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Trust and Cooperation 
Last class introduced dynamic games on networks in the context of 
bargaining and intermediation. 

Today, another question about dynamic interactions: how is trust 
and cooperation sustained in communities and social networks? 

Important issue: It’s widely believed that trust and social norms of 
cooperation and reciprocity are critical for supporting good social 
outcomes in social networks, businesses, and societies. 

I Social networks: information-sharing (e.g. Granovetter on 
finding jobs), risk-sharing (e.g. in the developing world), 
managing public goods and environmental resources. 

I Businesses: sharing information and credit (e.g. Munshi on 
Indian diamond industry), long-run business relationships. 

I Societies: “high trust” vs. “low trust” societies, “social 
capital,” “informal institutions” in economic development. 
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Questions about Trust and Cooperation 

I What strategies can groups use to support trust/cooperation? 
I What properties of a group or its members are conducive to 
supporting a high level of cooperation? 

I Which members of a group (e.g. which network positions) are 
most important for supporting cooperation? 

I What kinds of “institutions” (e.g. ways of sharing 
information, shaping preferences, or punishing misbehavior) 
can help support cooperation? 
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Modeling Trust and Cooperation: Repeated Games 
There are different approaches to modeling trust and cooperation 
in groups. The main one in economics and related fields is 
repeated games: we model a long-run relationship as a set of 
players playing the same game over and over. 

I Repeated games are a natural framework for modeling 
reciprocity: you scratch my back today, I’ll scratch yours 
tomorrow. 

I Another important approach to modeling trust and 
cooperation is using ideas from evolution to think about how 
altruism– an intrinsic taste for helping others, or punishing 
people who misbehave– might evolve. This is an important 
topic in evolutionary biology and is potentially complementary 
with the repeated games approach. 

We’ll cover the basic model of cooperation of repeated games, and 
apply it to study cooperation in communities and networks. 
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Repeated Games: Model 
A repeated game GT (δ) is defined by a (finite) static game G 
with action sets A1, . . . , An and payoff functions gi : ∏n 

=1 Ai → Ri 
(called the stage game), a time horizon T (which can be finite 
or infinite), and a discount factor δ ∈ [0, 1].

In every period t = 1, 2, . . . , T , the player simultaneously choose 
t tactions (a1, . . . , a ), after observing all previous actions.n 

Payoffs are 

T �
δt−1 t tui = ∑ gi a1, . . . , an for all i ∈ N.

t=1 

Note: Players maximize present discounted value. 

I If T = ∞, need δ < 1 to keep payoffs from blowing up. 
I If T is finite, payoffs are well-defined even if δ = 1. 

We look for the subgame perfect equilibria (SPE). 5
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Example: Repeated Prisoner’s Dilemma 

Suppose the stage game G is the prisoner’s dilemma (PD): 

C D 
C 1, 1 −1, 2
D 2, −1 0, 0 

The corresponding repeated game is called the repeated 
prisoners’dilemma: players play the PD over and over again, 
observing all past actions before choosing actions for the current 
period. 

In the one-shot PD, the unique equilibrium is (D, D). 

Our first question is, can repetition lead to cooperation in the PD, 
i.e. is there a SPE in the repeated PD where the players ever play
(C , C )? 6



Finitely-Repeated PD 

First ask this question in the context of the finitely-repeated PD: 
the time horizon T is a finite number. 

Recall: we find the SPE of finite-horizon dynamic games by 
backward induction. 

Let’s apply backward induction to the finitely-repeated PD. 
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Finitely-Repeated PD (cntd.) 
In the last period, D is a dominant strategy regardless of prior play. 

I So, in every subgame starting in period T , the unique NE is 
(D, D). 

Now move to period T − 1.

I By backward induction, we know that, no matter what is 
played in period T − 1, (D, D) will be played in period T .

I Therefore, D is also a dominant strategy in period T − 1
(again regardless of prior play). 

I So, in every subgame starting in period T − 1, the unique
SPE is for each player to play D in period T − 1, and then D
again in period T (no matter what her opponent plays in 
period T − 1).

By induction, the unique SPE is for each player to play D in every 
period, regardless of prior play. 

I Conclusion: any finite repetition of the PD, no matter how 
long, does not lead to cooperation! 8



A More General Result 

The same reasoning as for the finitely-repeated PD applies to any 
repeated game where the stage game has a unique NE. 

