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Plan 
Next unit: probabilistic models of network formation 
I There are many different probability models describing what 
networks are likely to form/be observed. 

I We study some of the most important ones. 
I Some more important as mathematically elegant/tractable 
benchmark models. 

I Others more important for generating “realistic” networks. 
I Need different models because what’s “realistic” depends on 
context/application. 

Lectures 6—7: Static models of network formation. 
I Network forms “all at once.” 
I Tends to include simplest/most canonical models. 

Lecture 8: Dynamic models of network formation. 
I Network forms “over time.” 
I Important for understanding power law distributions, 
homophily, and other realistic features. 

2



Why Study Random Graphs? 

Random graph models are especially important for understanding 
large networks. 

I Once go beyond a small handful of nodes, often not very 
tractable or meaningful to analyze the exact structure of a 
particular network. 

I E.g. the Facebook friend graph within each country is a 
completely different graph. But presumably these graphs were 
formed by similar processes and are thus likely to have some 
important common features. 

I We’ll see that random graph models are helpful for 
understanding properties like connectivity (e.g. “small 
worlds”), clustering/homophily, robustness/fragility, and 
diffusion processes on large networks. 
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Why Study Random Graphs? (cntd.) 

At the same time, real social and economic networks usually form 
as the result of deliberate choices, not (purely) randomly. 
This matters too and we’ll come back to it later in the course. 

I Network properties that would be very unlikely from a random 
graph perspective can be prevalent in real-world networks, 
precisely because real-world networks are formed strategically. 

I E.g., star networks are unlikely to form purely by chance, but 
we often see star networks (“hub-and-spokes”) in 
transportation and information networks, precisely because 
they create many short paths while economizing on links. 

So real-world social and economic networks have both random and 
strategic aspects, and we’ll study both. 
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The Erdös-Renyi Model 
Most of Lectures 6—7 studies the simplest and best-known random 
graph model: Erdos-Renyi (ER) random graphs. 

The ER random graph model is simply that, given n nodes, each 
possible (undirected) link forms with independent probability 
p ∈ (0, 1). 

I Natural and important mathematical benchmark or starting 
point for analyzing network formation. 

I Can also be realistic in settings where independence 
assumption is not too implausible (we’ll see examples). 

I In most social and economic networks, independence is not a 
good assumption. 

I E.g. clustering, homophily, degree distribution. 

I But sometimes simple generalizations of ER do much better 
and involve similar math. 

I E.g. there could be different types of individuals, where some 
types form links with higher probability. 
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Basic Properties of ER Random Graphs 

We start by consider some basic properties of ER random graphs. 

I Number of Links 
I Degree Distribution 

I Clustering 
I Diameter and Average Path Length. 
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Basic Properties: # of Links 

Let lij ∈ {0, 1} be Bernoulli random variable indicating presence of 
link {i , j}. 

n(n−1)Since the number of possible links is 2 , we have " # 
n (n − 1)

E [# of links] = E ∑ lij = p.
2i 6=j 

Moreover, by the weak law of large numbers, for all α > 0, ! 
n (n − 1) n (n − 1)

lim P ∑ lij − p ≥ α = 0. 
n→∞ 2 2i 6=j 

7Hence, the number of links is a random variable, but for large n it 
is tightly concentrated around its mean. 



ER vs. Gilbert 
Technically speaking, ER’s original model assumed a fixed number 
of links m: out of the n (n − 1) /2 possible links, randomly form m 
of them. 

The model where each link forms with independent probability p 
was introduced at the same time by another mathematician named 
Edgar Gilbert. 

However, since the number of realized links is tightly concentrated 
around its mean, the ER model with m = pn (n − 1) /2 links 
behaves very similarly to the Gilbert model with link probability p. 
I This is true for properties that are usually unaffected by 
adding or removing a very small number of random links, 
which are most properties we care about. 

I For other properties it might make a difference, for example if 
we ask what is the probability that the number of links is even. 

In this class we follow the standard modern practice of focusing on 
the independent link probability case and calling this the ER model. 
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Basic Properties: Degree Distribution 
Let D be a random variable that represents degree of a node. 

D is a binomial random variable with E [D ] = (n − 1) p. That is, � � 
n − 1 

P (D = d) = pd (1 − p)n−1−d .
d 

If we let p = λ/ (n − 1) (i.e. keep the expected degree constant at 
λ as n → ∞), then the Poisson limit theorem says, as n → ∞ D 
converges to a Poisson random variable, with 

−λλde 
P (D = d) = .

d ! 
For this reason, the ER model is also called the Poisson random 
graph model. 

This degree distributions falls off (faster than) exponentially in d . 
(E.g., not a power-law distribution). 
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Basic Properties: Conditional Degree Distribution 
What is the expected degree of a given node (say, node number 
17) conditional on the event that it is linked to another given node 
(say, node number 1)? 
I This equals 1 plus the expected number of neighbors of node 
17 other than node 1, conditional on the event that 17 and 1 
are linked. 

