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Problem Set 1 Solutions 
14.04, Fall 2020 

Prof: Robert Townsend 
TA: Laura Zhang and Michael Wong 

Problem 1: Preference Relations and Utility 
Functions 

a) Let X = R2 and there be two points x = (x1, x2), y = (y1, y2).+ 
Suppose x � y if x1 > y1 or if x1 = y1 and x2 ≥ y2. 
Is the preference relation � complete? Transitive? Why or why not? 

Solution: These preferences are called lexicographic preferences. 
Completeness: If x1 > y1 (y1 > x1), then x � y (y � x). If x1 = y1, then 
either x2 > y2 so that x � y, or y2 > x2 so that y � x, or x2 = y2 so that 
x � y and y � x. 
Transitivity: Let x, y, z ∈ R2 where x = (x1, x2), y = (y1, y2), and+ 
z = (z1, z2). Suppose that x � y and y � z. Then we want to show 
that x � z. As we assume that x � y then either 

x1 > y1 (1) 

x1 = y1 and x2 ≥ y2 (2) 

As we assume that y � z then either 

y1 > z1 (3) 

y1 = z1 and y2 ≥ z2 (4) 

Now we show that x � z. 
If (1) and (3) are true, then x1 > z1 and therefore x � z. 
If (1) and (4) are true, then x1 > z1 and therefore x � z. 
If (2) and (3) are true, then x1 > z1 and therefore x � z. 
If (2) and (4) are true, then x1 = z1 and x2 ≥ z2 and therefore x � z 
So in all possible cases, x � z as required. 

b) John has preferences over consumption bundles (A, B) ∈ R2 characterized + 
21 

by utility function U(A, B) = A B . Show that John’s preferences satisfy 3 3 

strict monotonicity, local non-satiation, strict convexity, and continuity. 

Solution: Strict monotonicity: Follows from the fact that U(A, B) is 
strictly increasing in both A and B. 
Local non-satiation: Follows from the fact that the gradient of U(A, B) is 
never the zero vector on R2

+. 
Strict convexity: Emphasis on strict. If preferences were linear, they would 
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be weakly convex. Preferences are strictly convex if the utility function 
is strictly quasi-concave. Strict concavity implies strictly quasi-concave, 
and to show that the utility function is strictly concave, we show that the 
Hessian of the utility function is negative definite. � �

2 
9 9− 2 A−5/3B2/3 A−2/3B−1/3 

H = 2 A−2/3B−1/3 A1/3B−4/3− 2 
9 9 

A1/3B−4/3The first principal minors − 2 A−5/3B2/3 and − 2 are both neg-9 9 
ative, and the second principal minor (the determinant) is positive. 
Continuity: U(A, B) is continuous. 

c) Consider the following constrained maximization problem using the utility 
function from part b) 

max U(A, B) = A 
21 

3B 3 

s.t. pAA + pB B ≤ I 

A ≥ 0 and B ≥ 0 

where pA, pB , I > 0. Let A∗, B∗ denote the solution to the above problem. 

i. Can we ever have A∗ = 0 or B∗ = 0? Why or why not? 

Solution: No we cannot. If A∗ = 0 or B∗ = 0, then U(A∗, B∗) = 0. 
However since I > 0 and prices pA, pB > 0, then there exists A0, B0 > 
0 where pAA + pB B ≤ I and U(A0, B0) > 0, which contradicts that 
(A∗, B∗) was optimal. 

ii) Can we ever have pAA∗ + pB B
∗ < I? Why or why not? 

Solution: No. This is because preferences are strictly monotonic 
in A and B. Therefore, if pAA∗ + pB B

∗ < I, then there exists 
the point (A + �, B + �) where pA(A∗ + �) + pB (B

∗ + �) ≤ I and 
U(A + �, B + �) > U(A, B), which contradicts A∗, B∗ being a maxi-
mum. 

iii) Set up the consumer’s Lagrangian and find the first-order conditions. 
How do you know that these first-order conditions are sufficient to 
characterise the solution to the consumer’s problem? For what values 
of pA, pB will the consumer consume twice as much A as B? 