Theorem 
If a static game G has a unique NE then, for any T < ∞ and 
δ ∈ [0, 1], the T -times repeated game G T (δ) has a unique SPE.
In the SPE, the unique NE of G is played in every period. 

Proof: By backward induction, similar to the PD. 
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Infinitely-Repeated PD 

Now consider the repeated PD with T = ∞. 

Note: one interpretation of the discount factor δ is that the time 
horizon is actually uncertain, and δ represents the probability that 
the game lasts another period. 

The key difference between the infinitely-repeated PD and the 
finitely-repeated PD is not that the infinitely-repeated game 
literally lasts forever, but rather that there is no commonly known 
endpoint of the game (so the outcome is not determined by 
backward induction). 

This will make a big difference. 
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Trigger Strategies 

A simple kind of strategies in the infinitely-repeated PD are 
trigger strategies. 

I Each player starts off taking C . 
I Each player keeps taking C so long as both players have 
always played C . 

I If anyone ever plays D, both players switch to playing D 
forever. 

If both players play grim trigger, what is the outcome of the game? 
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Trigger Strategies in the Repeated PD 

Theorem 
In the infinitely repeated PD, grim trigger strategies are a SPE iff 
δ ≥ 1 2 .

So, the infinite repetition of the PD can support cooperation, so 
long as the players are suffi ciently patient. 
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Proof 

By the “one-shot deviation principle,” to check that a strategy 
profile is a SPE in a repeated game, we have to check that no 
player can gain by deviating from it in any single period (for any 
history of past play). 

If your opponent plays grim trigger, her strategy depends only on 
whether everyone has always played C so far, or whether someone 
has played D. 

So there are only two kinds of histories to check: those where 
everyone has always played C , and those where someone has 
played D. 
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Proof (cntd.) 

If someone has already played D, your opponent will play D forever 
no matter what you do. 

Against this strategy of your opponent, your best response is to 
play D in every period. 

This is exactly what grim trigger prescribes. 

So, regardless of δ, a player cannot gain by deviating at a history 
where someone has already played D. 
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Proof (cntd.) 
Suppose instead everyone has always played C so far. 

I Since your opponent plays grim trigger, she will play C today 
and follow grim trigger in the future. 

If you play C : 

I You get payoff 1 today. 
I Following grim trigger, you will play C in every future period, 
and hence so will your opponent. 

I So you will also get payoff 1 in every future period. 

If you play D: 

I You get payoff 2 today. 
I Following grim trigger, you will play D in every future period, 
and so will your opponent. 

I So you will get payoff 0 in every future period. 

Grim trigger prescribes C . So you gain from deviating iff you prefer 
(2 today, 0 in every future period) to (1 today, 1 in every future 
period). 15



Proof (cntd.) 
Payoff from (2 today, 0 in every future period): 

2 + δ (0) + δ2 (0) + . . . = 2. 

Payoff from (1 today, 1 in every future period): 

1 + δ (1) + δ2 (1) + . . . = 
1 

1 − δ 
.

So you do not gain from deviating (and thus grim trigger is a SPE) 
iff 

2 ≤ 1 
1 − δ

⇐⇒
δ ≥ 

1 
.
2
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Multiplicity of Equilibria 
Can we conclude from this that, if players are suffi ciently patient, 
they will cooperate in the infinitely-repeated PD? 

Not necessarily: cooperation is a SPE, but there are many others. 

What are some? 
I Always D (for any δ) 
I Always D for the first 17 periods, then grim trigger (for δ ≥ 1 )2 
I Always D in even periods, “grim trigger restricted to the odd 

1period” in odd periods (for δ ≥ √ ).
2 

I Alternating (C , D) and (D, C ), enforced by switching to 
Always D after any deviation (for δ ≥ 1 ).2 

In some games repetition can even lead to worse outcomes than 
any stage-game NE. 

Nonetheless, grim trigger strategies show that players can
cooperate via reciprocity in infinitely repeated games, even if we 
can’t unambiguously predict that they will. 17



The Folk Theorem

δ

More generally, a set of results known as the “folk theorem for
repeated games” says that, if players are patient enough, almost
any possible payoffs can arise in an SPE of a repeated game.
The simplest version of this result is:

Theorem
Consider any action( p )rofile a such that there exists a stage-game
¯
NE aNE where ui aNE < ui (a) for all i ∈ I . There exists some
< 1 such that, for all δ > δ̄, there is a SPE where a is played in

every period.