I Since links are independent, the latter conditional expectation 
is simply (n − 2) p, so the overall expected degree is 
1 + (n − 2) p. 

I If we let p = λ/ (n − 1) and take n large, the overall 
expected degree converges to 1 + λ. 

I That is, in a large network, λ is the expected number of 
“friends” of a given node, and is also the expected number of 
other friends of a friend of mine. 

I This is a simple example of the “friendship paradox”: on 
average, your friends have more friends than you do! 

I (We’ll see that the friendship paradox can be even more 
severe in other random graph models.) 
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Basic Properties: Clustering 

In expectation, both overall and individual clustering equal p. 

I Probability that any “potential triangle” becomes an actual 
triangle is p. 

We will usually consider the case where p → 0 as n → ∞, so 
expected degree is finite (or at least much less than n). 

In this case, expected clustering goes to 0 as n → ∞. 

This is an important unrealistic feature of ER graphs: most social 
and economic networks have significant clustering, but ER graphs 
do not. 
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Basic Properties: Diameter/Average Path Length 
Within each component of size k, by branching process 
approximation (as in Lecture 1), average path length and diameter 
are both approximately log k/ log λ. 

I Branching process approximation usually works well in ER 
graphs with finite expected degree, because cycles are “rare” 
in these graphs. 

This is a small number within each component. 

I The distribution of component sizes is a crucial issues that we 
will discuss at length. 

Small diameter/average path length within each component is 
realistic for many social and economic networks. 

I ER random graphs exhibit “small worlds” (at least within each 
component). 
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Asymptotic Properties 
Most analysis of ER graphs focuses on asymptotic properties. 

I This means we let p be a function of n, and ask whether the 
probability that the realized network has a certain property 
goes to 0 or 1 as n → ∞. 

I This approach allows a clearer mathematical analysis than 
focusing on finite n: for any fixed n every realized network 
arises with some positive probability, so assessing the 
probability that a certain feature arises is diffi cult. 

I Due to law of large numbers-type considerations, asymptotic 
analysis is usually a good guide for reasonably large networks. 

Example: We will see that, if p (n) is below log n/n then the 
probability that the network is connected goes to 0 as n → ∞; 
while if p (n) is above log n/n then this probability goes to 1. 

I But exactly calculating Pr (connected) for fixed n is very hard. 
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Threshold Functions 
For a given property A (e.g. “the network is connected”, “the 
network contains at least one cycle”, “the network contains at least 
one edge”), we say a function t (n) is a threshold function if 

p (n)
P (A) → 0 if lim = 0, and 

n→∞ t (n) 
p (n)

P (A) → 1 if lim = ∞. 
n→∞ t (n) 

“Property A almost never holds if the link probability is 
significantly less than t (n), and property A almost always holds if 
the link probability is significantly greater than t (n).” 

I We sometimes write p (n) � t (n) for p (n) /t (n) → 0, and 
write p (n) � t (n) for p (n) /t (n) → ∞. 

This definition makes sense for monotone properties: 
properties such that if a given network (N, E ) satisfies it, then so 
does any network (N, E 0) with E ⊆ E 0 . 
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Phase Transitions 

If a threshold function exists, we say that a phase transition 
occurs at that threshold. 

Analyzing phase transitions let us get clear qualitative insights 
from models that at first glance seem very complicated. 

I E.g., “Large random graphs are connected if the expected 
degree grows fast than log n” vs. “Simulating network 
formation on 1000 nodes 1000 times tells me that the network 
is connected with probability approximately .978.” 

Finding phase transitions (like the log n/n threshold for 
connectivity) was one of Erdos and Renyi’s main contributions. 

I This was a landmark in graph theory and discrete math. The 
most cited of Erdos’s 1500+ papers. 15



Simple Example of a Phase Transition: Edges 

Define property A as A = {number of edges > 0} . 

We thus seek a threshold for the emergence of the first edge. 

We claim that t (n) = 1/n2 is a threshold function for this 
property. 

I “If p (n) � 1/n2 then for large n the network is very likely to 
have no edges; but if p (n) � 1/n2 then for large n the 
network is very likely to have at least one edge.” 

Let’s prove it. We must prove two things: 

1. If n2p (n) → 0 then P (#edges > 0) → 0. 

2. If n2p (n) → ∞ then P (#edges > 0) → 1. 
16



Proof 

n(n−1) 2
Recall that E [#edges] = p (n) ≈ n 

2 p (n) .2 

I First, suppose n2p (n) → 0 as n → ∞. 
Then E [#edges] → 0. 
This implies that P (#edges > 0) → 0. (Why?) 
This is the first thing we needed to prove. 

