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Network Traffi c 
Having covered the basics of both graph theory and game theory, 
we’re now ready to study strategic interactions on networks. 

Start with a simple and important example: network traffi c 
(also known as routing games). 
I Multiple individuals need to get from point A to point B on a 
network. 

I Drivers on a road network; information packets under 
decentralized routing on a communication network. 

I Each individual chooses a route to minimize its own travel 
time, given others’route choices. (Nash equilibrium.) 

I What happens? Is the equilibrium outcome socially effi cient? 
How ineffi cient can it be? What types of interventions can 
restore effi ciency? 

I Network traffi c is important in its own right, and is also a 
point of entry into the study of potential games, an 
important general class of games with many engineering/CS 
applications. 

2



A Simple Example 

A unit mass of traffi c must be routed over a network. 

There are two routes. 

I On route 1, the delay (or latency) depends on the mass of 
traffi c taking that route: if mass x takes route 1, the latency 
is l1 (x) = x . 

I On route 2, the delay is independent of the mass of traffi c: for 
any mass of traffi c x , the latency is l2 (x) = 1. 

(Perhaps route 1 is a direct route on slow and easily congested 
local roads, while route 2 is an indirect route on a fast highway 
that’s less congestible.) 
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Example: Diagram 
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Example: The Social Optimum 
What is the socially optimal (total utility maximizing) routing, 
i.e. the routing pattern that minimizes average delay? 

I If mass x takes route 1, average delay is 

x · x + (1 − x) · 1 = x2 + 1 − x 

1I This is minimized at x = 2 , for an average delay of 34 . 

Note: At this socially optimal solution, different agents face 
different delays. 

I Half the agents take route 1 and face delay 12 . 
I Half the agents take route 2 and face delay 1. 

The social optimum is not an equilibrium when each agent chooses 
her own route, as the agents who are “supposed” to take route 2 
would deviate to taking route 1. 
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Example: The Nash Equilibrium 

What is the (Nash) equilibrium routing, i.e. the routing pattern 
that results from each agent choosing the route that minimizes her 
own delay? 

I For any x < 1, delay is less on route 1 than route 2. 
I Hence, the only NE is for everyone to take route 1. 
I This results in a delay of 1 for all agents. 

Note: As compared to the social optimum, half the agents face 
the same delay (1) and half the agents face more delay (1 instead 
of 1 ).2 

I No one is better off, and some people are strictly worse off! 
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Example: Intuition 

Economic intuition for equilibrium ineffi ciency: 

I Choosing the congestible route 1 rather than route 2 imposes 
a cost on other agents: a “negative externality.” 

I An individual agent does not take this externality into account 
when making her decision. 

I Therefore, at equilibrium there are ineffi ciently many agents 
taking route 1. 
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Congestion vs. the Prisoner’s Dilemma 

The negative externality imposed on others by driving on a 
congestible road can be related to the prisoner’s dilemma we saw 
last class: 

C D 
C 2,2 0,3 
D 3,0 1,1 

I Playing D rather than C always yields a selfish gain of 1, but 
imposes a negative externality of 2 on the other player. 

I The unique Nash equilibrium outcome is (D, D), even though 
the socially optimal outcome is (C , C ). 

I Similarly, driving on a congestible road can save an individual 
agent time, but it imposes a negative externality on everyone 
else. 

I Nash equilibrium in a congestion game involves overuse of 
congestible resources, relative to the social optimum. 
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If we consider the best equilibrium instead of the worst one, the
corresponding ratio is called the price of stability.

I 1 ≤ POS ≤ POA.

The Price of Anarchy 
In a game with negative payoffs (“costs” or “losses” that we want 
to minimize), the price of anarchy is the ratio of the total cost 
borne by all agents in the worst equilibrium to the total cost at the 
social optimum. 

I POA ≥ 1, because the social optimum minimizes costs. 

In the example, 

I There is a unique equilibrium with total cost 1. 
I Total cost at the social optimum is 34 . 

4I Hence, the price of anarchy is 1/ 3 = 3 .4 
I In other words, total cost is 4 times higher in the (worst) 3 
equilibrium as compared to the social optimum. 
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The Price of Anarchy 
In a game with negative payoffs (“costs” or “losses” that we want 
to minimize), the price of anarchy is the ratio of the total cost 
borne by all agents in the worst equilibrium to the total cost at the 
social optimum. 