Proof sketch:
I Use trigger strategies that start with everyone playing a but
switch to everyone playing aNE if there is any deviation.

I For suffi ciently hig δ
N
,
E
)can’t gain by deviating before theh(

switch, because ui a < ui (a) for all i .
I Regardless of δ, can’t gain by deviating after the switch,
because if everyone else is playing a stage-game NE forever,
you should play it, too. 18



Social Norms and Decentralized Repeated Games 

Cooperative equilibria in repeated games can serve as a model of 
beneficial social norms. 

I We define cooperative behavior as incurring a cost to benefit 
someone else. 

I Most sociologists view social norms as “internalized” to the 
point where they are followed even by people who expect no 
future benefit from following the norm. If so, this is outside 
our definition of “cooperation,” and is simply optimal 
behavior given one’s “socialized” preferences. 

I We instead model social norms as equilibria in repeated 
games: people follow the norm because they expect future 
benefits from doing so. 

I However, we usually view social norms as arising in 
decentralized repeated games, i.e. games where not everyone 
in society interacts with each other in every period.19



Repeated Games with Random Matching 

A simple model of a decentralized society is a repeated game 
with random matching. 

I There is a population of N players. 
I Each period t = 1, 2, . . ., the players randomly split up into 
pairs to play a symmetric, two-player stage game (e.g. the 
PD). 

I Let j (i , t) denote player i’s partner in period t.�
t , atI Player i’s period-t payoff is u a . 

I Key new assumption: players are anonymous and only observe 
actions in their own matches. (A form of limited information.) 
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I Player i’s period-t payoff is u ai
t , aj

t
(i ,t)

( )
.

I Player i’s total per-period payoff is

∞

∑
t=1

δt−1u
(
ai
t , aj

t
(i ,t)

)
.



Limited Information 

Is cooperation possible in repeated games with random matching 
and limited information? 

One’s first thought might be that this is impossible (at least if N is 
large), because any one player can defect and then “disappear into 
the crowd.” 

I Indeed, you’re asked to show on the problem set that this is 
correct if we first fix any δ < 1 and then take N → ∞.

However, if we fix any finite N and then take δ large, a player who 
deviates cannot disappear into the crowd completely: she will 
eventually meet players who met players who. . . met the player she 
deviated against. This gives some hope that collective punishment 
strategies may be effective. 21



Contagion Strategies 

The anonymous matching version of trigger strategies are called 
contagion strategies. 
Each player uses the following strategy: 

I Play C so long as you and everyone you’ve ever met have 
always played C . 

I If you or anyone you’ve ever met has ever played D, play D 
forever. 

Intuitively, once any player deviates, the “contagion” of playing D 
spreads throughout the population, until everyone is playing D. 
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Cooperation with Contagion Strategies 

Theorem 
In the prisoner’s dilemma with anonymous random matching, 
contagion strategies are a NE when players are suffi ciently patient. 
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Proof Sketch 

I Suppose the players use contagion strategies. 
I If D is played for the first time in some period t, then for all 

ε > 0, there exists T (ε) such that, with probability at least 
1 − ε, everyone else starts playing D by period t + T (ε).
(Since N is finite.) 

I If players are very patient, this implies that deviating and 
starting contagion is unprofitable: with high probability, 
deviating gives at best a payoff of 2 instead of 1 for T (ε) 
periods, but then a payoff of 0 instead of 1 thereafter. 
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What Have We Learned? 

Let’s return to our motivating questions and see what we’ve 
learned about group cooperation (and then turn to some empirical 
examples). 

What strategies can be used to support cooperation? 

I With full information, can support cooperation by threatening 
widespread breakdown of cooperation following a deviation. 
But different strategies can also work, including some that 
punish only those who deviate themselves. 

I With limited information (i.e. anonymous matching), more 
diffi cult to punish only the deviator. Collective punishment 
(contagion) is more promising. 

I More information makes targetd punishments more feasible. 
25



What Have We Learned? (cntd.) 
What kinds of groups are good at supporting cooperation? 
I Ones where players are patient, interact with each other 
frequently, or expect the relationship to last for a long time: 
these all correspond to a high value for δ. 

I Ones where high-quality information about group members’ 
past behavior is readily available. This facilitates effective 
punishments for deviation. 

Which members of a group are most important for cooperation? 
I We can’t answer this question with the symmetric random 
matching game we’ve considered so far. 