I Second, suppose n2p (n) → ∞ as n → ∞. 
Then E [#edges] → ∞. 
If this implied that P (#edges > 0) → 1, we’d be done. 
Is this implication valid? That is, are there networks where 
E [#edges] → ∞ but P (#edges > 0) 6→ 1? 

17



�������

Proof (cntd.) 

I To complete the proof, recall that edge formation is 
independent, so by the law of large numbers the distribution 
of edges is tightly concentrated around its mean. 

I Formally, number of edges follows a binomial distribution, and 
hence converges to a Poisson distribution (with mean 

2 ≈ n2 p (n)). So 

lim P (#edges = 0) 
n→∞ 

= lim 
n→∞ 

�2 �k − n 2 
2 p(n) ne 2 p (n) 

k ! 
k =0 

= lim 
2 − n2 p(n)e . 

n→∞ 

I If n2p (n) → ∞, this goes to 0. 
I This completes the proof that t (n) = 1/n2 is a threshold 
function for the emergence of links. 
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A Similar Example: Trees 
What is a threshold function for the emergence of connected 
triples? 

I Note that 

3 2E [#connected triples] = (#triples) p2 ≈ n p . 

I By a similar analysis as for pairs, a threshold function for the 
3emergence of connected triples is t (n) such that n p2 is 

3/2constant: that is, t (n) = 1/n . 

What is a threshold function for emergence of trees with k 
nodes? 

k k −1I E [#k-node trees] ≈ n p , so a threshold function is 
k /k −1t (n) = 1/n . 

19
As p (n) increases from 1/n2 to 1/n, we expected to find bigger 
and bigger trees in the network. 



Intuition: Think about growing a tree vs. growing a cycle.

I A tree grows to size k if k − 1 links form from nodes in the
tree to the infinitely many nodes outside the tree.

I For the tree to grow into a cycle, a link must form from a
node already in the tree to one of the finitely many other
nodes in the tree. This is much less likely.

I This logic also suggests (correctly) that the threshold for the
emergence of a cycle is the same as that for the emergence of
a connected component that contains a positive fraction of
all the nodes in the network.

I Such a component is called a giant component.
This is an important concept in ER graphs.

Cycles 
What’s a threshold function for emergence of a cycle with k 
nodes? 

I As we’ll see, this turns out to be t (n) = 1/n. 
I Arbitrarily big trees emerge “before” any cycles! 
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Cycles 
What’s a threshold function for emergence of a cycle with k 
nodes? 

I As we’ll see, this turns out to be t (n) = 1/n. 
I Arbitrarily big trees emerge “before” any cycles! 

Intuition: Think about growing a tree vs. growing a cycle. 

I A tree grows to size k if k − 1 links form from nodes in the 
tree to the infinitely many nodes outside the tree. 

I For the tree to grow into a cycle, a link must form from a 
node already in the tree to one of the finitely many other 
nodes in the tree. This is much less likely. 

I This logic also suggests (correctly) that the threshold for the 
emergence of a cycle is the same as that for the emergence of 
a connected component that contains a positive fraction of 
all the nodes in the network. 

I Such a component is called a giant component. 
This is an important concept in ER graphs. 
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Component Structure 
I Below the threshold of 1/n, the largest component of the 
graph includes no more than c log (n) nodes for some 
constant c . 

I Above the threshold of 1/n, a giant component emerges, 
which contains a positive fraction of the nodes: that is, at 
least cn nodes for some constant c . 
(There can’t be two giant components, because once 
p (n) ≥ 1/n and there are two components with cn nodes, 
the probability that there are no links between the 
components goes to 0.) 

I As p (n) increases further, the giant component grows in size, 
until p (n) reaches the threshold of log n/n, at which point 
the network becomes connected. 

I See Figures 4.4—4.7 in Jackson’s book for pictures. 

Key questions: 
I Why 1/n threshold for emergence of giant component? 
I Why log n/n threshold for emergence of connectivity? 
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Connectivity 

Theorem (Erdös and Renyi) 
In the ER model, a threshold function for connectivity is 
t (n) = log n/n. 

log nLet p (n) = r . We’ll show that n 

If r < 1 then P (connected) → 0, 

If r > 1 then P (connected) → 1. 

I This implies the theorem, because if p (n) /t (n) → 0 then 
log n

P (connected) is smaller than it is when p (n) = r ; and if n 
p (n) /t (n) → ∞ then P (connected) is larger than it is when 

log np (n) = r . n 

23We’ll give a heuristic argument. 

I See Jackson’s book for the proof if you’re curious [optional]. 



Intuition for r<1 Case 
To show r < 1 =⇒ P (connected) → 0, we show that the 
probability that there exists at least one isolated node goes to 1. 
I If there’s an isolated node, the network is disconnected. 
(Is the converse true?) 

I Focusing on the distribution of the number of isolated nodes 
is the key idea in the proof. 