I POA ≥ 1, because the social optimum minimizes costs. 

In the example, 

I There is a unique equilibrium with total cost 1. 
I Total cost at the social optimum is 34 . 

4I Hence, the price of anarchy is 1/ 3 = 3 .4 
I In other words, total cost is 4 times higher in the (worst) 3 
equilibrium as compared to the social optimum. 

If we consider the best equilibrium instead of the worst one, the 
corresponding ratio is called the price of stability. 

I 1 ≤ POS ≤ POA. 
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General Traffi c Model 

Directed network G = (N, E ). 

Some given node is the origin, another node is the destination. 

I We consider here a relatively simple model where everyone 
starts at the same origin and needs to get to the same 
destination. 

I The analysis is similar in the more general case where different 
agents have different origins or destinations. 

We normalize the total mass of traffi c to 1. 
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General Traffi c Model 
Let P denote the set of paths between origin and destination. 

Let xp denote the flow on path p ∈ P. 

I How many agents use path p. 

Each link i ∈ E has a latency function li (xi ), where xi is the 
total flow on link i , given by 

xi = ∑ xp . 
p∈P :i ∈p 

I Here, i ∈ p means link i is part of path p. 

The latency function captures congestion effects. 

I Assume li (xi ) is non-negative and non-decreasing for each 
link i . 

I The functions li can be different for different links i : some 
links can be more congestible than others. 
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General Traffi c Model 
A routing pattern (or flow) x is a probability distribution on P. 

I A description of what fraction of the traffi c takes each 
possible path from the origin to the destination. 

The total delay (or total latency, or total cost) of a routing 
pattern x is 

C (x) = ∑ xi li (xi ) . 
i ∈E 

This is simply the sum over links of the total delay (=mass of 
traffi c times per-unit delay) incurred on each link. 

We could also write this as 

C (x) = ∑ xp ∑ li (xi ) , 
p∈P i ∈p 
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on each path. 



Socially Optimal Routing 

A routing pattern x is socially optimal if it is a solution to the 
following problem: 

min ∑ xi li (xi ) x 
i ∈E 

subject to 

xi = ∑ xp for all i ∈ E , 
p∈P :i ∈p 

∑ xp = 1 and xp ≥ 0 for all p ∈ P. 
p∈P 

I First constraint: traffi c on link i = mass of agents using a 
path that goes through link i . 

I Second constraint: everyone must get from origin to 
destination. 14



Equilibrium Routing 
A routing pattern x is an equilibrium if, for any path p ∈ P with 
xp > 0, there does not exist a path p0 ∈ P such that 

∑ li (xi ) < ∑ li (xi ) . 
i ∈p 0 i ∈p 

I Taking what everyone else is doing as given, no agent can 
switch to a faster route. 

In other words, x is an equilibrium if 

1. For all p, p0 ∈ P with xp , xp 0 > 0, we have 

∑ li (xi ) = ∑ li (xi ) , and 
i ∈p i ∈p 0 

2. For all p, p0 ∈ P with xp > 0 and xp 0 = 0, we have 

∑ li (xi ) ≤ ∑ li (xi ) . 
i ∈p i ∈p 0 
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Equilibrium Routing: Comment 

A routing pattern x is an equilibrium if, for any path p ∈ P with 
xp > 0, there does not exist a path p0 ∈ P such that 

∑ li (xi ) < ∑ li (xi ) . 
i ∈p 0 i ∈p 

This is simply the Nash equilibrium of the large-population game 
where no one individual’s route affects overall traffi c. 

I In the context of routing games, this is also called Wardrop 
equilibrium. 

I (Minor point: technically doesn’t fit the usual definition of 
Nash equilibrium, since there is a continuum of players.) 
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Ineffi ciency of Equilibrium Routing 
We’ve already seen that equilibrium routing can be ineffi cient. 

In fact, this equilibrium ineffi ciency can be arbitrarily severe: 
POA ≈ ∞. 

