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Last Unit: Social Learning and Information Aggregation in 
Networks 

The last part of this course studies situations where different 
agents in a group or network have different information. 

I In an auction (e.g. the sponsored search auction responsible 
for Google’s revenue), each bidder has private information 
about her valuation of the good(s). 

I In a financial market, prediction market, or election, each 
participant has private information about the likelihood of 
different events and/or the quality of different options. 

I In a social learning setting (e.g. learning by sharing 
information on a social network), each individual has access to 
different pieces of information, which she might or might not 
share with others. 
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Games with Incomplete Information 

To model strategic interactions in these settings, we need to 
extend the game theory we’ve learned so far to cover games with 
incomplete information (also called asymmetric or private 
information). 

I Today’s lecture: game theory and application to auctions 
I Next week: information aggregation (elections, prediction 
markets), social learning 

I Last lecture: guest lecture by James Siderius on social media. 
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Games with Incomplete Information 

Basic idea: before playing the game, each agent observes the 
realization of some (different) random variable. 

I This is her called her private information or type. 

Then, when it’s time to play the game, each player calculates the 
posterior distribution of the variables that she does not observe. 

I Assume players do this correctly, using Bayes’rule. 
I So games with incomplete information are also called 
Bayesian games. 

The formal, mathematical model of incomplete information games 
is somewhat complicated, but the key ideas are fairly simple. 

I We start with an example, then go to the model. 4



Example: A Public Good Game 
Each of two players has to decide whether to contribute to a public 
good that benefits both of them. 

I E.g. each of two roommates has to decide whether to clean 
the bathroom. 

As long as someone contributes, both players get a benefit of 1, 
but each player i who contributes also incurs a cost ci . 

Payoff matrix: 

Contribute Don0t 
Contribute 1 − c1, 1 − c2 1 − c1, 1 
Don0t 1, 1 − c2 0, 0 

So far, this is a standard (complete information) game. 

I What are the pure-strategy Nash equilibria? 
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Example (cntd.) 

Twist: Now assume each player knows her own cost of 
contributing ci , but not the other player’s cost. 

I For example, each player might believe the other player’s cost 
is distributed uniformly on some interval [c , c̄ ] . 

I Or player 1 might know c2, while player 2 believes c1 is 
distributed uniformly on some interval [c , c̄ ] . 

I These two possibilities correspond to different incomplete 
information games. 

Let’s work through the case where each cost ci is distributed 
U [0, 2], independently across players. 

I We first ask what the equilibrium “should” be, then formally 
define the solution concept. 

6



Example (cntd.) 

Contribute Don0t 
Contribute 1 − c1, 1 − c2 1 − c1, 1 
Don0t 1, 1 − c2 0, 0 

c1, c2 ∼ U [0, 2], independent. 

As in dynamic games, a strategy si for player i is a complete 
contingent plan for how she should play the game. 

In this case, a (pure) strategy si specifies, for each possible 
realization of player i’s cost ci ∈ [0, 2], should player i contribute 
or not? 
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Example (cntd.) 

Contribute Don0t 
Contribute 1 − c1, 1 − c2 1 − c1, 1 
Don0t 1, 1 − c2 0, 0 

c1, c2 ∼ U [0, 2], independent. 

I claim that the following symmetric strategy profile is an 
equilibrium: for each i = 1, 2, � 

Contribute if ci ≤ 2 
si (ci ) = 2

3 
Don0t if ci > 3 

Why is this an equilibrium? 
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Example (cntd.) 
If player j follows strategy sj , he ends up contributing with � � 1probability Pr cj ≤ 2 = 3 .3 

If player i plays Contribute, her payoff is 1 − ci regardless of what 
player j does. 

If player i plays Don0t, her expected payoff is 

1 2 1 
(1) + (0) = .

3 3 3|{z} |{z} 
Pr(j contributes) Pr(j doesn’t contribute) 

Therefore, player i should contribute iff ci ≤ 23 . 