The probability that any given node is isolated is 

(1 − p)n−1 −pn −r log(n) −r≈ e = e = n , � �n1 − a −awhere the approximation comes from limn→∞ = e . n 

Note that the events that distinct nodes are isolated are not 
independent. 
I However, it is intuitive that the correlation between such 
events is not very large. 

I We will therefore proceed as if these events are independent, 
without rigorously justifying this approximation. 
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Intuition for r<1 Case (cntd.) 

Let X =#isolated nodes. 

−rOur approximation gives E [X ] ≈ n · n . 

I If r < 1 then E [X ] → ∞. 
I If r > 1 then E [X ] → 0. 

This is strongly suggestive of what we’re trying to prove. 

I If r < 1 then on average there are many isolated nodes. 
I If r > 1 then on average there are 0 isolated nodes. 
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Intuition for r<1 Case (cntd.) 

E [X ] → ∞ does not immediately imply that Pr (X = 0) → 0. 

However, under our approximation that the events that distinct 
nodes are isolated are “almost independent,” the number of 
isolated nodes will be close to E [X ] with high probability. 

Therefore, P (X ≥ 1) → 1, and hence P (connected) → 0, 
completing the proof. 
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Intuition for r>1 Case 
We have seen that r > 1 implies that E [X ] → 0 (under our 
approximation). 

I This implies P (X ≥ 1) → 0. 
I Does this imply connectivity? 
I No. 
I The event “the graph is disconnected” is equivalent to the 
existence of a set of k nodes without an edge to the remaining 
nodes, for some k ≤ n/2 (but not necessarily k = 1). 

I To complete the proof, can show that the prob of having any 
“isolated set” of k nodes (for any k ≤ n/2) is not much 
higher than that of having an isolated individual node. 

I Intuitively, increasing k can make it a little more likely that 
there is an isolated set of k nodes, because there are more 
different sets of k nodes than there are individual nodes. 

I However, a larger set of nodes is much less likely to have no 
links to the remaining nodes, and this effect quickly swamps 
the effect of having more sets to check. 
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The Giant Component 

We just argued that, when p (n) � log n/n, the network is 
disconnected with high probability. 

What does the component structure look like in this case? 

I In this regime, we’ve seen that the expected number of 
isolated nodes (and hence the number of components) goes to 
infinity. 

I Question: when does every component contain a vanishing 
fraction of the nodes, and when is there instead a “giant 
component” with a constant fraction of nodes? 

I We’ll see that t (n) = 1/n is a threshold function for the 
existence of a giant component. 
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The Giant Component (cntd.) 
The basic idea for why the threshold function is 1/n comes from 
branching process approximation. 

I Suppose we knew there were no cycles, i.e. the network is a 
tree. (Not necessarily true, but useful thought experiment.) 

I Then, starting from a given node, what’s the expected 
number of nodes in the tree rooted at this node? 

I If p (n) = λ/n, the root has on average λ distance-1 
neighbors, λ2 distance-2 neighbors, etc.. 

I (Why is expected number of distance-2 neighbors λ2 and not 
(λ − 1)2?) 

1I If λ < 1, the root’s component contains on average 1−λ < ∞ 
nodes. 

I In fact, this is an overcount, since in reality there can be cycles. 
I This implies P (giant component) = 0, because if 

P (giant component) = α and 
E [size of giant component|it exists] = qn, then 
E [root node’s component size] ≥ α × q × qn = ∞. 
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The Giant Component (cntd.) 

I If λ > 1, the series λ + λ2 + . . . diverges, so in expectation 
the root’s component contains infinitely many nodes. 

I This implies the network will have at least one infinitely large 
component; we’ll see that one of them will actually be “giant,” 
in the sense of having at least cn nodes. 
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More Details: lambda<1 

Theorem 
Let p (n) = λ/n with λ < 1. For all suffi ciently large c > 0, we 
have � � 

P max |Si | ≥ c log n → 0, 
1≤i ≤n 

where |Si | is the size of the component that contains node i . 

I That is, if λ < 1 then with high probability not only are all 
components of size � n, they’re all of size at most c log n. 

I We won’t cover the proof. 
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More Details: lambda>1 

A somewhat more detailed argument for why a giant components 
exists when λ > 1 (in the actual ER model, not just the branching 
process approximation): 

I Fix a root node. 
I Let NER denote the (random) number of distance-k neighbors k 
in the ER model. 

I Let NER denote the (random) number of distance-k neighbors k 
in the branching process with the same degree distribution. 

I Clearly, NER ≤ NB .k k 

I We want to show it’s not “much less.” 
That is, the expected number of “overlaps” is small. 
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More Details (cntd.) 
When p (n) = λ/n, the expected number of “overlaps” in the 
branching process is very small until we reach a distance k from 
the root node such that Nk

ER ≥
√ 
n. 