I Next, consider repeated games played on networks, where we 
will be able to answer this question. 

What kinds of institutions can help support cooperation? 
I Intuitively, those that in effect increase δ or improve 
information. Let’s see some examples. 26



The Value of Small and Close-Knit Groups 

In social science, there are many examples of smaller or more 
close-knit groups being able to support higher levels of trust and 
cooperation than larger and more diffuse groups. 

A simple way to model this is to note that the critical discount 
factor needed for contagion strategies to support cooperation in 
the repeated PD is increasing in N. 

I Larger N 
=⇒ takes longer for most other players to start Defecting
after you Defect 
=⇒ a player’s payoff after Defecting is higher
=⇒ must be more patient to support cooperation.

I In this sense, cooperation is easier in smaller groups. 
27



The Value of Small and Close-Knit Groups (cntd.) 
Alternatively, suppose we fix N but assume that in every period 
each player “gossips” with K other players by telling them the 
outcomes of all of her past matches. 

I Modify contagion strategies to specify that you switch to D if 
you ever hear about anyone playing D, in addition to directly 
meeting someone who plays D. 

I Then the higher is K , the fast contagion spreads, and the 
lower is the critical discount factor for supporting cooperation. 

I Here, K is a crude measure of how “close-knit” the group is 
(e.g. perhaps we gossip with each other whenever we interact 
socially, which is not directly related to our “economic” 
interactions of playing the PD with different people). 

I In this sense, cooperation is easier in close-knit groups. 

When we introduce explicit network structure into the community, 
we’ll be able to develop richer and more subtle versions of these 
results. 28



Application: The Maghribi Traders 

In European economic history, the commercial revolution refers 
to a period from the 11th to 14th century where long-distance 
trade in European and the Mediterranean resumed at large scale 
for the first time since the fall of the Roman Empire. 
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Application: The Maghribi Traders (cntd.) 
I Long-distance trade requires large investments in each voyage 
or caravan. 

I A merchant who makes such an investment must employ an 
overseas agent in the destination country to provide services 
like loading/unloading ships, paying fees/bribes, and 
marketing the goods. 

I By definition, these agents are far away. 
I By the nature of the services they must provide, they have 
opportunities to cheat the funding merchants. 

I Legal enforcement at the time was typically minimal, 
especially for things like enforcing the property rights of 
overseas investors. 

I So, an important puzzle is: how did long-distance trade get 
going in such circumstances? 

In an important series of papers, economist Avner Greif argues that
gossip among merchants and the threat of excluding dishonest 
agents was the critical factor in enabling long-distance trade. 30



The Maghribi Traders (cntd.) 
Greif conducted a historical and game-theoretic study of a 
particular group of medieval traders: the Maghribi, an important 
group of Jewish traders in the Western Mediterranean. 

I As Jews living in majority-Muslim countries, the Maghribis 
were a close-knit group, and they interacted and shared 
information frequently. 

I Greif found evidence that whenever an overseas agent cheated 
a Maghribi, he was boycotted by the Maghribi as a group (not 
just the particular trader he cheated). 

I This multilateral punishment strategy gives much stronger 
incentives for overseas agents to behave than bilateral 
punishment strategies would. 

I This is what allowed cooperation to arise given the actual 
limited time-horizon of agents and relatively infrequent 
interactions between any given pair of agent and merchant 
(i.e. relatively low δ). 
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Similar Examples 

The Maghribi traders example is one where a close-knit ethnic or 
religious community has an advantage in high-stakes trade in the 
absence of effective enforcement, due to the ability to gossip about 
and subsequently ostracize deviators. 

I In these situations, “community enforcement” substitutes for 
“legal enforcement.” 

Several other well-known examples of this have been studied by 
social scientists and legal scholars: 

I Orthodox Jews in the New York diamond industry. 
I Ethnic Chinese traders in South-East Asia. 
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Another Example: The Law Merchant 

A second example also comes from the Commercial Revolution. 

In addition to caravans and sea voyages, the other main setting for 
long-distance trade in this period was “fairs.” 

I Merchants bring goods to the fair. 
I Typically sell goods not for cash, but for promissory notes to 
be paid at the next fair. 