Consider the same example as earlier but with a different latency 
function on route 1: 

Note: we simply replaced l1 (x) = x with l1 (x) = xk . 
I When k is large, congestion on route 1 only “gets bad” when 
almost everyone is using route 1. 
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Ineffi ciency of Equilibrium Routing (cntd.) 

When k is large, xk is close to 0 unless x is very close to 1. 

I If 99% of agents take route 1, then when k is very large total 
delay is close to .99 · 0 + .01 · 1 = .01. 

I As k increases, can have more and more agents take route 1 
with incurring much delay. 

I Socially optimal delay goes to 0 as k → ∞. 

But xk is still less than 1 for all x < 1, so equilibrium again has 
everyone taking route 1, which yields equilibrium delay 1. 

Therefore, the price of anarchy goes to 1/0 = ∞ as k → ∞. 
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How to Improve Effi ciency? 

There are different ways to reduce traffi c or improve effi ciency. 

Leading contenders: 

I Build new links or increase capacity on existing links. 
I Introduce congestion pricing. 

We’ll see a classic example of how increasing capacity can backfire, 
while congestion pricing is a quite general solution. 

I It can also be shown that a suffi ciently large increase in 
capacity always reduces traffi c, but we won’t cover this result 
here. Basic idea: can show that equilibrium delay with 1 unit 
of traffi c is less than optimal delay with 2 units of traffi c, so 
delay must decrease if we “double the capacity of every edge.” 
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Increasing Capacity 

Can reducing the latency function li (·) on any link ever increase 
socially optimal delay. 

No, because can always stick with the old routing pattern, which 
now involves less delay. 

A special case of this observation: adding a new link always 
decreases optimal delay. 

This raises the question, can adding a new link ever increase 
equilibrium delay? 
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Braess’s Paradox 

21



Braess’s Paradox in the Real-World? 

Braess’s paradox shows that, in theory, closing a road can reduce 
commuting time, even if the number of commuters does not fall. 

An interesting question: does this ever happen in real-world traffi c 
networks? 

There are several claimed cases, but evidence is mostly anecdotal. 

Rather than trying to identify exogenous actual road closures, it’s 
easier to run simulations about what would happen to real-world 
networks if some roads were closed. 

I Debatable how convincing such simulations are. 
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Braess’s Paradox in the Real-World? (cntd.) 
One of the best-known papers doing this (Youn, Gastner, and 
Jeong, Physical Review Letters 2008) argues that closing Main 
Street would decrease traffi c between Cambridge and Boston! 
Possible explanation: Consider commuters going from Harvard 
Square to downtown Boston. 

Three main routes that don’t use Main Street: 

1. Cross river at Harvard Sq, take Storrow Drive all the way. 
2. Take Mass Ave through Cambridge and across river, then 
Storrow. (First part of the route is the most congestible: 
Mass Ave in Cambridge.) 

3. Take Broadway/Hampshire through Cambridge, take 
Longfellow bridge. (Second part of the route is the most 
congestible: Longfellow bridge.) 

Main St lets commuters use first part of Route 2 and second part 
of Route 3: causes traffi c both on Mass Ave and Longfellow bridge. 
If we closed Main St and forced commuters to choose between 
Routes 2 and 3, traffi c could decrease on both routes. 
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Congestion Pricing 

An alternative way to reduce traffi c: congestion pricing. 

Consider first example of ineffi ciency: l1 (x) = x , l2 (x) = 1. 
1I Effi cient routing: x = 2 

I Equilibrium routing: x = 1 

Why isn’t effi cient routing an equilibrium? 

Each route 2 agent has an individual incentive to switch to route 
1, as doesn’t take into account that this increases delay for the 

1mass 2 agents on route 1. 

Solution: impose a tax on route 1 (“congestion pricing”). 
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Congestion Pricing (cntd.) 

Suppose all drivers value their time at $1 per unit. 

Suppose the government declares that each driver must pay t 
dollars to use route 1, with the proceeds of t · x1 dollars distributed 
equally among all members of society. 

Now an individual driver is indifferent between the two routes iff 

x + t = 1. 

(Note: she gets the proceeds t · x1 whichever route she takes, so 
this doesn’t affect her decision.) 

Given tax t, the equilibrium mass of drivers on route 1 equals 1 − t. 
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Congestion Pricing (cntd.) 