Hence, NER ≈ NB whenever λk ≤ c 
√ 
n.k k � √ � 

When λ > 1, this implies P ∃component with size > c n → 1. 

√ 
Moreover, between any two components of size n, the probability 
of having a link is � �√ √ 

n× nλ
1 − 1 − ≈ 1 − e−λ , 

n 

which is a positive constant independent of n. 

√ 
So (intuitively) components of size > n connect to each other 
with high probability, forming a connected component of size cn 
for some c > 0. 
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Size of the Giant Component 
When λ > 1, it’s also relatively straightforward to compute the 
fraction of nodes in the giant component. 
I As we’ll see, this is an important quantity for understanding 
contagion and diffusion in networks. 

Let q be the expected fraction of nodes in the giant component of 
an n-node network. 
I Assume that, for large n, q is also approximately the fraction 
of nodes in the giant component of an n + 1-node network (a 
safe assumption). 

I The probability that node n + 1 is not in the giant component 
is given by 1 − q. 

I The probability that node n + 1 is not in the giant component 
is equal to the probability that none of its neighbors are in the 
(n-node) giant component, so 

d1 − q = ∑ P (d) (1 − q) . 
d 

∗I This equation has a fixed point q ∈ (0, 1). 
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Size of the Giant Component (cntd.) 
∗We can simplify the fixed point equation for q as follows: 

We have 
d∑1 − q P (d) (1 − q)= 

d 

−λλde 
(1 − q)d∑≈ .

d !d 

Recall the math fact that 

∑ 
d 

Therefore, we have 

d(λ (1 − q)) λ(1−q)≈ e .
d ! 

−λqq ≈ 1 − e . 

I Important equation: this gives the size of giant component 
as a function of expected degree. 
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Size of the Giant Component (cntd.) 
The size of the giant component is given by 

−λqq ≈ 1 − e . 

This does not give a simple closed-form solution for q as a function 
of λ, but we can still plot q as a function of λ: 

I First plot λ as a function of q, given by 

log (1 − q)
λ = − . 

q 

I Then swap the axes. 

If do this, find that 

I q = 0 until λ reaches 1. 
I Then q increases as a concave function of λ. 

I q ≈ .8 when λ = 2. q ≈ .94 when λ = 3. 

I q → 1 as λ → ∞. 
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I Can analyze by considering ER graph on (1− π) n nodes (i.e.
removing immune nodes) w/ link prob p, and then
determining size of component containing the initially infected
node.

I Let λ = p (1− π) n denote expected degree after removing
immune nodes. (This is the expected number of others that
each each infected individual infects.)

An Application: Contagion and Diffusion 

I Consider a society of n individuals. 
I A randomly chosen individual is infected with a contagious 
virus. 

I E.g. actual disease, new idea/technology, new fad/fashion. 

I Assume the network of interactions in the society is described 
by an ER graph w/ link prob p. 

I Assume any individual is immune (e.g. vaccinated) w/ prob π. 
I Question: on average, what fraction of society gets infected? 
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An Application: Contagion and Diffusion 

I Consider a society of n individuals. 
I A randomly chosen individual is infected with a contagious 
virus. 

I E.g. actual disease, new idea/technology, new fad/fashion. 

I Assume the network of interactions in the society is described 
by an ER graph w/ link prob p. 

I Assume any individual is immune (e.g. vaccinated) w/ prob π. 
I Question: on average, what fraction of society gets infected? 
I Can analyze by considering ER graph on (1 − π) n nodes (i.e. 
removing immune nodes) w/ link prob p, and then 
determining size of component containing the initially infected 
node. 

I Let λ = p (1 − π) n denote expected degree after removing 
immune nodes. (This is the expected number of others that 
each each infected individual infects.) 
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Contagion and Diffusion (cntd.) 
Three cases: 

I λ < 1 : 
log n 

E [fraction infected] ≤ ≈ 0. 
n 

I 1 < λ < log ((1 − π) n) : 

qq (1 − π) n + (1 − q) o (n)
E [fraction infected] = ≈ q2 (1 − π) , 

n 

where q denotes fraction of nodes in the giant component of 
−λqgraph with (1 − π) n nodes, i.e. q = 1 − e . 

I λ > log ((1 − π) n) : 

E [fraction infected] ≈ 1 − π. 

Thus, the size of the giant component plays a key role in analyzing 
diffusion in ER graphs. 

I We will return to this when we study diffusion on networks in 
more detail next week. 
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Summary: Erdos-Renyi Model 

I The ER model is the simplest random graph model. 
Key assumption: independent link formation. 

I The ER model is tractable but has some unrealistic features 
such as very low clustering. However, it’s an important 
benchmark/starting point. 

I A key feature of the ER model is threshold phenomena, such 
as thresholds for the emergence of a giant component or the 
emergence of connectivity. 