I Why does a merchant pay back his notes? 
I In this context, merchants come from all over Europe, so 
decentralized gossip as in the Maghribi case is not likely to 
provide enough information. 
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The Law Merchant (cntd.) 
The historical “solution” that arose in this case was the law 
merchant: private judges who attended the fairs. 
Apparently, the law merchant system worked roughly like this: 
I Before a merchant trades his goods for a promissory note, he 
queries the judge as to whether his partner has any 
outstanding notes. 

I If yes, don’t trade. If no, trade and record the note in the 
judge’s book. 

I When the promissory note is later paid, record that in the 
book as well. 

The judge thus facilitates multilateral punishment without the 
need for widespread gossip. 
I Each merchant doesn’t need to learn everything about 
everyone. Just needs to ask if the current-period partner has 
any outstanding notes. 

I See Milgrom, North, and Weingast (1990), The Role of 
Institutions in the Revival of Trade. 
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Decentralized Record-Keeping: From the 11th Century to 
the 21st Century 

The law merchant is an example of decentralized 
record-keeping: each trader voluntarily enters his trading 
information in the ledger, and queries the ledger to learn about his 
potential trading partners. 

A potential problem with the law merchant system: 

I The system is not completely decentralized, because the judge 
is solely responsible for the accuracy of the ledger. 

I Could a merchant with an unpaid note bribe the judge to 
erase it from the ledger? 

I If so, the system breaks down. However, perhaps the long-run 
incentives of the judge himself would keep him honest. 
(Or the incentives of other judges, who care about keeping 
each judge honest so that judges in general are trusted.)
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Decentralized Record-Keeping: From the 11th Century to 
the 21st Century (cntd.) 

If no single individual’s long-run incentives are powerful enough to 
keep her trustworthy, the keeping of the ledger must also be 
decentralized. 
I Creating a trustworthy, completely decentralized ledger is the 
goal of cryptographic technologies like permissionless 
blockchains (which underlie Bitcoin). 

I A key difference between blockchain and (quasi-)legal 
institutions like courts and the law merchant is that in the 
latter case some individuals are more trusted that others. 

I However, lack of a trusted authority causes its own challenges, 
namely determining who gets to update the ledger. 

I Bitcoin addresses this problem through the Proof-of-Work 
protocol, which is costly and energy-intensive. 

I Assessing and designing better protocols for decentralized 
record-keeping is an active area of research at the intersection 
of computer science and economics. 36



Cooperation and Trust in Networks 

So far, we have studied how communities can support cooperation 
as an equilibrium of a decentralized repeated game. 

But we have ignored network structure, which can matter in 
several ways: 

I We know that network structure affects speed of diffusion of 
information. If what’s diffusing is information about who has 
deviated, this affects how quickly a deviator can be punished, 
which affects how much cooperation can be supported. 

I Some individuals are more strongly embedded in the 
community (central) than others. These individuals can be 
expected to behave more cooperatively. 
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Cooperation on a Network: Framework 
Suppose the players are arranged on a network with edges E . 

Each period t = 1, 2, . . ., each player i chooses a level of 
cooperation (or effort) xi ∈ R+.

Assume effort benefits everyone, but effort is only observed by 
one’s neighbors in the networks. 

I Network matters for information, not directly for payoffs. 
I Normalize the cost of exerting effort xi to simply xi itself. 
I Assume effort xi benefits everyone else by some amount 
f (xi ), where f is an increasing and concave function. 

Stage game payoffs at effort profile x = (x1, . . . , xn ) are given by 

ui (x) = ∑ f (xj ) − xi .
j 6=i 

38The game is played repeatedly with discount factor δ. 



Maximum Cooperation 

What is the maximum level of cooperation that can result in any 
Nash equilibrium? 

We will assume the players use contagion strategies: There is some 
vector of “correct” effort levels x = (x1, . . . , xn ) such that 

I Each player i exert effort xi in every period, so long as every 
player j she observes has always exerted effort xj . 

0I If player i every sees any player j take an effort level x 6= xj ,j 
she takes effort 0 forever. 

Note: Allow xi 6= xj , because players can have (endogenously)
different incentives to cooperate due to their network position. 
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Maximum Cooperation: Idea 

Given that players use contagion strategies, what is the 
component-wise maximum vector of effort levels x that can be 
attained in equilibrium? 

If player i deviates, she saves her effort cost of xi in every period. 

But she also gradually loses the benefits of others’cooperation, as 
contagion started by her defection spreads throughout the network. 