I That is, she should follow strategy si . 

So this strategy profile is an equilibrium. 

I In fact, it is the unique equilibrium. 
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Recap 

How did we analyze this example? 

I We specified a prior probability distribution (in this case, 
uniform [0, 2], independent) over each player’s type (ci ). 

I We noted that a strategy for each player is a mapping from 
her type to her action (Contribute, Don0t). 

I An equilibrium is a strategy profile where each player takes 
an optimal action, for every type she might have, taking her 
opponent’s strategy as given. . . 

I . . . where “optimal” means “optimal in expectation, given the 
player’s uncertainty about her opponent’s type (and hence her 
opponent’s action).” 

Let’s formalize this reasoning. 
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Incomplete Information Games 

A game of incomplete information consists of 

I A finite set N = {1, . . . , n} of players. 
I A set Θ = Θ1 × . . . × Θn of types, where Θi is the type 
space for player i . 

I A set A = A1 × . . . × An of actions, where Ai is the action 
space for player i . 

I Payoff functions ui : A × Θ → R for each player i . 
(Note: payoffs can depend on actions and types) 

I A prior joint probability distribution p on Θ. 
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Example 

In the example: 

I N = {1, 2} (two players) 
I Θ = [0, 2] × [0, 2] (player i’s type is ci ∈ [0, 2]) 
I A = {Contribute, Don0t} × {Contribute, Don0t} 
I Payoff functions are given by the payoff matrix. 
(Note: in the example, player i’s payoff depends on the 
actions and her own type ci , but not the other player’s type 
cj . In general, could depend on all types.) 

I p is the uniform distribution on the square [0, 2] × [0, 2] 
(=product of two uniform distributions on [0, 2]). 
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Strategies 

A pure strategy for player i is a function si : Θi → Ai . 

I For each possible type the player could have, what does she 
do? 

A mixed strategy for player i is a function σi : Θi → Δ (Ai ), the 
set of probability distributions on Ai . 

Interpretation: player i’s type θi is “everything she knows”. 

I Player i’s action can depend on θi , but it cannot depend on 
anything else. 

I In our example, if player 2 follows the equilibrium strategy 
“Contribute iff c2 ≤ 2 ”, player 1 would love to play 3 

2“Contribute iff c1 < 1 and c2 > 3 ”. 
But this is not a valid strategy for her, because it depends on 
player 2’s type, which player 1 doesn’t know. 
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Bayesian Nash Equilibrium 

The main equilibrium concept for incomplete information games is 
called Bayesian Nash equilibrium. 

Intuitively, a Bayesian Nash equilibrium is a strategy profile where 
each player maximizes her expected payoff given her opponents’ 
strategies. 

Formally, a strategy profile σ is a Bayesian Nash equilibrium 
(BNE) if, for all i ∈ N and all σ0 i , 

Eθ [ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i )] � � �� 
≥ Eθ ui σi 

0 (θi ) , σ−i (θ−i ) ; θi , θ−i , 

where Eθ [·] denotes expectation over θ. 
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Finite Types 

When the type space Θ is finite, we have 

Eθ [ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i )] 

= ∑ ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i ) p (θi , θ−i ) . 
θi ,θ−i 

Hence, a strategy profile σ is a BNE if, for all i ∈ N and all σi 
0 , 

∑ ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i ) p (θi , θ−i ) 
θi ,θ−i � � 

≥ ∑ ui σi 
0 (θi ) , σ−i (θ−i ) ; θi , θ−i p (θi , θ−i ) . 

θi ,θ−i 
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Infinite Types 

When the type space Θ is infinite (as in the example, where 
ci ∈ [0, 2]), we have 

Eθ [ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i )] Z 
= ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i ) dp (θi , θ−i ) . 