I In the ER model, there are either only small components, or 
one giant component and many small components. 
Understanding the size and structure of the giant component 
(when it exists) is often important, e.g. for studying diffusion 
or average path length. 
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Extensions of the Erdos-Renyi Model 
We next consider a couple well-known extensions of the 
Erdos-Renyi model that can accommodate some more realistic 
features. 

The configuration model (Bendor and Canfield, 1978) generalizes 
ER by allowing an arbitrary degree distribution, rather than being 
restricted to the Poisson distribution. 

I This is a general model for generating “ER-like” networks but 
with any desired degree distribution. 

The small world model (Watts and Strogatz, 1998) starts with a 
“lattice” network with high clustering, and then adds random links 
as in ER to recover the desirable small worlds properties of ER 
graphs while maintaining clustering. 

I This is a specific simple model for generating clustering while 
maintaining some nice features of ER networks. 
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The Configuration Model 

Recall that the ER model leads to a Poisson degree distribution, 
which falls off very fast. 

I This may not be realistic. E.g., degree distribution in 
Facebook friend graph has a long right tail. 

The idea of the configuration model is to specify a desired degree 
distribution in advance and then generate a random network with 
(approximately) this degree distribution. 

The configuration model behaves similarity to the ER model in 
many ways, but it is flexible enough to accommodate any desired 
degree distribution, rather than being restricted to the Poisson 
distribution. 
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Configuration Model 
Start with a degree sequence (d1, . . . , dn ) which specifies the 
desired degree for each node i ∈ N. 

I Alternatively, start with a degree distribution P (d) and 
generate the degree sequence by sampling iid from P (d). 

Given (d1, . . . , dn ), construct a sequence where node 1 is listed d1 
times, node 2 is listed d2 times, and so on: 

1, 1, 1, . . . , 1 2, 2, . . . , 2 · · · n, n, n . . . , n| {z } | {z } | {z } 
d1 times d2 times dn times 

I Imagine giving each node di “stubs” sticking out of it, which 
are the ends of edges-to-be. 

Then, randomly pick two elements of the sequence and form a link 
between the the corresponding nodes. 

I Delete those entries from the sequence and repeat, until no 
entries remain. 
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Configuration Model (cntd.) 
Remarks: 
I The sum of the degrees must be even (or else an entry will be 
left over at the end). 

I It is possible to have more than one link betwen two nodes (so 
we technically generate a “multigraph”). 

I It is also possible to have self-loops. 

However, if n is large and degrees are bounded, then the 
proportion of multi-links and self-links will be small. 
I If we simply delete all multi-links and self-links at the end, we 
will be left with a standard graph, and with high probability 
the degree sequence will be close to the original one. 

If n is large and the degree sequence is formed by iid draws from a 
Poisson degree distribution, the distribution over networks 
generated by the configuration model and the ER model will be 
almost the same. 
I Thus, the configuration model is essentially a generalization of 
the ER model. 
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Basic Properties 

Let’s start by asking about the same basic properties of the 
configuration model as we did for ER: degree distribution, 
conditional degree distribution, clustering. 

I Degree distribution is an input in the configuration model, so 
nothing to investigate here. 

I As in the ER model, in the typical case where E [d ] /n → 0 
as n → ∞, clustering goes to 0 as well. 

Conditional degree distribution is more subtle and is very 
important for understanding the component structure (e.g. when 
there’s a giant component). 

I For any nodes i 6= j , what is the degree distribution of node j 
conditional on the event that node j is linked to node i? 
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Conditional Degree Distribution 
I Suppose the degree sequence is generated by iid sampling 
from distribution P (d). 

I Consider some node i and then pick a random neighbor j . 
I What’s the distribution of dj ? 

Naive guess: P (d). But this is wrong. 

I For example, in the ER model, the expected degree of node j 
in this situation is λ + 1, not λ as under the unconditional 
degree distribution. 

I Also, there is no way to reach a node of degree 0 by this 
method! 

I Explanation: Higher-degree nodes are involved in a higher 
percentage of links. 

I If we follow a random link, we’re likely to end up at a 
higher-degree node. 

I This is the friendship paradox again. 
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The Friendship Paradox (PSet 1 Review) 
Fix any network (N, E ) with |E | = m (not necessary generated by 
the configuration model or any other random graph model). 

What is the degree of a randomly chosen node (i.e. average 
degree over nodes)? 

∑i ∈N diE [d ] = := hdi . 
n 

What is the degree of the node at the randomly chosen end of 
a randomly chosen link (i.e. average degree over link-ends)? 
I Each node i is selected with probability di /2m. 

I There are 2m link-ends, and di of them belong to node i . 