I If player i deviates today, then player j stops cooperating in 
d (i , j) periods. 
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Maximum Cooperation: Conditions

Putting this together, a vector of cooperation levels
x = (x1, . . . , xn) can be supported in equilibrium if and only if, for
each player i , we have

1
1− δ ∑

j 6=i
f (xj )− xi

)
︸ ︷︷ ︸

equilibrium payoff

≥
∞

∑
t=0

δt ∑
j :d (i ,j)>t

f (xj )︸ ︷︷ ︸
payoff if stop cooperating

⇐⇒

︸︷xi︷︸
per-period gain if stop cooperating

≤ ∑
j︸6=i δ

d (i ,j)f (xj )︷︷ ︸
per-period loss if stop cooperating

.



Maximum Cooperation: Solution 
Therefore, the greatest vector of cooperation levels 
x = (x1, . . . , xn ) that can be supported in equilibrium given by the 
(component-wise) greatest solution to the system of equations 

xi = ∑ δd (i ,j )f (xj ) for all i .
j 6=i

Note: At solution, xi is different for different players i , depending 
on their position in the network. 

Aside: Does such a solution always exist? 
Yes. Intuitive argument: 

I Fix the cooperation levels of everyone except player i at a 
high level, and see how much player i is willing to cooperate 
in response to this. Do this for every player i . 

I Then see how much everyone is willing to cooperate in 
response to those cooperate levels. 

I Iterate until we converge to a fixed point. 
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Maximum Cooperation: Interpretation 

Formula for maximum cooperation: 

xi = ∑ δd (i ,j )f (xj ) for all i
j 6=i

We can get several insights from this formula. 

When is it possible to support more cooperation? 

I When players are more patient: xi ’s are increasing in δ. 
I When the network is “denser”: xi ’s are decreasing in d (i , j) 
for all i , j . 
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Maximum Cooperation: Interpretation (cntd.) 
Formula for maximum cooperation: 

xi = ∑ δd (i ,j )f (xj ) for all i
j 6=i

Fixing a network, which individuals cooperate more (i.e. for which 
players i is xi higher)? 

I Having more distance-t neighbors (i.e. larger Ni (t) sets) 
encourages cooperation by player i . 

I Having distance-t neighbors who themselves have more 
distance-t neighbors (i.e. large xj ’s for j ∈ Ni (t)) also
encourages cooperation by player i . 

I A player has strong incentives to cooperate if she is closely 
connected to other players who themselves have strong 
incentives to cooperate. 

= δd (i ,j )I Similar to Katz-Bonacich centrality with gij , but a
non-linear relationship since f is non-linear. 
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Recursive Centrality 

Recursive centrality formalizes this concept of one players having 
“more, and more central” neighbors than another. 

I Unlike standard centrality measures, it only is a partial order. 
I However, we will be able to conclude that, if i is more central 
than j , then xi ≥ xj regardless of the discount factor δ and
the shape of the “benefit function” f . 
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Recursive Centrality: Definition 

Say i is 1-more central than j if i has more distance-t neighbors 
than j for every t. 

I That is, |Ni (t)| ≥ |Nj (t)| for all t.

Recursively, say i is s-more central than j if for every t there is an 
injection ψ : Nj (t) → Ni (t) such that, for each k ∈ Nj (t), ψ (k)
is (s − 1)-more central than k. 

I Intuitively, “i’s distance-t neighbors are more central than j’s 
distance-t neighbors.” 

Finally, say i is more central than j if i is s-more central than j for 
all s. 
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Centrality and Maximum Cooperation 

Theorem 
If i is more central than j , then xi ≥ xj .

Proof idea: 

I Recall how the maximum cooperation vector x was 
characterized by iterating a best response-like function 
starting from a vector of very high cooperation levels. 

I If i is more central than j , then xi stays above xj at every step 
of this iteration, and hence converges to a higher value. 

Note: It can happen that i is 1-more central than j but xi < xj . 

I Compare the center of an n + 1-player star with a member of 
an n-player clique. 47



Cooperation on Networks: Summary 

In repeated cooperation games on networks, the maximum level of 
cooperation is supported by contagion strategies, where each 
player balances her cost of effort against the benefits from others’ 
effort that are lost if she deviates. 

Maximum cooperation is greater when players are more patient 
and the network is more close-knit (short path lengths). 

Players who occupy more central positions in the network (in the 
sense of having more and more central distance-t neighbors) 
cooperate more. 
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