Given tax t, the equilibrium mass of drivers on route 1 equals 1 − t. 

1To implement the socially effi cient outcome of x = 2 , the 
government must set t = 2

1 . 

What’s the new equilibrium with this tax? 

I Mass 1 2 of drivers take route 1. 
I This generates revenue 1 2 · 

1 
2 = 1 4 , which is distributed equally 

among all drivers. 
I Route 1 drivers face delay 1 2 , pay tax 

1 
2 , receive transfer 

1 
4 . 

I Route 2 drivers face delay 1, pay no tax, receive transfer 1 4 . 
I All drivers receive the same payoff of − 3 4 . 
I Thus, the new equilibrium yields the socially optimal loss (and 
also eliminates inequality). 26



Congestion Pricing: General Analysis 

Ability of congestion pricing to restore effi ciency goes far beyond 
this example. 

Key idea: set the toll on link i equal to the externality of using link 
i , evaluated at the social optimum x ∗: 

∗ ∗ ti = xi li 
0 (xi ) . 

∗I At the social optimum x , if you decide to use link i , this 
∗ ∗slows down x drivers by l 0 i ) each.i i (x 

I If you have to pay this externality to use link i , your incentives 
to use link i become perfectly aligned with social welfare. 

This is called a Pigouvian tax 
(or in the congestion pricing context, a Pigouvian toll). 27



Congestion Pricing: General Analysis 

∗ ∗Pigouvian toll: impose a toll of ti = xi li 
0 (xi ) on each link i . 

Theorem 
∗With Pigouvian tolls, the socially optimal routing pattern x is also 

an equilibrium routing pattern. 

We will see the same idea in a more general context when we 
discuss Vickrey-Clarke-Groves auctions later in the course. 

I The idea that setting taxes equal to externalities restores 
effi ciency is a key insight of economic theory. 
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Convex function with first-order condition for optimum x∗:

l1 (x∗1 ) + x
∗
1 l
0
1 (x

∗
1 ) = l2 (x

∗
2 ) + x

∗
2 l
0
2 (x

∗
2 ) ,

or equivalently

l2 (x∗2 )− l1 (x∗1 )| {z }
net private benefit of taking route 1

= x∗1 l
0
1 (x

∗
1 )− x∗2 l 02 (x∗2 )| {z }

net externality of taking route 1

.

General Analysis (cntd.) 
Proof for 2-link case gives the intuition: 

Two links with latency functions l1 (x1) , l2 (x2). 

Socially optimal routing is given by solution to 

min x1l1 (x1) + (1 − x1) l2 (1 − x1 ) 
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General Analysis (cntd.) 
Proof for 2-link case gives the intuition: 

Two links with latency functions l1 (x1) , l2 (x2). 

Socially optimal routing is given by solution to 

min x1l1 (x1) + (1 − x1) l2 (1 − x1 ) 

Convex function with first-order condition for optimum x ∗: 

∗ ∗ ∗ ∗ ∗ ∗l1 (x1 ) + x1 l1 
0 (x1 ) = l2 (x2 ) + x2 l2 

0 (x2 ) , 

or equivalently 

∗ ∗ ∗ ∗ ∗ ∗l2 (x2 ) − l1 (x1 ) = x1 l1 
0 (x1 ) − x2 l2 

0 (x2 ) .| {z } | {z } 
net private benefit of taking route 1 net externality of taking route 1 30



General Analysis (cntd.) 

Suppose we set tolls equal to externalities: 

∗ ∗ t1 = x1 l1 
0 (x1 ) 

∗ ∗ t2 = x2 l2 
0 (x2 ) . 

∗ ∗ ∗Then total cost of using route 1 is l1 (x1 ) + x1 l1 
0 (x1 ), total cost of 

∗ ∗ ∗using route 2 is l2 (x2 ) + x2 l2 
0 (x2 ). 

The first-order condition for optimality on the previous slide says 
precisely that these two costs are equal. 

∗ ∗Hence, in equilibrium x agents take route 1 and x agents take 1 2 
route 2. 
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Potential Games 
Routing games are a special case of a general class of games called 
potential games. 

Recognizing routing games as potential games will let us prove 
some important results about them, such as existence of 
pure-strategy equilibrium and an upper bound on the price of 
anarchy. 