Solution: The Lagrangian is L(A, B) = A1/3B2/3+λ(I−pAA−pB B) 
and the first-order conditions are 

1 
A−2/3B2/3 − λpA = 0 

3 
2 
A1/3B−1/3 − λpB = 0 

3 
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These conditions characterize the solution to the consumer’s problem 
because the utility function is concave, the constraint set is convex, 
and limA→0 UA = ∞, limB→0 UB = ∞. To figure out when the 
consumer will buy twice as much A as B, rearrange the FOCs to set 
MRS equal to the price ratio. MRS = B = pA . Then we see that2A pB 

A = 2B whenever pA = 1/4 pB 

Problem 2: Income and Substitution Effects 

A (potential) worker has utility over consumption c and leisure l given by 

cδ lδ 

U(c, l) = α + β 
δ δ 

where δ < 1. She has T hours to allocate between leisure and work. For 
each hour she works, she earns a wage w to spend on consumption c, which we 
normalize the price of c to one. However, because her wife works, she receives an 
additional ‘non-labor income’ Y regardless of how much she works. Assume she 
takes Y as given (i.e. her own decisions do not affect her wife’s labor supply). 
She therefore maximizes utility subject to the following constraints: 

c ≤ w(T − l) + Y 

c ≥ 0 

0 ≤ l ≤ T 

a) Without writing down the Lagrangian or solving the optimization problem, 
identify which constraints above will always bind (hold with equality) at 
the optimum, and which constraints will always be slack (not hold with 
equality). Are there any constraints which fall into neither category? 

Solution: The budget constraint c ≤ w(T − l) + Y is going to bind. 
To make clear the link with more standard budget constraints, we can 
rewrite it as c + wl ≤ wT + Y (in other words, leisure is ‘bought’ at the 
price w). Then, because the worker has strictly increasing utility in both 
c and l, we see that she will always want to exhaust her ‘budget’ wT + Y . 

The constraints c ≥ 0 and l ≥ 0 will always be slack. This is because the 
δ−1consumer’s marginal utilities are c and lδ−1 , which become infinite as 

consumption and leisure approach zero, so it can’t be optimal to consume 
zero of either. 

The constraint l ≤ T might or might not bind, depending on parameters. 
Even if the worker chooses l = T , i.e. doesn’t work at all, she can still 
consume something because of her nonlabor income Y , so if leisure is 
particularly valuable to her she might choose that. 
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b) Set up the Lagrangian and write out all the relevant conditions for a solu-
tion, using your answer to a) to help simplify things. 

Solution: We can rewrite the problem using a) as 

δ lδc 
max U(c, l) = α + β 

δ δ 

subject to 
c = w(T − l) + Y 

l ≤ T 

The associated Lagrangian is 

δ lδc 
L(c, l) = α + β − λ(c + wl − wT − Y ) − µ(l − T )

δ δ 

The conditions for an optimum are firstly the first-order conditions: 

dL 
= 0 ⇒ αcδ−1 − λ = 0 

dc 

dL 
= 0 ⇒ βlδ−1 − wλ − µ = 0 

dl 
and then also the non-negativity constraints on the Lagrange multipliers 
and the complementary slackness conditions: 

λ ≥ 0; µ ≥ 0 

λ(c + wl − wT − Y ) = 0; µ(l − T ) = 0 

and finally the constraints themselves: 

c = w(T − l) + Y 

l ≤ T 

c) Assume now that the solutions are at an interior point. How do c and l 
change as non-labor income Y increases? What does this tell us about 
whether c, l are normal goods? 

Solution: First we find the Marshallian demand functions. Assuming 
an interior solution means that the constraint l ≤ T does not bind, and 
from a) we know the budget constraint c = w(T − l) + Y always binds. 
The new Lagrangian is 

cδ lδ 

L(c, l) = α + β − λ(c + wl − wT − Y )
δ δ 

4 



and the FOCs are 

αcδ−1 − λ = 0 

βlδ−1 − wλ = 0 

so rearranging, we find that 

1� � 
αw δ−1 

c = l 
β 

and plugging this into the budget constraint c = w(T − l) + Y , we find 
the demand function for c and l. 

wT + Y 
c ∗ (w, Y ) = � � 1 

δ−1αw1 + w β 

wT + Y 
l ∗ (w, Y ) = 1� � 

δ−1αw w + β 

From the demand functions, it is clear that ∂c∗ > 0 and ∂l∗ > 0 for all Y∂Y ∂Y 
and therefore both consumption and leisure are normal goods. 

d) How do c and l change as the wage w increases? Show that your result 
can be interpreted as income and substitution effects. Note: An intuitive 
answer will get you most of the points. 

Solution: Intuition: For consumption, both income and substitution 
effects go in the same direction where higher w leads to higher c. For 
leisure, the income effect leads to higher l but this is counteracted by 
the substitution effect where higher w leads the worker to want to work 
more and consume less leisure as l costs w. Whether the income effect or 
substitution effect dominates depends on the exact values. 

Algebra: We can rewrite the maximization problem to be in only a single 
variable since the budget constraint binds. 