Θi ×Θ−i 

Hence, a strategy profile σ is a BNE if, for all i ∈ N and all σi 
0 , Z 

ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i ) dp (θi , θ−i ) 
Θi ×Θ−iZ 

≥ ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i ) dp (θi , θ−i ) . 
Θi ×Θ−i 
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BNE: Alternative Definition 
Equivalent definition (often easier to check): rather that requiring 
that each player maximizes her expected payoff (taking the 
expectation over all players types, including her own type), require 
that each type of each player maximizes her expected payoff 
(taking the expectation over the other players’types only). 

With this definition, if Θ is finite, a strategy profile σ is a 
Bayesian Nash equilibrium (BNE) if, for all i ∈ N, all θi ∈ Θi , 
and all ai ∈ Ai , 

∑ ui (σi (θi ) , σ−i (θ−i ) ; θi , θ−i ) p (θ−i |θi ) 
θ−i 

≥ ∑ ui (ai , σ−i (θ−i ) ; θi , θ−i ) p (θ−i |θi ) , 
θ−i 

where p (θ−i |θi ) = p (θi , θ−i ) /p (θi ), by Bayes’rule. 

If Θ is infinite and types are not independent, must define 
conditional expectation more carefully, but the idea is the same. 
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Example 

Let’s show that “Contribute iff ci ≤ 2 ” is the unique BNE in the 3 
example (up to indifference at ci = 2 ).3 

Suppose si (ci ) = Contribute for some type ci . 

This implies � � � � 
Ecj [ui (Contribute, sj (cj ) ; ci ) |ci ] ≥ Ecj ui Don

0t, sj (cj ) ; ci |ci , 

or equivalently 

1 − ci ≥ Pr (sj (cj ) = Contribute) . 

0This implies that the same inequality holds for every ci < ci , so all 
lower types must also Contribute. 18



Example (cntd.) 
This implies that any BNE must take a cutoff form: for some 

∗ ∗cutoffs c1 , c2 , we have � ∗Contribute if c1 ≤ c1s1 (c1 ) = ,∗Don0t if c1 > c � 1 
∗Contribute if c2 ≤ c 

s2 (c2 ) = 2 .∗Don0t if c2 > c2 
∗ ∗Just need to determine what pairs of cutoffs (c1 , c2 ) form a BNE. 

For strategy profile (s1, s2) to be a BNE, the cutoff types must be 
indifferent (otherwise, types just on either side of the cutoff would 
have to be taking the same action). 

This implies 
∗ c

1 − c ∗ = Pr (s2 (c2) = Contribute) = 2 .1 2 
Symmetrically, 

∗ c∗ 11 − c = .2 2 
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Example (cntd.) 

We have 

∗ 
∗1 − c1 = 

c2 ,
2 
∗ 

∗1 − c2 = 
c1 .
2 

This system of equations has unique solution 

2∗ ∗ c = c = .1 2 3 

Therefore, “Contribute iff ci ≤ 2 ” is the unique BNE.3 
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How to Find BNE in Incomplete Information Games 

When A is discrete and Θ is continuous, look for “cutoff 
strategies” as in the example. 

When A and Θ are both discrete, the game is often simple enough 
to check all possible strategies, as in static games of complete 
information. 

When A and Θ are both continuous (e.g. in an auction where a 
bidder’s value for the good is a continuous variable, and she can 
bid any amount in the auction), finding equilibria can be trickier 
and you won’t be asked to do this without a lot of guidance. 
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Summary 

I Strategic situations where one or more parties have private 
information are modeled as games of incomplete 
information. 

I A strategy in an incomplete information game is a function 
from a player’s private information (or type) to her action. 

I In a Bayesian Nash equilibrium, each player chooses her 
strategy to maximize her expected utility; equivalently, each 
type of each player chooses her action to maximize her 
expected utility. 
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Auctions 

Auctions are a leading application of incomplete-information 
games. 

In an auction, one or several goods are up for sales, and multiple 
buyers (or bidders) have private information about how much they 
want the good(s) (their valuations, which are their types in this 
context). 