I Therefore, the answer is � � � � 
di ∑i ∈N d

2 nE d2 d2 var (d)i∑ di = = = = hdi + . 
i ∈N 2m 2m nE [d ] hdi hdi 

I Important. Mean-square degree shows up when nodes are 
sampled with probability proportional to their degree. 
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Conditional Degree Distribution (cntd.) 
For an arbitrary network, the degree distribution of a randomly 
chosen neighbor of a randomly chosen node is not the same as the 
degree distribution of a node at the randomly chosen end of a 
randomly chosen link. 

I You computed both of these in PSet 1. 
They weren’t the same. 

For example, in a star with n nodes, if randomly choose node and 
then random choose neighbor, mean degree equals 

n − 1 1 2 × (n − 1) + × 1 = n − 2 + ≈ n, 
n n n 

while if random choose link-end, mean degree equals 

1 1 n × (n − 1) + × 1 = .
2 2 2 
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Conditional Degree Distribution (cntd.) 

However, in the configuration model, each stub connects to each 
of the 2m − 1 other stubs with equal probability. 

I Intuitively, picking a random neighbor is the same as following 
a random link. 

I More carefully, each stub connects to a given degree-d node 
with probability 

d d ≈ .
2m − 1 2m 

I Each node is “oversampled” in proportion to its degree, 
exactly as when we choose a node at the end of a random link. 

I Therefore, in the configuration model, the degree distribution 
of a randomly chosen neighbor of a given node (randomly 
chosen or not) is the same as the degree distribution of a 
node at the randomly chosen end of a randomly chosen link. 49
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Conditional Degree Distribution (cntd.) 
We just saw that, in the configuration model, each stub connects 
to a given node with degree d with probability 

d d ≈ .
2m − 1 2m 

Since the share of nodes with degree d is P (d), each stub 
connects to some node with degree d with probability 

d dP (d)× nP (d) = 
2m hdi 

(since hdi = 2m/n). 
I This is the conditional degree distribution. 

In particular, the expected degree of a neighboring node equals � � 
d250dP (d) var (d)

∑ d = = hdi + . hdi hdi hdid 
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Examples 
In the ER model, P (d) is Poisson, and hence var (d) = hdi, so 
d2 = hdi + hdi2. Therefore, 

d2 
= 1 + hdi = 1 + λ. hdi 

I This matches what we found earlier. 

For regular networks with degree k, we have 

d2 k2 
= = k. hdi k 

I For regular networks, conditioning on being linked to a given 
node does not affect the degree distribution. 

For scale-free networks with P (d) = cd−γ , then� � 
d2 = ∑d cd

−γ d2 . This equals ∞ if γ < 3. 
I For scale-free networks, the expected degree of a neighboring 
node is often infinite! 
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Existence of the Giant Component 
We can easily use our formula for the expected degree of a 
neighboring node to determine when a giant component exists in 
the configuration model. 

For any given starting node, the expected number of distance-2 
neighbors (under branching process approximation) is ! 

d2 
hdi − 1 = d2 − hdi . hdi | {z } 

“reproduction number” 

Similarly, expected number of distance-3 neighbors is ! !2� � d2 d2 
d2 − hdi − 1 = hdi − 1 . hdi hdi 
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Expected number of distance-k neighbors is !k −1 
d2 

hdi − 1 . hdi 
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Existence of the Giant Component (cntd.) 
Expected number of distance-k neighbors is !k −1 

d2 
hdi − 1 . hdi 

As in the ER model, a giant component exists if and only if this 
diverges as k → ∞. 

This is the case if and only if 

d2 d2 
− 1 ≥ 1 ⇐⇒ ≥ 2. hdi hdi 

That is, giant component exists iff, on average, each of your 
neighbors has at least one neighbor other than you. 

I Reproduction number ≥ 1. 
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Examples 

In the ER model, d2 / hdi = 1 + λ. 

I Hence, a giant component exists in the ER model if and only 
if λ > 1. 

I This matches what we found earlier: threshold function 
t (n) = 1/n. 

For regular networks with degree k, d2 / hdi = k. 

I Hence, a giant component exists if k > 2. 
(Also k = 2, but this case is tricky since it’s on the boundary.) 

For scale-free networks with P (d) = cd−γ , d2 / hdi = ∞ if 
0 < γ < 3. 

I Hence, a giant component exists if 0 < γ < 3. 54
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Application to Contagion and Diffusion 
If immunize fraction π of the population, reproduction number 
falls to ! 

d2 
R = − 1 (1 − π) . hdi 

Therefore, R > 1 (and hence a giant component emerges) iff 

d2 1 
> 1 + hdi 1 − π 

, 

or equivalently 
hdi

π < π∗ := 1 − . hd2i − hdi 

Note: Setting π = 0 recovers the usual condition d2 / hdi > 2 
for existence of a giant component. 