(wT − wl + Y )δ lδ 

max U(l) = α + β 
δ δ 

The FOC is then 

−wα(wT − wl + Y )δ−1 + βlδ−1 = 0 

Let the RHS be f(w, Y, l). To find the comparative statics of the model, 
we can totally differentiate the FOC and get 

∂f ∂f ∂f 
dw + dY + dl = 0 (∗)

∂w ∂Y ∂l 
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The partial derivatives are 

∂f 
= −α(wT − wl + Y )δ−1 − wα(δ − 1)(wT − wl + Y )δ−2(T − l)

∂w 
∂f 

= −wα(δ − 1)(wT − wl + Y )δ−2 

∂Y 
∂f 

= w 2α(δ − 1)(wT − wl + Y )δ−2 + β(δ − 1)lδ−2 

∂l 
dlTo find what dw is, conditional on dY = 0 (so only wages are changing), 

we can rearrange the equation (∗) and plug in partial derivatives to get 
∂f 

dl −α(wT − wl + Y )δ−1 − wα(δ − 1)(wT − wl + Y )δ−2(T − l)∂w |dY =0 = = 
∂f ∂f dw 
∂l ∂l 

−α(wT − wl + Y )δ−1 −wα(δ − 1)(wT − wl + Y )δ−2 

= + (T − l)
∂f ∂f 
∂l ∂l 

∂f −α(wT − wl + Y )δ−1 
∂Y = + (T − l)

∂f ∂f 
∂l ∂l 

∂f 
dlAnd since ∂Y = |dw=0, this is the income effect. The above derivation ∂f dY 

∂l 

is equivalent to the Slutsky Equation where the first term is the substitu-
tion effect and the second term is the income effect. From this we see that 
the substitution effect is negative and the income effect is positive (recall 
δ < 1). 

We can follow the same steps for c. The FOC in only c is 

β c Y 
)δ−1αcδ−1 − (T − + = 0 

w w w 

Let the RHS be g(w, Y, c), and totally differentiating, we find that 

∂g ∂g ∂g 
dw + dY + dc = 0 (∗∗)

∂w ∂Y ∂c 
The partial derivatives are 

∂g c Y 
)δ−1 β c Y 

= βw−2(T − + + 
w3 

(δ − 1)(T − + )δ−2(−c + Y )
∂w w w w w 
∂g β c Y 

)δ−2 = − (δ − 1)(T − + 
∂Y w2 w w 
∂g β c Y 

)δ−2 = αcδ−2(δ − 1) + (δ − 1)(T − + 
∂c w2 w w 

Then rearranging and plugging partial derivatives, we get 
∂g c Y )δ−1 β c Y )δ−2(−c + Y )dc βw−2(T − + + 3 (δ − 1)(T − +∂w w w w w w|dY =0 = = 
∂g ∂g dw 
∂c ∂c 

We can see here that all terms are positive, so the income and substitution 
effect go in the same direction. 
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3 Problem 3: Production Functions and Feasi-
ble Allocations 

Recall the Leontief input-output model from lecture 4. Suppose we have two 
commodities and input-output matrix given by � � 

A = 
.2 
.6 

.7 

.1 

Specifically, producing one unit commodity 1 costs .2 units of commodity 1 and 
.6 units of commodity 2, and producing one unit commodity 2 costs .7 units of 
commodity 1 and .1 units of commodity 2. 

a) Suppose John has a demand vector given by D = [3, 1]. Find the production 
vector X = [X1, X2]

0 that satisfies this demand. 

Solution: We can use the formula from the lecture notes: X = (I − 
A)−1D. Plugging in values, this gives us � � 

11.333 
X = 

8.667 

b) Now suppose John has a utility function given by UJ (Y1, Y2) = αY1 + βY2 

where α, β > 0. Characterize the set of production vectors X that gives 
John a utility of V > 0. (Hint: this will be a linear equation of X1 and 
X2 in terms of α, β, and V ) 

Solution: Let θ = [α, β] and Y = [Y1, Y2]
0 . Recall that output available 

for consumption is given by (I − A)X, thus we have that Y = X − AX = 
(I − A)X. Thus, the equation that characterizes the set of production 
vectors X that gives John a utility of V is given by 

θ(I − A)X = V 

writing this out gives us 

V −0.7α + 0.9β 
X1 = + X2 (1)

0.8α − 0.6β 0.8α − 0.6β 

c) Suppose Sally does not like it when X2 is produced in either too much or too 
little quantity. Specifically, Sally’s utility is given by US (X2) = −γ|X2−X|
where γ > 0. Find the production vector X∗ that maximizes Sally’s utility 
subject to keeping John’s utility constant at V. (Hint: you should not use 
any calculus to solve this problem) 

Sally’s utility is maximized at X∗ = X. To keep John’s utility constant, 2 
V −0.7α+0.9βthen we must have X∗ = + X1 0.8α−0.6β 0.8α−0.6β 
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4 Problem 4: Giffen Good 

Results are already in the assignment document. 
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