The bidders then place bids, which determine how the good is 
allocated and how much is paid, according to the rules of the 
auction. 
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Examples of Auctions 

I Auction houses (Christie’s, Sotheby’s, etc.) selling art and 
other valuables. 

I US government selling treasury bills or natural resource rights 
(timber, oil, spectrum). 

I Search engines selling advertising rights for keywords. 

Many others: real estate, livestock/produce, electricity, corporate 
debt, used cars, . . . 
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Auction Formats 
There are many different ways of running an auction, called 
auction formats. 

There are four classic auction formats used for the sale of a single 
good (together with many variants): 

I English auction: price gradually rises until all but one bidder 
drop out. 

I Dutch auction: price gradually falls until one bidder claims 
the object. 

I First-price sealed-bid auction: all bidders simultaneously 
submit sealed bids; highest bidder wins and pays bid. 

I Second-price sealed-bid auction: all bidders simultaneously 
submit sealed bids; highest bidder wins and pays the 
second-highest bid. 

However, there are many other formats. 
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Generalized Second-Price Auction 
One new and important format is the generalized second-price 
(GSP) auction, used (with modifications) by search engines to 
offer keyword advertising slots. 

When you type a search term (“query”) into Google, several ads 
may appear above or below the search results. 

Which ad goes in which slot is determined by a keyword-specific 
auction. 

I Each advertiser places a per-click bid bi . 
I The advertiser with the highest bid gets the first slot, the 
advertiser with the second-highest bid gets the second slot, 
and so on. 

I Each advertiser pays per-click price equal to the bid of the 
next-highest advertiser (hence, “generalized second-price”). 

I There may also be a minimum price, below which no further 
slots are allocated. 
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Common Value Auctions 
Another important possibility in auctions is that a bidder may have 
private information that is relevant not only for her own value, but 
also for other bidders’values. 
I E.g. different oil companies bidding for rights to the same oil 
tract may have different information about the amount of oil 
in the tract, which affects all of their values for the tract. 

These are called auctions with interdependent values: the 
extreme case where bidders have different information but the 
same final value for the good is called common values. 

Note that, in a common values auction, winning the auction is 
“bad news” about the value of the good: the fact that others did 
not bid aggressively suggests that they had less favorable 
information about the good than you did. 

Failing to take this effect into account leads to the winner’s 
curse, which has been documented in natural resource auctions, 
corporate IPOs, free agency in professional sports, etc. 
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How Zillow Lost $881M Buying Houses in 2021 

2018: Launched Zillow Offers. 

I Tons of data and state-of-the-art algorithm to predict home 
prices. 

I Offered to buy houses a bit below predicted price, then do 
minor repairs and sell. 

I Simulated strategy for years, back-tested, found they would 
have made a lot of money. 

I After launched, bought tens of thousands of houses. 
Lost $881M, 25% of workforce, 25% of market cap. 
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How Zillow Lost $881M Buying Houses in 2021 
What went wrong? (probably) 

I For sure, on average Zillow can guess market price for a 
house better than its owner. 

I But which owners will accept Zillow’s offer? 
The ones who know there’s a problem with their house! 
(More generally, the ones whose estimate of the value of their 
house is much lower than Zillow’s.) 

Another way to look at it: 

I Suppose Zillow and homeowner get different signals of market 
price. 

I Even if Zillow’s signal is much more accurate than owner’s, 
Zillow’s offer largely reveals its signal, so the owner ends up 
with the informational advantage after seeing Zillow’s offer 
plus her own information. 

I Zillow only gets homes whose owners think Zillow bid too 
much, after taking the bid itself into account. 
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Plan 

We’ll study bidding and revenue in standard auction formats. 

I Skip GSP auction. It’s covered in EK Chapter 15 if you’re 
curious. 

I Auctions with interdependent values would be covered in 
classes on game theory or market design. 
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Modeling Auctions 
Classic model of single-item auction: 

I n bidders. 
I Each bidder i has a value vi ∈ [0, v̄ ] for the good. If bidder i 
wins the good and pays price pi , her payoff is 

vi − pi . 