Here π∗ is called the contagion threshold (or percolation 
threshold): to prevent infection of a positive fraction of nodes by 
removing random nodes, must remove at least π∗ of them. 
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Examples 

d2 2ER model: = hdi + hdi. 
1This yields threshold π∗ = 1 − .hd i 

For a regular graph with degree k, threshold is 

1
π∗ = 1 − .

k − 1 

I If k = 1 or 2, giant component never emerges. 
I If k = 3, giant component emerges whenever less than half 
the population is immune. 
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Examples (cntd.) 

Scale-free graph: P (d) ∼ d−γ , γ < 3. 

I Then d2 diverges, so contagion threshold is π∗ = 1: unless 
everyone is immune, a nontrivial fraction will get infected. 

I Intuition: in scale-free networks, there are many nodes with 
very degree, and these nodes serve as hubs that cause a giant 
component to exist even if many nodes are eliminated at 
random. 

However, there’s an important flip side to this: while the presence 
of many high-degree node makes eliminating random nodes 
ineffective for preventing contagion, it makes eliminating targeted 
nodes effective. 

I Randomly eliminating 99% of the nodes in a scale-free 
network does not disconnect it, but can show that eliminating 
the 3% highest-degree nodes does! 

I We’ll discuss targeting and other “strategic” aspects of 
diffusion in Lecture 9. 
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Size of the Giant Component/Infected Population 
When the initially infected node is in the giant component, the size 
of the giant component is the size of the infected population. 

We can again approximate this via a branching process, just like 
for the ER network. 

Let P̃ be the conditional degree distribution, and let q̃ be the 
probability that the branching process does not die out, starting 
from a neighboring node: 

=1 

∞

∑ 
d 

d −1P̃ (d) (1 − ˜1 − q̃ = π + (1 − π) q) . 

Let q be the probability that the branching process does not die 
out, starting from a random node: 

∞

∑1 − q = P (d) (1 − q̃ )d 

58d =0 

The fraction of nodes in the giant component is precisely q. 



Small-World Models 
The ER model has an unrealistically concentrated degree 
distribution and unrealistically low clustering. 

Generalized random graph models (like the configuration model) 
can address the unrealistic degree distribution but not the 
unrealistically low clustering. 

A “cheap” way to address low clustering would be to divide society 
into groups and specify that everyone only links within their own 
group. 

I But this would create a new unrealistic feature, namely that 
the network is disconnected, or possibly involves high 
diameter/average path length. 

I In contrast, the ER model looks good in terms of 
diameter/average path length: by branching process 
approximation, within the giant component, diameter is 
approximately log n/ log λ. 
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Small-World Models (cntd.) 

These considerations have led to interest in developing 
“small-world models” that are simple to generate and analyze 
while still having all of: 

I Realistic degree distribution. 
I Small diameter and average path-length. 
I High clustering. 
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The Watts-Strogatz Small-World Model 
The most famous such model (despite being very special) is due to 
Watts and Strogatz (1998). 

Watts-Strogatz start with a ring with n nodes, where each node is 
linked to its 2k closest neighbors. 
I This network has high clustering but also high 
diameter/average path-length. 

Then, randomly “rewire” a small fraction p of the edges. 
I This creates nkp “shortcuts” in the graph. 
I For small p, clustering is hardly affected, but diameter/average 
path-length decrease dramatically: for any p > 0, for lage n, 
diameter/average path-length is proportional to log n (rather 
than n, as in the case without rewiring). 

I As p → 1, we recover an ER random graph with kn edges. 

Can also consider a variant where add fraction p random edges, 
rather than rewiring. 
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The Watts-Strogatz Small-World Model 

I (a) before rewiring 
I (b) after rewiring 
I (c) adding edges instead of rewiring 
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Average Path-Length 
Heuristic argument that average path-length is proportional to 
log n: 

I Suppose we add r = nkp random edges. 
I Imagine dividing the ring into r intervals of length 
n/r = 1/kp. 

I Now consider the network where each interval is seen as a 
node, and these nodes are connected by the random edges. 

I This is an ER network with r nodes and r links, so expected 
degree equals 2, so there is a giant component, which consists 
of a fraction of nodes that is independent of n. 

I Average path-length within the giant component is 
approximately log r . 

I Since interval-length 1/kp is constant, nodes not in the giant 
component can reach the giant component in a constant 
number of steps c/kp along the ring. 

1I Hence, diameter is bounded by kp (log r + c) ≈ log r ≈ log n. 
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Summary: Configuration Model and Small-World Model 

I The configuration model is a generalization of the ER model 
that allows for arbitrary degree distributions. 

I The configuration model is analyzed similarly to the ER 
model, but must be careful to distinguish the conditional and 
unconditional degree distributions. 

I Neither the ER model nor the configuration model has 
realistic clustering. A simple model that obtains realistic 
clustering while maintaining realistic average path 
length/diameter is the Watts-Strogatz small world model. 
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