hare. If both hunt stag, they
catch a stag and get 100 pounds of meat each. If a hunter hunts hare, she
catches a hare and get 10 pounds of meat, regardless of what the other hunter
does. If a hunter hunts stag while the other hunts hare, the hunter hunting
stag catches nothing.

Chicken: Two drivers approach each other on a narrow road. Each can either
continue or swerve. If one continues and the other swerves, the driver who
continues gets a payoff of 1 for appearing brave, and the driver who swerves
gets a payoff of 0 for appearing cowardly. If both swerve, both get a payoff of
0. If both continue, they collide and both get a payoff of -10.

Rock-Paper-Scissors: Two players each decide whether to throw Rock, Paper,
or Scissors. Rock beats Scissors, Scissors beats Paper, and Paper beats Rock.
The winner gets $1 from the loser. No money changes hands in case of a tie.

Modified Rock-Paper-Scissors: Same as above, but now the amount of money
won/lost is not always $1. Instead:
Rock crushes Scissors: winner gets $10 from loser when Rock beats Scissors.
Scissors cut Paper: winner gets $5 from loser when Scissors beats Paper.
Paper covers Rock: winner gets $2 from loser when Paper beats Rock.

Ties are treated as in standard Rock-Paper-Scissors.



14.15/6.207 Networks Problem Set #6

Problem 3. This problem investigates “Downsian political competition” (introduced
by Anthony Downs in his book, An Economic Theory of Democracy), a major
paradigm in political science.

Consider a population of voters uniformly distributed along an ideological spec-
turm from left (z = 0) to right (x = 1). Each of the candidates for a single office
simultaneously chooses a campagin platform (i.e., a point on the line between x = 0
and x = 1). The voters observe the candidates’ choicees, and then each voter votes
for the candidate whose platform is closest to the voter’s position in the spectrum.

For example, if there are two candidates and they choose platforms x; = .3 and
ro = .6, then all voters to the left of x = .45 vote for candidate 1 and all those to
the right of x = .45 vote for candidate 2, so candidate 2 wins with 55% of the vote.
Assume that any candidates who choose the same platform equally split the votes
cast for that platform, and that ties among the leading vote-getters are resolved by
coin flips.

(a) Suppose there are two candidates, and that the candidates soley try to maxi-
mize their probability of getting elected (this is called office-motivated candi-
dates in political science). Solve for the pure-strategy Nash equilbrium, and
prove that it is unique. (Ezxtra credit: prove that there is no mized-strategy
NE.)

(b) Suppose there are two candidates, and that now the candidates care soley about
the winning platform and not about who wins (this is called policy-motivated
candidates). Specifically, Candidate 1 is a left-winger, Bernard: if the winning
candidate chose platform z, Bernard’s payoff is 1 — x. Similarly, Candidate 2
is a right-winger, Don: if the winning candidate chose platform z, Don’s payoft
is . Note that except for the payoffs the game is exactly the same as in part
(a). Solve for the unique pure-strategy Nash equilibrium.

(c) Suppose candidates are office-motivated as in part (a), but assume there are
now three candidates. Find one pure-strategy NE.
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Problem 4. Consider the example of inefficient routing with non-linear latency
from Lecture 12; there are two links from origin to destination, with [, (z) = z* and
ls () = 1, where k is a positive number.

(a) Find the socially optimal routing and the equilibrium routing, and calculate
the price of anarchy /stability. (Your answers will depend on k.)

(b) Now suppose that the mass of traffic that must be routed from origin to des-
tination is 2 rather than 1 (while the functions /; (-) and ls () are unchanged).
Again, find the socially optimal routing and the equilibrium routing, and cal-
culate the price of anarchy /stability.

(c) Verify that, for any value of k, the total equilibrium delay with traffic 1 is less
than the total socially optimal delay with traffic 2.

In fact, this is a general phenomenon: for any network, the socially optimal
routing is worse than the equilibrium routing with half as much traffic. (You
do not have to prove this.) Can you think of any implications of this fact for
how society can best control traffic?
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