I Bidder i’s value is her type/private information. It is 
distributed according to some cdf Fi on [0, v̄ ]. 

I We assume values are independent and identically distributed 
(can be relaxed). 

I A strategy for bidder i is a function βi : [0, v̄ ] → R+, 
indicating how much she bids as a function of her value. 

Note: The assumption that only bidder i’s own private information 
affects her value is called private values. This is the opposite of 
common values, which arise in the context of the winner’s curse. 
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Modeling Auctions (cntd.) 

We have not yet fully defined a game, because we have not 
specified how the bids determine how the good is allocated and 
who pays what (that is, the auction format). 

We will analyze the four standard auction formats, comparing the 
bidders’equilibrium strategies and the expected revenue raised by 
the auction. 
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Second-Price Auction 

All bidders simultaneously submit sealed bids; highest bidder wins 
and pays the second-highest bid. 

The second-price auction has the following very special property: 

I Recall that a strategy is weakly dominant if it is a best 
response to any opposing strategies. 

Theorem 
In a second-price auction, it is a weakly dominant strategy for each 
bidder to bid her true value. That is, βi (vi ) = vi for all vi is 
always an optimal strategy. 

I In a second-price auction it is impossible to increase your 
payoff by bidding anything other than your true value for the 
good. 33



Proof 

We show that, for any profile of opposing bids b−i , it is a best 
response for player i to bid vi . 

b be the highest bid among the b−i . 

b > vi . ¯ 

¯I Let Consider 2 cases. 

Case 1: 

I If i bids bi = vi , she loses the auction and gets payoff 0. 

b, she still loses and gets payoff 

¯ 

¯ 

b, she wins the auction but has to pay 
b, which gives her payoff vi − b < 0. 

¯ 
¯ 

I If she bids anything less than 
0. 

I If she bids more than 

I Hence, she cannot gain by bidding any bi 6= vi . 
I “If you lose the auction when you bid your value, there’s no 
way you can win the auction without paying too much.” 34



Proof (cntd.) 

b < vi . ¯Case 2: 

I If i bids bi = vi , she wins the auction and has to pay 
b > 0. 

b, she still wins and has to pay 
b, which again gives payoff vi − b. ¯ 

¯ 
¯ 

¯ 

gives her payoff vi − 
I If she bids anything more than 

I This is the key feature of the 2nd-price auction that makes 
truthful bidding optimal: conditional on the event that you 
win, the price is independent of your bid, so there is nothing to 
be gained by bidding “dishonestly”. 

b, she loses and gets payoff 0. ¯I If she bids less than 

I Hence, she cannot gain by bidding any bi 6= vi . 
I “If you win the auction when you bid your value, there’s no 
way to reduce the price you pay.” 

b̄ which, 
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Expected Revenue 

What is the expected revenue raised by the 2nd-price auction? 

It is equal to the expectation of the second-highest value. 

I Given a vector v ∈ Rn , let v (2) denote the value of the 
second-highest component of v . h i 

(2)I Expected revenue in the 2nd-price auction equals E v . 

I For example, if each of the n bidders has vi ∼ U [0, v̄ ], can 
show that h i n − 1(2)E v = v̄ . 

n + 1 

(Fact: if n random variables are distributed iid U [0, x ], the 
n+1−kexpectation of the kth highest draw is x .)n+1 
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First-Price Auction 
All bidders simultaneously submit sealed bids; highest bidder wins 
and pays her own bid. 

In a 1st-price auction, it is not an equilibrium for everyone to bid 
their true values. 
I If you bid bi = vi , you’re guaranteed to get payoff 0: either 
you lose the auction, or you win the auction but pay exactly 
as much as the good is worth to you. 

I If you instead bid bi < vi (“shade your bid”), you still might 
win the auction, and when you do you get a positive payoff. 

I Hence, in equilibrium in the first-price auction, bidders will use 
strategies where βi (vi ) < vi for all vi . 