Intuitively, a potential game is one in which there exists a function 
φ : S → R, called a potential function, such that, for any player 

0 0i and any two strategies si , si ∈ Si , switching from si to si has the 
same effect on player i’s payoff as it has on the potential. 

I The potential function thus reflects all players’incentives 
simultaneously. 

I A key reason why this is important is that maxima of the 
potential function will correspond to equilibria of the game. 

I Most games do not admit a potential function, but for those 
that do it’s usually a very helpful object to work with. 
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Potential Games: Definition 

Formally, a function φ : S → R is a potential function if, for all 
0i ∈ N, si , si ∈ Si , and s−i ∈ S−i , we have � 0 � � 0 � 

ui si , s−i − ui (si , s−i ) = φ si , s−i − φ (si , s−i ) . 

A game is a potential game if it admits a potential function. 
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Potential Games: Trivial Example 

A trivial example of a potential game is a common-interest 
game, where all players have the same payoff function: there exists 
u : S → R such that ui (s) = u (s) for all i ∈ N and s ∈ S . 

Claim: Every common-interest game is a potential game. 

Proof: Simply let φ (s) = u (s) for all s. 

0Then, for all i ∈ N, si , si ∈ Si , and s−i ∈ S−i , we have � 0 � � 0 � 
ui si , s−i − ui (si , s−i ) = u si , s−i − u (si , s−i )� �0 = φ si , s−i − φ (si , s−i ) . 

Unfortunately, finding a potential function is often not this easy. 
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Another Example 
Recall the prisoner’s dilemma: 

C D 
C 2,2 0,3 
D 3,0 1,1 

This is a potential game, with potential function given by 

C D 
C 0 1 
D 1 2 

I To see this, note that whenever a player switches her action 
from C to D, this increases her own payoff by 1, and also 
increases the potential by 1. 

Note that the strategy profile that maximizes the potential is 
(D, D), which is also a Nash equilibrium. 
I We will see that this is a general feature of potential games. 
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Potential Games: PSNE Existence 
The following theorem is a simple and important example of the 
power of potential games: 

Theorem 
Every finite potential game has a pure strategy NE. 

Proof: 

I ∗Since S is finite, φ has a maximizer s . 
I ∗Since s maximizes φ, there’s no way to increase φ by 

I 

changing any one coordinate si .� � � � � � � �∗ ∗ ∗ ∗ ∗ ∗Since φ si , s − φ s = u si , s − u s ,−i i , s−i −i i , s−i 
there’s no way to increase ui by changing si . 

I ∗Hence, s is a PSNE. 

Note: Conversely, every PSNE is either a local maximum or a 
saddle point of φ. 
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Routing Games and Potential Games 

Theorem 
Every routing game is a (convex) potential game, and therefore 
has a (unique) pure-strategy NE. 

Note: 

I We consider here routing games with a finite number n of 
players, rather than the continuum model we’ve considered 
thus far. 

I In particular, xj is now the number of agents using link j , not 
the fraction. 

I We’ll also now use j subscripts for links and i subscripts for 
players/numbers of players. 

37



Routing Games and Potential Games (cntd.) 
Theorem 
Every routing game is a (convex) potential game, and therefore 
has a (unique) pure-strategy NE. 

Proof: 
We will show that a certain function φ (x) is a potential function. 

We define φ (x) to be what total delay would be if the drivers 
arrived on the roads in sequence, and each driver only suffered the 
delay due to those drivers who arrived before her: that is, 

φ (x) = 
xj 

∑∑ lj (i) . 
j ∈E i =1 

Note: this is not equal to total delay, which is 

C (x) = ∑
38
xj lj (xj ) . 

j ∈E 

Since each lj is non-decreasing, we always have φ (x) ≤ C (x). 



Intuition for the Potential Function 
The potential on link j is ∑

x 
= 
j 
1 lj (i).i 

I If a new agent i starts using link j , this increases her travel 
time by lj (xj + 1), and also increases the potential on link j 
by lj (xj + 1). 

The total delay on link j is xj lj (xj ). 

I If a new agent i starts using link j , this increases the total 
delay on link j by lj (xj + 1) + xj (lj (xj + 1) − lj (xj )). 