The question is by how much players shade their bids. 
I Note: holding bids fixed, 1st-price auction generates more 
revenue than 2nd-price. 

I But we have seen that eqm bids are lower in 1st-price. 
I Which format yields higher expected revenues overall? 
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Example 

Let’s focus on the case where all bidder values are independently 
distributed U [0, v̄ ]. 

n−1We claim that it’s a BNE for each bidder to bid times her n 
value: that is, each bidder shades down by fraction 1 . n 

I Deriving this bidding strategy is somewhat complicated (we 
skip it), but checking that it’s an equilibrium is easy. 
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Example (cntd.) 
Let v (1) denote the value of the highest component of v . 

If everyone else bids n−1 times their value, player i wins the n 
(1) nauction with bid b iff v ≤ b.−i n−1 � n b 

�n−1 
v̄This happens with probability . n−1 

Hence, player i with value vi should choose b to maximize � �n−1 n b 
v̄

(vi − b) , or equivalently bn−1vi − bn . 
n − 1 

FOC: 

(n − 1) bn−2vi 
n − 1 

vi n 

= 

= 

nbn−1 , 

b. 

or equivalently 
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Revenue Comparison 
With n bidders and independent vi ∼ U [0, v ]: 

Expected revenue in the 1st-price auction equals � � 

¯ 

n − 1 n − 1 n − 1n(1)E v 
n + 1 n + 1 

¯ v̄ .×v = = 
n n 

Expected revenue in the 2nd-price auction equals 

¯ 
h i 

v . 
n − 1(2)E v = 
n + 1 

So, the 1st-price and 2nd-price auctions yield exactly the same 
expected revenue! 

I Compared to 2nd-price auction, in the 1st-price auction 
bidders shade their bids by just enough to compensate for the 
higher payments for fixed bids. 
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Note: the revenue equivalence theorem allows the possibility that
more revenue can be raised by not always giving the good to the
highest bidder.
I For example, auctions typically raise more revenue if they use
a reserve price: a minimum price below which the seller
keeps the good.

I Example: with only one bidder with vi ∼ U [0, 1], the
2nd-price or 1st-price auction without a reserve price raises 0
revenue, but with a reserve price of 12 either “auction” raises
expected revenue of 14 .

Coincidence? 
The fact that the 2nd-price and 1st-price auctions yield the same 
expected revenue is not a coincidence. It is a special case of an 
important result called the revenue equivalence theorem: 
when bidder values are independently distributed, any two auction 
formats that always give the good to the highest bidder must 
generate the same expected revenue. 
I Beyond our scope. 
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Coincidence? 
The fact that the 2nd-price and 1st-price auctions yield the same 
expected revenue is not a coincidence. It is a special case of an 
important result called the revenue equivalence theorem: 
when bidder values are independently distributed, any two auction 
formats that always give the good to the highest bidder must 
generate the same expected revenue. 
I Beyond our scope. 

Note: the revenue equivalence theorem allows the possibility that 
more revenue can be raised by not always giving the good to the 
highest bidder. 
I For example, auctions typically raise more revenue if they use 
a reserve price: a minimum price below which the seller 
keeps the good. 

I Example: with only one bidder with vi ∼ U [0, 1], the 
2nd-price or 1st-price auction without a reserve price raises 0 
revenue, but with a reserve price of 1 either “auction” raises 2 
expected revenue of 14 . 

42



Summary 

I Auctions are a leading example of games with incomplete 
information, and are important in both online and offl ine 
markets. 

I Many common single-good auction formats yield the same 
expected revenue, due to the revenue equivalence theorem. 
However, the auctioneer can increase revenue by sometimes 
withholding the good through the use of a reserve price. 

I Other important topics in auction theory include auctions for 
multiple goods such as the GSP auction, and auctions with 
common values. 

43



 
 

 

            

 
MIT OpenCourseWare 
https://ocw.mit.edu 

14.15 / 6.207 Networks 
Spring 2022 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

44

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page