Thus, the potential (but not the total delay) reflects individual 
agents’incentives to use the link. 

I Another way of seeing this is that the increase in the potential 
equals the increase in total delay minus the externality 
xj (lj (xj + 1) − lj (xj )). 

I If we want to capture incentives, we have to subtract off this 
externality, since individuals don’t take it into account when 
making their choices. 
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Proof that We Have a Potential Function 
0Formally, if driver i switches from path p to path p , the effect on 

her delay is 

∑ lj (xj + 1) − ∑ lj (xj ) , 
j ∈p 0\p j ∈p\p 0 

where j ∈ p0\p indicates that link j is in path p0 but not path p, 
0and similarly for j ∈ p\p . 

By inspection, this is exactly the same as the effect on φ. 
Hence, φ is a potential function. 

Note: To see that we could not have just taken C as the potential 
0function, note that the effect of i switching from p to p on C is 

something different: 

∑ [lj (xj + 1) + xj (lj (xj + 1) − lj (xj ))] 
j ∈p 0\p 

− ∑ [lj (xj ) + (xj − 1) (lj (xj ) − lj (xj − 1))] . 
j ∈p\p 0 
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Potentials and the Price of Anarchy 

We now use the potential game approach to prove the following 
important result: with affi ne latency functions, there is always an 
equilibrium that is not “too ineffi cient.” 

A latency function lj (xj ) is affi ne if it can be written as 
lj (xj ) = aj xj + bj for constants aj , bj ≥ 0. 

Theorem 
In any routing game with affi ne latency functions, POA ≤ 2. 
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Price of Stability: Comments 

Theorem 
In any routing game with affi ne latency functions, POA ≤ 2 

I The simple example at the very beginning of lecture has affi ne 
latency and POA = 4/3. 

I The theorem can actually be improved to say that 
POA ≤ 4/3. So the simple example is actually the worst 
possible! 

I Rough intuition: negative externalities are “as strong as 
possible” in the simple network. 

I In contrast, we’ve seen that, with general polynomial latency 
functions, the price of anarchy can be arbitrarily high. 
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Price of Stability: Proof 

∗Let x be a socially optimal routing (i.e., a routing that minimizes 
EC ), and let x be a routing that minimizes the potential φ (and 

hence is a PSNE). 

We know that, for any routing x , we have φ (x) ≤ C (x). 

We will prove that, for any routing x , we have φ (x) ≥ C (x) /2. 

Then we’re done: we have � � � � 
E EC x ≤ 2φ x ≤ 2φ (x ∗ ) ≤ 2C (x ∗ ) .|{z} |{z} |{z} 

C ≤2φ xE minimizes φ φ≤C 

That is, total delay at xE is no more than twice the socially 
optimal delay. 43



Price of Stability: Proof (cntd.) 
The fact that φ (x) ≥ C (x) /2 follows from the assumption of 
affi ne latency functions: lj (xj ) = aj xj + bj for all j . 

Recall that C (x) is total delay, while φ (x) is total delay when 
drivers arrive in sequence and each driver only suffers the delay 
caused by earlier drivers. 

I Total delay on link j equals 

2(aj xj + bj ) xj = aj xj + bj xj . 

I Potential on link j equals 

xj 

∑ lj (i) = aj (1 + 2 + . . . + xj ) + bj xj . 
i =1 

44 2I Note that 1 + 2 + . . . + xj = xj (xj + 1) /2 ≥ xj /2. 
I Hence, potential is at least (total delay)/2. 



Summary 
I Routing games are an important application of Nash 
equilibrium to networks, especially for understanding 
transportation and information routing. 

I Equilibrium routing is typically ineffi cient, as individual agents 
do not take into account their contributions to congestion 
when making decisions. 

I With non-affi ne latency functions, this ineffi ciency can be 
arbitrarily severe. 

I With affi ne latency functions, ineffi ciency cannot be “too 
4bad” (however, in reality a factor of 2 or 3 is not great!). 

I Increasing capacity does not always help, as shown by Braess’s 
paradox. 

I Congestion pricing presents a general solution. 
I Routing games are an important example of potential games, 
an important general class of games with nice theoretical 
properties. 
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